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A simple and realistic model of bistable chemical system in which run-
ning fronts can be observed is studied. Mesoscopic characteristics of the
model are obtained by numerical simulations of the master equation for spa-
tially distributed system. Velocity of the front and its width obtained in
the simulations agree well with the phenonenological description. However,
for small diffusion coefficient fluctuations grow locally to a macroscopic size
and create pulses. Such effects cannot be described by the phenomenolog-
ical approach.

PACS numbers: 82.20. Wt, 82.20. Mj, 05.40. +j

Fluctuations can strongly affect dynamics of nonlinear, far-from-
equilibrium, chemical systems [1-4]. Such effects can be important if a
system is close to a bifurcation. The simplest example is a bistable system
close to a saddle-node bifurcation. In this case one of stable stationary states
is very close to a saddle point and fluctuations can induce a “jump” of the
system from a basin of attraction of this stable stationary state to another
one. In the homogenous system only global fluctuations can occur, which
change concentrations in the whole volume. The system can be treated as
homogeneous either if it is ideally stirred or if its size is so small that dif-
fusion is able to maintain its homogeneity. Analytical solutions for global
fluctuations in homogeneous systems are available for the Schlégl model [4].

Different behavior can appear in the unstirred system, in which difus-
sion is unable to disperse small local inhomogeneities. Local fluctuations
can form small domains in which concentrations are switched from a basin
of attraction of one stationary state to another one. These domains can next
grow and cover a macroscopic part of the system. This kind of behavior is
studied in the present paper, which extends the previous investigations of
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fluctuations in the corresponding homogeneous bistable system [5,6]. We
are mainly interested in the influence of diffusion on dynamics of local fluc-
tuations. In particular, we show that sufficiently fast diffusion is able to
supress local fluctuations in a system of finite size. On the other hand, if
diffusion is decreased local fluctuations can survive and substantially change
dynamics of the system. In order to include fluctuations in dynamical de-
scription of the system we use the master equation approach which accounts
for stochastic character of chemical and transfer processes. A possibility
for local fluctuations is included in the master equation for the spatially
extended system [1]. Both reaction and diffusion processes are taken into
account by this equation.

We consider a chemical scheme the same as in the previous papers [5,6],
in which global fluctuations have been studied by various methods. This
model is realistic because it consists of elementary reactions only, that is
bimolecular reactions excluding autocatalytic steps. These properties of
the model allow for its simulations by master equation approach as well as
by other techniques, like cellular automata and molecular dynamics meth-
ods. Rate constants and diffusion coefficients are chosen in such a way that
for apropriate initial conditions the phenomenological description predicts
a wave solution in the form of a runnning front. We examine the relation
between the stochastic and deterministic descriptions by comparing the re-
sults of the master equation approach and the phenomenological solutions
for this phenomenon. Stochastic treatment has been already applied to
study effect of fluctuations on velocity and width of running chemical front
in the simplest model systems [7]. In our paper we focus our attention on
spontaneous generation of pulses in regions ahead of the running front or in
initially homogeneous systems.

The paper is organized as follows: In Sec. 1 the model is described and
its phenomenological dynamics is analyzed. In Sec. 2 the master equation
and the algorythm for its simulations are presented. In Sec. 3 the results
are presented and discussed.

1. Phenomenological model

The model consists of the following elementary reactions:

ky

R+S = V+S§ (1)
k_y
k2

V+E 2 X+6§ (2)

