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The effects of Coulomb and other charge-dependent interactions on the
structure of nuclei are discussed. First, a method to predict absolute bind-
ing energies for proton-rich nuclei that allows a mapping of the proton
drip-line up to A = 70 is presented. Then the effects of isospin-symmetry
breaking on tests of the standard model for the weak interaction are exam-
ined. The principal areas discussed are (1) superallowed Fermi beta decay,
which provides a test of the conserved vector current hypothesis and the
unitarity of Cabibbo–Kobayashi–Maskawa matrix; and (2) parity violation
in electron scattering, which offers a window into the neutral-current sector
of the weak interaction.

PACS numbers: 21.10. Dr, 21.10. Sf, 21.10. Tg, 23.40. Bw

1. Introduction

Theoretical predictions for nuclear binding energies and the location of
the proton drip-line require an understanding of the role played by both the
strong and Coulomb interactions in nuclei. Of these two, the contribution
due to the strong interaction is the more dominant and the more difficult to
predict, leading to overall uncertainties of at least 300 keV for nuclei with
A ≤ 50, and considerably more for heavier nuclei. For many proton-rich
nuclei, however, binding energies have been measured for their corresponding
mirrors. Consequently, an accurate estimate of the binding energy can be
made by exploiting analog (or isospin) symmetry. In particular, all that is
needed is to estimate the shift in the binding energy caused by the Coulomb
interaction and add this quantity to the experimental binding energy of the
neutron-rich mirror.
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With predictions for binding energies, it is then possible to explore a
range of phenomena ranging from the rp-process to exotic decay modes.
One mode that is predicted by binding energy studies, but is yet to be
observed, is the emission of two correlated protons, otherwise known as di-
proton emmission. The number of candidate nuclei amenable to experiment,
however, is severely limited because of an extreme sensitivity in the decay
lifetime on the two-proton separation energies.

Atomic nuclei also represent a laboratory in which “fundamental” sym-
metries, such as the standard model for the weak interaction, can be tested.
Two excellent examples are: (1) the ft-values for superallowed Fermi beta
decay, which test the conserved vector current hypothesis and the unitarity
of the Cabibbo–Kobayashi–Maskawa matrix; and (2) parity violation in elec-
tron scattering on N = Z nuclei, which offers a probe of the neutral-current
sector of the weak interaction. In each case, deviations from the predictions
of the standard model might be interpreted as signals of “new” physics. The
principal feature of both examples are that they were chosen so as to mini-
mize the effects due to nuclear structure. In fact, in the limit that isospin is
a good quantum number, the measured observables are essentially insensi-
tive to nuclear structure. However, because of the Coulomb interaction and
other small charge-dependent components of the strong interaction, isospin
symmetry is violated and small corrections are expected.

This lecture explores the role played by the Coulomb interaction in nu-
clei, and is organized in the following manner. First, Section 2 gives a brief
description of the isospin quantum number. The method used to predict
binding energies for proton-rich nuclei and possible candidates for di-proton
emission are presented in Section 3. The effects of isospin-symmetry break-
ing on superallowed Fermi beta decay and parity-violating electron scat-
tering are discussed in Sections 4 and 5, respectively, and conclusions are
gathered in Section 6.

2. Isospin

Shortly after the discovery of the neutron, Heisenberg proposed a new
quantum number that expressed a symmetry between protons and neutrons.
Heisenberg’s hypothesis was to regard protons and neutrons as a charge
doublet of essentially identical particles. This property can be described by
introducing a new spin, called isospin, whose quantized z-component, tz, is
related to the electric charge by q = e(1/2 + tz).

Isospin introduces a mechanism for labeling the many-body states in
nuclei with a particular symmetry. If the interaction between protons and
neutrons were charge independent, the energy spectrum for a system of A
nucleons with Z protons and N neutrons would be identical to that of the
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nucleus with N protons and Z neutrons. Namely, that these nuclei with
Tz = ±|Z −N |/2 are mirror images of one another.

