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In this short note a simple quantum chemical type of approach to
electron correlations in d-dimensional Hubbard model is proposed. In
essence, the method is very closely related to CEPA-0 approximation (also
to Gutzwiller approximation and to the Local ansatz) and as such is no
novelty. The real aim is to provide unsophisticated and computationally
cheap method which allows for an easy treatment of electron correlations
in finite cluster models with a simple Hubbard type Hamiltonians.

PACS numbers: 71.10. Fd, 71.15. -m, 31.15. Dv

1. CEPA-0 type approximation

Coupled cluster (CC) expansions are very powerful tools of quantum
chemistry [1-3]. They allow for accurate treatment of electron correlations in
many electron systems. In contrast to the popular configuration interaction
(CI) method [1-3] the CC expansion avoids the problem of size consistency.

The correlated ground state wave function in CC method is customarily
written in the form

[@o) = exp(O1 + Og + - - )| Pser) (1.1)

where
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Here the alpha symbols are the expansion coefficients, |Py.s) is the self con-
sistent ground-state wave function, and

wS = cgcv; wf;‘f = cgcTchcw;

are formed out of the electron creation and annihilation operators. The
capital latin indices S,T,--- denote the virtual (unoccupied) single particle
spin-orbitals; the small letter indices v, w, - - - denote the occupied orbitals.
01,04, - - - refer to one particle, two particles, --- excitations from the oc-
cupied orbitals of the self consistent ground-state to the virtual orbitals.
We stress that in the CC method the coefficients o, af”g ,++- are not the
variational parameters (like in the CI) but has to be fixed in such a way that
the state |¥p) represents a true ground state.

For the Hubbard type Hamiltonian H, which consists of one and two
particle operators only [1,4, 5], it is easy to show [1] that the energy of the
ground state is

Eo = E§ + (H(O1 + 10%) + (HO,),

where (---) denotes the expectation value over the self consistent ground
state and E5f is self consistent energy of the ground state.

Neglecting O, is a common procedure because in most cases this part
leads only to a small density changes in presence of two particle correlations
[1,2]. The approximate formula for Ey in such a case is

Eo = E5 + (HO,) . (1.2)
The alpha coefficients are fixed using the condition [1]:
((wyytem92 He%2) = 0. (1.3)

Neglecting the terms of the order of a? (CEPA-0 type approximation —
compare [1]) one obtains

U sC AU
(WiDHy+ Y o (WSDNH - Xy =0 (1.4)
AUbd

The technical task to solve Eq. (1.4) for a many electron system turns
out to be very difficult. On the other hand, if we decide to use crude approx-
imation with a single alpha parameter (instead of many), then the solution
of the Eq. (1.4) presents no real problem. So the approximation we propose
in this paper is

a r «
O32PPT F‘ Z C;Tchcwch(S +T—-v—w), (1.5)
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where the spin variable is specified explicitly. For the sake of simplicity
only singlet excitations are being considered in (1.5). We remind the reader
again that the capital latin indices (they are vector indices in momentum
space) denote unoccupied levels above Fermi surface (SCF ground state)
while small latin indices denote occupied SCF momentum space orbitals.
The capital N denotes the total number of single particle orbitals (for one
orientation of the spin) or the number of sites in the cluster if we consider
the one band Hubbard model. The A function is zero or A = 1 but only if
the argument value is equal to zero or to any integer translation of reciprocal
lattice (umklapp processes). Note that S3PP" is closely related to potential
part of the Hubbard Hamiltonian H — v.e., to V. = Uy 3, nr4n,y, where r
runs over (real space) lattice sites. Note further that one particle processes
present in V were omitted in O5P"" as well as the operators which upon
acting on SCF ground state yield zeros. The very close connection of our
method to the Gutzwiller approximation and to the Local ansatz [1,4] is
evident.

A brief summary

The method we propose is summarized by Eqs (1.2), (1.5) and by the equa-
tion

(5T HY vy Y (RSDY(H - BENwi) = Cr4oq (Cr— B Co) = 0,
AUbd '
(1.6)
where
QS T — cTSTc:rF 1CutCuy -

The spin variables were displayed explicitly. Eq. (1.6) follows logically from
Eq. (1.4). The symbols Cy, Cy,Cy were introduced as aliases to the respec-
tive averages.

Now, the technical task to evaluate the Cy, C1,C5y coefficients is enor-
mously 31mpllﬁed thanks to the specific form of O3*"".

2. How the approximation works

The earlier results of computations on correlated ground state in a two
dimensional Hubbard model include Refs [5-8] as well as the references cited
therein. Here we present the results for 10 x 10 two dimensional Hubbard
cluster (three dimensional clusters can be treated in exactly the same man-
ner).
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The Hamiltonian in momentum space representation is represented by
the expression

U
H= Zekczacka - —-Ng Z CLTCILCPTCTLA(;‘L +v—-p—1), (2.1)
ko

s Py T

where p, v, p, T are (vector) momenta for the SCF ground state; for example
i = (pz, py). Here we use greek letters (instead of small and capital latin
letters) as a convention to indicate in a distinct way that the indices refer
to both occupied and unoccupied orbitals. If the lattice constant in two
dimensional Hubbard model with square lattice cell is set to unity then
€k = 2t[cos(k;) + cos(ky)] [4,5]. t is the hopping integral and Us is on site
Coulomb repulsion. The “workhorse” model parameters (two dimensions)
are t = —1 eV and Uy = 4 eV. These parameters are thought to be the
most difficult to treat (by various perturbation expansions) and at the same
time they are of interest as they mark a border between different regimens
of behaviour on the t, Uy phase diagram [4, 5].