k_z
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X+S8E+U (3)
k4

X+V 2 Y+8S. (4)
k_4

This scheme is a modification of a well known model of an open chemical
system with a catalytic (enzymatic) reaction, inhibited by an excess of its
reactant V. The reactant V is transformed to the product U with E as
the catalyst (steps (2) and (3)). This part of the scheme is the well known
Langmuir-Hinshelwood mechanism of catalytic reactions (or the Michaelis—
Menten kinetics for enzymatic reactions). Step (4) is the inhibition of the
Langmuir-Hinshelwood mechanism (or the Michaelis-Menten scheme) by
an excess of the reactant V. It is assumed, that S is a solvent, whose
concentration is maintaned constant. The system is open, due to step (1),
in which the reactant V is produced from the reagent R, whose concentration
is maintained constant. One can arrange such conditions in a continuously
fed unstirred reactor (CFUR) or a so called “gel disc reactor”. Because we
are interested in inhomogenous systems we allow for initial distributions of
reagents concentrations which depend on space coordinates. Therefore, local
mass balance equations with reaction and diffusion terms for each reagent
separately must be used to describe the dynamics of the system. According
to the mass action law, the behavior of the system is described by four
kinetic equations for V, E, X and Y (because the step (3) is irreversible,
the changes of U are determined by concentrations of remaining reactants).
For simplicity we restrict our considerations to one dimensional systems.
The kinetic equations have the form:

v o2V _

o7~ Dvag = RS~k VS~ koVE + kXS — kaVX +k-sYS,
(5)

OF O2E ‘ . 6

S5~ Degg = ~hVE+ (ko2 + ko) XS, ()

DX 92X

S~ Dxgiy = kaVE — (koo 4 ks) XS = kVX + kaYS, (7)

oY 82y

S5~ Dvaor = kVX —kYS, (8)

where the symbols of the reagents are used to denote their concentrations for
convenience, because this notation does not cause any misunderstandings.
In the sequel we will assume that diffusion coefficients of all reagents are
identical, and we denote them by D. Moreover, the sum of initial concen-
tration distributions of the catalyst and all its complexes with the reagent
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V , that is F(z,0)+ X(z,0) + Y (z,0), is constant in space. It is easy to
show that in this case the sum: E(z,t) + X (z,t) + Y(z,t) = Eo remains
constant for all times ¢ > 0, and one of the variables (say Y) can be elim-
inated. Therefore, the dynamics of the system can be described by three
reaction-diffusion equations only:

27
%1;— - D%}z‘ = k RS —k_1VS —k;VE 4+ k_2 XS
—ksVX 4+ k_yg(Eo— E - X)S, (9)
OF O’E
—(%—DE? == -—kgVE+(k_2+k3)XS, (10)
0X 02X
o ~Dor = kaVE — (koo + ke XS

—kyVX + k_4(Eo— E — X)S. (11)

Usually, a total concentration of a catalyst (enzyme) Ey is much smaller
than the concentration of the reactant V. In this case one can separate
scales of time, in which the concentrations of the reagents change. The
variables £ and X become then fast variables, whereas V is a slow one.
For homogeneous initial distributions of E and X one can assume that their
distributions in a slow time scale are equal to their quasistationary values.
In this way the fast variables can be eliminated and the dynamics of the
system can be described by one kinetic equation for V only:

v PV ksEoV'S

ot = Dggzr =RBES—kVS - e S

=f(V), (12)

where K, = (IC_Q -+ kg)/kg and K4 = k_4/k4.

It is easy to see that for appropriate values of the parameters, there are
three values of V for which the right hand side of this equation is equal to
zero. These zeros determine the stationary states of the system. It is easy
to check that the smallest and the largest ones are stable stationary states
whereas the middle one is unstable. Therefore, according to the Kanel’s
theorem [8] equation (12) with initial condition such that one part of the
system is in a basin of attraction of one stable stationary state and the other
one is in a basin of attraction of the other stable stationary state, has an
asymptotic solution in the form of a running front V (£), where £ = z£pt+20.
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A velocity of the running front p is given by [8-10]:

Vs
[ sy
Wi
P=—0 :

[ ()«

-0

(13)

For the particular form of the right hand side of (12) the solution is
not known in an explicite form. The sign of p is determined by the sign of
Vi
/ f(V)dV. If this integral is positive then the region with V close to V3
Vi
expands and for negative value of the integral the region with V close to V)
expands.

On the basis of the results for the one variable system we assume that
the three variable system (9)-(11) has asymptotic solutions in the form of
travelling waves for the three variables provided the right hand sides of (9)-
(11) have also three zeros and the variables V, E and X have approprate
initial conditions. The validity of this assumption has been confirmed by
numerical solutions of (9)—(11).

2. Master equation

The mesoscopic treatment of the spatially distributed (in one dimension)
chemical system (1)—(4) is an extension of this approach applied to the cor-
responding uniform system [5]. The system is divided into (let’s say) M cells
along the spatial coordinate, the volume {2 and the lenght Al of each cell are
assumed equal. The state of the system is described by probability distribu-
tion P({Nv,;}, {NEg.:}, {Nx.,}, {Ny,},t) of finding a set of populations Ng ;
of species Q =V, E, X,Yinacell i =1,..., M. ( A number of molecules R,
S in each cell is constant, equal to Ng and Ng. ) A number of molecules
Nv,i, Ngi, Nx i, Ny, in i—th cell can be changed either by a chemical reac-
tion between molecules within a cell or by a transfer of a molecule to/from
adjacent cells. Both kind of these processes contribute independently to the
time evolution of the distribution function in the spatially distributed sys-
tem, and the master equation for P can be schematically presented in the
form

J oP

o DUNvih ANE} ANx i} {Nyi) t) = a0

oP

oy (14)

diff
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The contribution due to the chemical processes describes isolated reactions
in each single cell provided that populations in other cells remain unchanged;
it is a straightforward extension of the corresponding term for the uniform
system [5]

M
=3 (mNRNSP(...,NvJ - 1,...,t))
chem i=1
-{—K,_I(NVJ' + 1)NgP(.. SNy +1, 0 )
+ro(Nv; + 1)(Ng; +1)P(...,Nv;+1,...,Ng; + 1,.. i)
+5_2(NX'J’+ I)Nsp(...,NV,j— 1,...,Ng; —1,...,Nx; + 1,...,0)
+83(Nx,;+ )NsP(...,Ng;—1,...,Nx;+1,...,t)
+r4(Nv; + D){(Nx;+ D)P(...,Ny;+1,...,Nx;+1,...,t)
+K_4(Nyyj + 1)NgP(.. SNy +1,.. .,t))

—VehemP({Nv,i}, {NE.:}, {Nx.i}, {Nyv.i}. t). (15)

On the right hand side, the notation (..., Ngj,...) means that except
Ng,; all populations in the distribution function P remain unchanged. The
master equation expresses the rate of change of a probability of a state
({Nv;, Ngj, Nx ;, Ny;}) as a balance of the ’birth’ and ’death’ processes.
The ’birth’ term is formed by the positive components of the right hand side
of (14), which describe creation of a given state, resulting from transitions
from other states under particular chemical processes (1)-(4). Consequently,
the last component of the right hand side of (14) is a ’death’ term, describ-
ing escape from this state to other points of the configuration space. The
coeflicient vchem provides the total rate of escape from the configuration
({Nv:}, {NEe:}, {Nx.}, {Ny,:}), as a result of chemical reactions

Vehem({Nv,i}, {NE,:}, {Nx,}, {Ny.i})

M
— Z ( K1NpNg + K_ll\lYV,jNg 4 K,")NVJ'AI'E‘J'
=1

op
ot

+(k_2 + K3)Nx jNs+ kaNx ;Ny; + H_4NY,J'NS> . (16)

The respective terms of sum (16) represent the rates of reactive collisions,
corresponding to reactions (1)-(4). The coefficients k; are related to the
phenomenological rate constants of bimolecular reactions (1)-(4) by x; =
k;/$2. This relation ensures that the chemical terms in the phenomenological
equations (5)-(8) can be recovered from the master equation in the limit
2 — 00 , as the equations for the average number concentrations (Ng/2).
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In order to account for the diffusion process it is assumed that every
particle can jump with certain probability to a neighbor cell. These hoping
rates are related to the diffusion coefficients, and in general can be specific
for each species. The term of Eq. (14) describing diffusion has then the
following form