To obtain ground state wave function and ground state energy one has to
calculate the averagesin (1.6). Thanks to specific form of O3FP" they are very
easy to obtain. The resulting formulas are compact and short. We do not
present the intermediate results as they are standard. It suffices to say that
after the proper factorization of the averages into up and down spin parts one
can apply short computer program to perform averages. (Without doubts,
this is a practical way to do Wick’s theorem if correct signs were assigned to
individual terms.) The program was written in PASCAL. It is very simple
and short. It manipulates on strings of creation and annihilation operatorsin
an algebraic manner. In each string cTA and ¢, type operators are commuted
to the right side while ¢} and c4 to the left. The interchange of any two
creation or annihilation operators gives rise to an extra average (an extra
string with two operators less than the parent string). The strings (averages)

with CTA and ¢, at the rightmost position or ¢! and c4 at the leftmost position
give zero. The most of indices within the averages are clearly assigned:
that is, one knows explicitly whether they refer to occupied state or to an
unoccupied one. In this respect only 4 indices (greek letters) coming out of
potential part of H can be termed “unknown”. This is technical reason why
the calculation of the averages is simple task. One avoids the nightmarish,
pages long, formulas coming out of the evaluation of the averages with many
indices which are of the type “unknown”. The final result is

1
N2
1
Cl = —mson, (23)

CO = Sl y (22)
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(SlE(s)Cf + 52) + U0(53 — 285, + 55)

C2 = NZ N«3 3 (2.4)
Cy

_ i 2.5

(2] (02 _ E(S)cfco) 3 ( )

Eo = ESCf + O’1C1 ’ (26)

where N is the total number of sites within the cluster (or the one half of
spin-orbitals) and where the sums S are

S1 = Z AS+T —w—-v), (2.7)
S, T, w,v
Sy = Z AS+T —w—v)(es+er —ew+Ev), (2.8)
S,T,w,u
S3 = Z AS+T —v—w)A(A+U — v —w)
S, T,AU,w,v
xA(A+U-5-T), (2.9)
Si= Y, AS+T-v-w)AS+U-v-0b)
S, T.Uw,u,b
XAWU -T+w—-b)), (2.10)
Ss= Y. AS+T-v-w)AS+T-d-b)
S,Tw,v,b,d
xA(w+v—>b-4d)). (2.11)

We remind again that the subscripts are vector indices (momentum space,
no spin) and that the capital letters correspond to empty states above the
Fermi level and small letters correspond to occupied states below and at the
Fermi level. These formulas were derived under assumption that SCF ground
state is a single Slater determinant, i.e., they correspond to closed shell
case. Each SCF energy shell for the Hubbard cluster being considered must
be either empty or entirely filled. The generalization to open shell case is
simple but the formulas one could obtain would loose such short and compact
form as the ones presented above. This is because open shell SCF wave
function is the sum of many individual wave functions. The number of this
functions equals the number of different allocations of electrons within the
last partially filled SCF energy shell (the deeper energy shells are completely
filled) [9].

Some remarks are now in order. First of all the evaluation of Sy, 52, -
is trivial and quick even for relatively large clusters. It can be done on a
cheap personal computer. Second remark is about umklapp processes. If
they are ignored, the A functions reduce to normal Kronecker deltas and
the evaluation of Sy, S,,--- is even simpler; instead of computer code one
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deals mostly with analytic results for the sums. Neglecting the umklapp
processes seems, however, too serious a mistake.

To conclude, we present some results and compare them with practi-
cally exact Quantum Monte Carlo calculations [8] for various fillings f =
nel/(2N), where ng is the total number of electrons in the cluster (equal
numbers of up and down electrons). To allow for direct comparison with the
results of Ref. [8] instead of Ey we show the values of Eo = Eg+UyN(0.25—
f). This corresponds to a different reference level on the energy scale.

TABLE I

Ground state energy Eq [eV] per site for 10 x 10 Hubbard cluster calculated for
various fillings f (U =4 eV, t = —1 eV).

f Byt Ey
this work Ref. [§]

0.25 -1.0567 | -1.1280 -1.1355
0.29 -1.2286 | -1.3211 -1.3344
0.37 -1.4974 | -1.6277 -1.6483
0.41 -1.5631 | -1.7101 -1.7376

Taking into account a minimal amount of work needed to get the entries from
the third column one concludes that the method presented in this work can
be crude, but still it is useful. We presented the simplest version so the
formulas are short and look nice. The generalizations of the method are,
however, easy and present no problem. In particular, one can extend O3
in spirit of Local Ansatz [1] and still the method will remain simple and easy
to implement in concrete computations.

The author would like to thank Prof. A.M. Ole$ and Prof. J. Spalek for
valuable discussions and a critical reading of the manuscript.
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