M
=Y (dv(Wvct + DP(. Ny + 1, Ny — 1, 8)
j=1

3t diff

+dv(Nv, 41+ 1) P(.. - 1L, Nvy1+1,...,t)
+dg(Ng ;-1 + 1)P(.. NE,] 1+ 1,Ng; — 1,...,t)
—f—dE(NEJ_H-{-l)P( wNgj;—1, Ngjp1+1, .o t)
+dx(Nxj;j-1+1)P(...,Nx;—-1+1,Nx ;- 1, .oy t)
+dx(Nxj+1 + )P(...,Nx;—1,Nx 1+ 1,...,¢)
(Ny,
(

+dy (Ny,j-1+ 1) P(.. NY] 1+ 1, Ny;—1,...,1)
+dy (Nyj+1 + 1) P(.. —1,Nyjs1+1,. ..,t))
_VdiffP({NV,i}s{NE,i}’{NX,z'}a{NY,i},t). (17)

Let us notice, that contrary to the phenomenological description we cannot
eliminate the species Y because a number of molecules fluctuates for each
component due to diffusion. In the above equation, the terms for bound-
ary cells, 5 = 1 and M, can formally include populations {Ng j+1} outside
the system, that is for 5 = 0 and M + 1. The interpretation of these val-
ues depends on boundary conditions. If the boundaries of the system are
impermeable walls ( corresponding to zero-flux boundary conditions in phe-
nomenological description), then transitions of molecules outside the system
are forbidden. Consequently, the terms involving j = 0 or M + 1 are disre-
garded. The coefficient vgig, describing the total rate of diffusive jumps for
all cells, for that system can be written as

vait ({Nv,i}, {NE,i}, {Nx.,i}, {Ny;})
=dyNv1+dgNgi+dxNx1+dy Ny,
M-1
+2 > (dVNV,j +dgNgj+dxNx,;+ dYNY,j)
i=2
+dvNvy +deNgm + dxNx m + dy Nyar - (18)

The relation between the transition rates dg and the diffusion coefficients Dq
are obtained from the condition that the usual diffusion terms are recovered
from equation (17) in the limit of large volume, £2 — oo, and fine division,
Al — 0. This yields the equation dg = Dg/(Al)?, which shows that for a
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given value of the diffusion coefficient the hoping rates dg increase for finer
divisions.

The master equation corresponds to the framework of the Fokker—Planck
approach, which describes the stochastic system in terms of the probability
distribution function. Alternatively, one can use the Langevin approach, in
which a stochastic dynamics is considered as a random walk of an individual
system. In the case of chemical system considered, it is a random motion in
a discrete space, in which coordinates of each point corresponds to a given
configuration of populations {Ng;} in cells. We have performed Monte
Carlo (MC) simulations of this (continous time) random walk applying the
method of Gillespie [11], which generates a stochastic trajectory according
to the following algorithm: Let us assume, that the system at an instant
t is in a state which is given by the point ({Nv;, Ng;, Nx ;, Ny;}). The
total rate of escape of the system from this point due to any reaction or
diffusion process is equal to v = Vchem + Vaiff- According to this, in the first
step of the algorithm, a waiting time 7 for the transition is sampled from
the exponential distribution

O(r) = vexp(—vT). (19)

The next step consists in choosing a particular reaction or diffusion process,
which causes a transfer of the system to another point. The probability p(«)
of selection of process « is proportional to its contribution to the total rate
of escape v. For chemical reaction p in a cell j, that means

Pchem(p,J) = v K, N1p i Ny j s (20)

where Ny, ;, N, ; denote populations of molecules of corresponding two
species involved in the bimolecular reaction p. Similarly, for the probability
of a diffusive jump (to the left or right) of a molecule @ in a cell j one
obtains

pair(Q,5) = v~ 'dgNqg,; - (21)
Next, the populations ({Nvj, Ng j, Nx j, Ny,;}) are updated as they result
from the chosen process «; in terms of the random walk the system moves
to the new point. Given this new state, generation of the random trajectory
proceeds beginning from the first step, and so on.

The coarsed-grained description provided by the master equation, which
is based on a division of space in finite size cells, is valid when concentra-
tions in each single cell can be regarded as uniform. This condition can be
satisfied if a lenght of a cell is sufficiently small. Using the results of phe-
nomenological approach as a first approximation, this size of a cell can be
roughly evaluated from the condition that the relative variation of concentra-
tion within a cell is very small. Therefore, the master equation is applicable
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if the division is enough fine to describe inhomogenities relevant for a given
problem. However, cells resulting from a division must have enough large
volume, in order to contain a sufficient number of molecules ( at least of the
order of ten ) to calculate statistics for a single cell, even for reactant of the
smallest concentration.

3. Results

In the sequel our main interest is in comparison between the phenomeno-
logical description and the master equation approach. While comparing the
deterministic and stochastic predictions it is important to realize that sim-
ulations of the master equation may be performed for systems with total
number of particles of the order of 10°. Real chemical systems, in which
concentrations of reagents are of order of 1 mol/dm?, cannot have a macro-
scopic size with such numbers of particles. Consequently, the unit of lenght
we use throughtout the paper is 1um. The unit of time is also rescaled to
10~8s, and then the numerical value of the diffusion coefficient in these units
is the same as in cm?/s. The concentrations are in usual units of mols/dm?3.

Numerical simulations of the master equation can be efficient if concen-
trations of reagents do not differ by orders of magnitude, because each cell
should contain at least a few molecules of a species of the lowest concentra-
tion, and at the same time the total number of molecules in a cell should
not be too large. Numerical simulations of the master equation introduce
also limitations on values of the rate constants. Their ratios should be not
too large, because the computer time demanded for simulations is related
to the slowest process. The following values of the rate constants are satis-
factory from computational point of view: k; = 0.36,k_; = 0.22, k; = 2.0,
k_2=0.1,k3=3.9,k4 = 2.0 and k_4 = 1.0. The unit of the rate constants
is [(10~8s - mol/dm®)~!]. Moreover, the following values of the parameters
have been selected: Fg = 0.2, R = 0.5 and S = 0.1. These values of the
parameters are the same as in our recent studies of the homogeneous system.
For the above values of the rate constants and the parameters the stationary
states are determined by:

Vi =0.113816,  E; = 0.069820,  X; = 0.039733 (22)
Vo =0.139666,  E, = 0.054810, X, = 0.038275 (23)
V3 =0.514609,  Es=0.006652, X3 = 0.017120 (24)

where (Vy, E1, X1), (V3, E3, X3) correspond to the attracting nodes and
(Va, By, X3) corresponds to the saddle point. Let us notice, that the sys-
tem has a relatively small threshold for an excitation from the first node
to the second one. Moreover, the system is close to a bifurcation from the
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bistable regime to a monostable one. It is sufficient, for example, to in-
crease the rate constant k; by 0.001 to induce a saddle-node bifurcation, in
which the first node collapses with the saddle point and both vanish, and
the system has one stable stationary state only.

For the above values of the parameters and in a broad range of the diffu-
sion coefficients we verified by numerical solutions of the system
(9)-(11) that a region with V3, E5 and X3 expands. In our numerical so-
lutions of (9)—(11) the initial value problem was replaced by the initial-
boundary value problem with zero flux boundary conditions at both bound-
aries of the system. A size of the system was chosen in such a way that
the variables at the left end of the system were very close to one stationary
state (say V3, F’3 and X3) whereas at the right end they are close to Vi, E}
and X;. Of course, this procedure is a reasonable approximation of the ini-
tial value problem for (9)—(11) if a region in space in which concentrations
change from V; to V3 is much smaller than the size of the system and it is
far from the each boundary.

The lenght of a cell is uniquely determined by a number of cells used
in division of a system of given length. We study the propagation of the
chemical trigger wave in the finite system of length = 5 (in pm). The
system is initiated in the state (V3, F3, X3) in the interval [0,1] and in the
state (V1, E1, X;) in the remaining part. We follow the propagation of the
front until it reaches about one half of the system lenght. In MC simulations
we tried several division of the system into M = 200, 400 and 1000 cells,
in order to check if the description by the master equation is correct for
the chosen spatial divisions. In order to expect that the master equation ap-
proach is valid, it is necesary that the MC results are consistent for all cases,
independently of value of M chosen from a given range. In these examina-
tions it was not possible for us to reach finer divisions. The computing time
required for simulations increases for larger M, because the rate of diffusive
jumps between cells is higher for thiner cells.

In order to study the effect of diffusion on dynamics of the system we used
three values of the diffusion coefficient equal to: 5-10~%, 5-107* and 5-1073
(in pum?/1073s ). Let us notice that these values correspond to real diffusion
coefficients for fluid systems if their units are cm?s~!. In phenomenological
description, faster diffusion leads to increase of both the velocity of the front
and its width. Additional effects can be expected in the stochastic descrip-
tion. The faster is diffusion the larger number of cells can be regarded as
uniform. Fluctuations which must cover larger domains become less proba-
ble. Therefore, diffusion can affect strongly evolution of fluctuations.

Figure 1 shows the snapshots of the moving front, obtained by the nu-
merical solutions of phenomenological equations (9)—(11) with the diffusion
coefficient D = 5-107%, and by the corresponding MC simulations obtained
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Fig. 1. Spatial distributions of concentration of V for time ¢t = 200, 400,
600, 800, and 1000. The following values of the parameters are used
throughout the calculations: k; = 0.36,k_y = 022,k = 2.0,k = 0.1,
k3 =39, k4 =20, k.4 =1, and Fg = 0.2,R = 0.5, S = 0.1. The diffusion
coefficient D = 5-10~*. The numerical solutions of the phenomenological equa-
tions (9)-(11) are shown in solid line. The simulations of the master equation for
M =400, and §2 = 8.33 - 10~° are shown by dots.

for division into M = 400 cells, each of which has volume 2 = 8.33-107°
( all volumes of cells are in um> ). The results of both methods are quite
consistent, indicating that for such volume of cell fluctuations are not very
large. The front running from left to right is clearly seen. The similar con-
sistence has been observed also in simulations obtained for the same system
partition, except that 2 = 2.5-107%. In the case of this smaller volume of a
cell, it has been noticed that patterns obtained in independent simulations
are somewhat different due to a stochastic character of the dynamics. In one
case a simulated wave front was retarded in comparison to the phenomeno-
logical result, whereas in another one it moved somewhat faster. This effect
appears because fluctuations increase as volume of a single cell diminishes.
Additional simulations performed for M = 200 and 2 = 5 - 107¢ exhib-
ited also good agreement with phenomenological results indicating that the
master equation with such M and {2 is reasonable.

In a spatially distributed system, fluctuations in individual cells are not
independent, because diffusion introduces coupling. The slower is diffusion,
this coupling extends over smaller distance. Since relative fluctuations are
stronger for smaller volumes, the stochastic effects are more important if
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the smoothing effect of diffusion covers smaller domains. This effect can
be observed in Figs. 2-5, which show the results for systems with the
smaller diffusion coefficient, D = 5-107%. The results of the simulations
agree well with the deterministic dynamics but fluctuations generate spon-
taneous pulses in the region ahead of the initial front. This is an essential
difference in comparison with the system with the higher diffusion coef-
ficient. After such a pulse is created, it expands according to the wave
mechanism and can collapse with the original front. Spontaneous creation
of pulses of excitation is a purely stochastic effect which is excluded in the
phenomenological description. In Fig. 2 we show the results for M = 400
and £2 = 8.33 - 10~%, which correspond to Fig. 1. The front running from

Fig. 2. The same as in Fig. 1, but the diffusion coefficient D = 5 - 107> and the
snapshots are for t==500, 1000, 1500, 2000, and 2500. Phenomenological results are
shown in solid line. The MC simulations for M = 400 and 2 = 8.33 - 10~° are
shown in dots for the four shorter times, and in dashed line for {=2500.

left to right is more steep as compared with Fig. 1. Beside the front ini-
tiated one can observe the spontaneous creation of pulse close to the wall.
Figure 3 presents the results for the system with smaller total volume, for
the partition M = 200, and £2 = 5-1075. In this case fluctuations are more
intensive, and the excitations are generated easier than in the previous case.
The results shown in Fig. 4 for the same system but with finer division,
M=1000 and 2 = 10~%, give the similar evolution of patterns. Figure 5
shows even stronger fluctuations arising in the system with the smaller total
volume, that is for M= 200 and 2 = 2.5-1076.
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Fig. 3. The same as in Fig. 2 but the MC simulations for M = 200 and 2 = 5-10~%.
The simulations are shown in dots for ¢ = 500, in very short dashed line for t = 1000,
in short dashed line for ¢ = 1500, in dashed line for ¢ = 2000, and in long dashed
line for ¢ = 2500.
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Fig. 4. The same as in Fig. 2 but the MC simulations for M = 1000 and 2 = 10~°.
The simulations are shown in dots for ¢ = 500, in short dashed line for ¢ = 1000,
in dashed line for ¢ = 1500, in long dashed line for ¢t = 2000, and in solid line for
t = 2500.
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Fig. 5. The same as in Fig. 2 but the MC simulations for M = 200 and 2 =
2.5-107%. Phenomenological results are shown in solid line. MC simulations for
are shown in dots for £ = 500, in short dashed line for ¢ = 1000, in dashed line for
t = 1500, in long dashed line for t = 2000, and in solid line for ¢ = 2500.

According to the deterministic predictions, the front moves faster and
becomes wider when the diffusion coefficient is higher. This effect can be
observed by comparing Figs. 1, 2 and 6, which depict results for the same
system but with different diffusion coefficients D = 5 - 107%, 5-107* and
5.1073, respectively. This trend is also confirmed in stochastic simulations.

Homogeneous system can be excited by local fluctuations, which grow to
a macroscopic size by wave expansion mechanism. Figure 7 shows creation
of pulse in the initially homogeneous system with diffusion coefficient D =
5-107%, for M = 400 and 2 = 2.5-107%. The time in which the fluctuation
reaches the macroscopic size is much longer than the time in which the
front extends over the whole system ( compare Fig. 1). For this reason
spontaneous generation of pulses have not been observed in systems with
the initiated front, for which the longest time of observation is ¢ = 1000.
For the system with faster diffusion, D = 5-1073, the pulses did not appear
in homogeneous system for time twice as long as the time of expansion of
the wave front ( compare Fig. 6). Emergence of spontaneous pulses in the
homogeneous system with D = 5-107° is shown in Figs. 8 and 9, for
different divisions M = 400, 2 = 2.5-107% ,and M = 200, 2 =5 1076,
respectively. In comparison to the results presented in Fig. 7, the system is
excited in a few spots and at much shorter time. It can be noticed in Figs.
8 and 9 that the use of different divisions does not change general features
of the results (regardless the stochastic details).
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Fig. 6. Spatial distributions of concentration of V for time t = 60, 120, 180, 240,
and 300. The diffusion coefficient D = 5-10~3. Both phenomenological results and
MC simulations are shown in solid line.

0.6

Fig. 7. Spontaneous generation of pulse in the system initially homogeneous at
Vi, E; and X, for D = 5-10~%. Results of MC simulations for M = 400 and
2 =2.5-107° are shown for ¢ = 3700, 4000, 4300, 4500, 4700, 4900.
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0.6

>O.3§:

Fig. 8. The same as in Fig. 7 but for D = 5-1075. Results of MC simulations for
M =400 and 2 = 2.5-107% are shown as dots for t = 500, in short dashed line for
t = 1000, in dashed line for ¢ = 1500, in long dashed line for ¢ = 2000, and in solid
line for ¢t = 2500.

Fig. 9. The same as in Fig. 8 but for M = 200 and 2 =5-107°.

In order to estimate a size of fluctuations which are able to switch the
system from the basin of attraction of V;, E; and X to the basin of attrac-
tion of Va, E3 and X3 it is useful to consider the reduced system described
by (12). Using the linear stability theory one can describe infinitely small
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perturbations of the homogeneous stationary statesVy, V3 and V3 in the form

of normal modes _
8Vi(t, z) = 8Vpieliaztat)

which gives the following relation:

o=-ng + TV (25)

It is easy to see that if

df (Vi)
v

k3EoS[KnS — V2/(K4S)]
[KmS + Vi + Vi/(K4S)]?

= k.S <0

then the perturbations with any wave numbers ¢ decay in time. Therefore,
the homogeneous stationary states V; and V3 are stable. It is not the case
for V3, for which df(V2)/dV > 0 and equals to 0.092958. Thus, for ¢ < ¢. =
1/D -df(V)/dV the value of o can be positive and the perturbations of the
homogeneous state V; can grow in time. The critical values of the spatial
period A = 27/q for which ¢ > 0 are equal to 0.145 for D = 51075 and
0.46 for D = 5-107%. These values are rough estimations and they give
approximate minimal sizes of fluctuations which can switch the system from
the basin of attraction I to III. The results shown in Figs. 7, 8, and 9 confirm

Fig. 10. Spontaneous generation of pulses in the system initially homogeneous at
Va, Eo and X, that is at the saddle point, for D = 5 - 10~%. MC simulations for
M = 400 and 2 = 2.5-10~% are shown for t = 400 as dots, for ¢ = 600 as the short
dashed line, for t = 800 as the dashed line, and for ¢t = 1000 as the solid line.



2074 B. NowakowsKI, A.L. KAWCZYNSKI

these approximate estimations, though in simulations the system is initiated
in the stable state I, not in the unstable sadle point II. The evolution of the
homogeneous system with D = 5-10* and initiated at the saddle node II
is shown in Fig. 10. The size of growing fluctuations is about twice as large
as predicted by the above simple estimations.

4. Conclusions

We have demonstrated in the present paper that the master equation can
be succesfully applied for description of the spatiotemporal wave phenom-
ena in the multicomponent chemical system. The results of the simulations
based on the master equation are consistent with the deterministic dynamics
of the system in the case if the stochastic character of the process is not very
impotrant. This is the case if diffusion is sufficiently fast to disperse local
fluctuations before they reach macroscopic size. However, when fluctuations
become comparable with macroscopic quantities, the stochastic effects give
rise to the behaviour which cannot be predicted in the framework of the phe-
nomenology. In particular, in the studied bistable system we have observed
spontaneous generation of pulses which subsequently expand according to
chemical vawe mechanism. The appearance of these pulses substantially

0.6

0.5 Y

>03q" %

0.2

Fig. 11. Spontaneous generation of pulses in the system initially homogeneous
at Vi, By and X; for D = 5-107%. MC simulations for M = 400 and 2 =
2.5-107° are shown at ¢t = 1000 (dotted line), 1500 (dashed line), 2000 (solid line).
Phenonenological calculations, which used the results of simulations for ¢ = 1000
as the initial condition, are plotted as stars.
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changes the dynamics of whole system. As can be seen in Fig. 5, the whole
system is switched to (V3, E3, X3) in the MC simulations, whereas the run-
ning front calculated from the phenomenology covers only about a half of the
system. The spontaneous generation of pulses decreases an interval of time
necessary to complete the reaction in finite system. It can be noticed that
if a pulse reaches sufficiently large magnitude, its subsequent evolution ob-
tained in the MC simulations is quite consistent with dynamics described by
the phenomenological approach. An example of such behavior can be seen
in Fig. 11, where the distribution obtained in the MC simulation is used as
the initial condition for numerical solution of the equations (9)-(11).
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by the Polish State Committee for Scientific Research.
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