In addition to mirror symmetry, we also expect to find analogs of the
states in the Tz = ±|Z − N |/2 nuclei in all nuclei with the same nucleon
number and |Tz| < |Z − N |/2. If isospin is a good quantum number, then
the wave functions for these analog states may be obtained by the repeated
operation of the isospin lowering operator on the state with maximum Tz. An
illustrative example is given by the two nucleon system, where the Tz = ±1
states have total isospin T = 1, with the wave functions given by |T = 1Tz =
1〉 = | ↑↑〉 and |1 − 1〉 = | ↓↓〉, respectively. For Tz = 0, there are two states
with T = 1 and 0 and wave functions

|00〉 =
1√
2
(| ↑↓〉 − | ↓↑〉) , (1)

|10〉 =
1√
2
(| ↑↓〉 + | ↓↑〉). (2)

It is easy to verify that Eq. (2) is the analog of the Tz = ±1 states.
The degree to which isospin may be used is determined by the charge

symmetry in the nucleon-nucleon interaction. For the most part, the inter-
action between nucleons is predominantly charge independent, and isospin
may be thought of as an approximate quantum number. Consequently,
isospin remains a powerful spectroscopic tool. On the other hand, it must
be pointed out that the isospin-symmetry breaking has important conse-
quences for some processes, such as superallowed Fermi beta decay and
parity violation in electron scattering as described below.

3. Coulomb energy differences

If the nuclear Hamiltonian is composed of at most two-body parts, it may
be separated into three components. The dominant part, which is also re-
sponsible for most of the nuclear binding, is isoscalar and is due to the strong
interaction. The other two components are due to the Coulomb interaction
and charge non-symmetric parts of the nucleon-nucleon interaction, and are
isovector and isotensor in character. If the isovector and isotensor compo-
nents are weak, then the binding energies for the members of an isospin
multiplet may be described using the isobaric mass multiplet equation [2]

BE(A,T, Tz , i) = a(A,T, i) + b(A,T, i)Tz + c(A,T, i)T 2
z . (3)

The coefficients a, b, and c separately depend on the isoscalar, isovector, and
isotensor components of the nuclear Hamiltonian, respectively.
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From Eq. (3), the binding energy difference between iosbaric analogs
with Tz = ±T is given by

BE(A,T, Tz = T, i) −BE(A,T, Tz = −T, i) = 2b(A,T, i)T. (4)

Therefore, an accurate way to predict binding energies for proton-rich nu-
clei whose analog has an experimentally measured mass is to compute the
b-coefficient and add 2bT to the experimental binding energy of the neutron-
rich analog.

Shell-model calculations for the Coulomb energy difference have been
carried out using empirical “Coulomb” interactions [3] for 37 nuclei in the
mass region 36 ≤ A ≤ 48 with active particles in the 0d3/2 and 0f7/2 or-
bits [4] and for 75 nuclei with 46 ≤ A ≤ 70 using the 0f7/2, 0f5/2, 1p3/2,
and 1p1/2 orbits [5]. The empirical “Coulomb” interactions were found to
reproduce experimental b-coefficients at level of 30-45 keV [3], and, conse-
quently, the predicted binding energies have an accuracy of approximately
40|Z −N | keV.

3.1. Di-proton emission

Because of the pairing interaction, a nucleus with an even number of pro-
tons (Z,N) is generally more tightly bound than a (Z − 1,N) nucleus, but,
because of the symmetry energy and Coulomb repulsion, it may be unbound
relative to the (Z−2, N) system. In this case, the parent nucleus may decay
by the emission of a di-proton, i.e., a correlated proton pair. With the pre-
dicted binding energies, candidates for di-proton emission may be identified.
The most important observation is that the number of candidates for which
experimental detection is feasible is sharply limited by the two-proton sepa-
ration energy. This is in part due to the fact that β+ emission is a competing
decay mechanism with lifetimes of the order 1–100 ms. In addition, a lower
limit of approximately 1 ns is often imposed by the experimental apparatus.
On the other hand, the decay rate for diproton emission is determined by
the probability to penetrate through the Coulomb barrier, which is expo-
nentially dependent on the two-proton separation energy. Because of this,
the number of candidates for which the observation of diproton decay is
practical, is limited to nuclei with two-proton separation energies between
0.9 and 1.4 MeV.

Listed in Table I are nuclei with di-proton halflives that are predicted
to be of the order 1 ms or shorter. Note that since the uncertainties in
the two-proton separation energies are of the order 200 keV, the exponential
sensitivity in the halflife on the separation energy leads to a fairly wide range
of halflives. From Table I, the best candidates for experimental observation
are 45Fe, 48Ni, and 66Se.
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TABLE I

Range of halflives for di-proton emitter candidates. Also listed are the pre-
dictions for the one- and two-proton separation energies (Sp and S2p).

AZ Sp (MeV) S2p (MeV) t1/2 (s) tmin
1/2 (s) tmax

1/2 (s)

38Ti 0.438(164) −2.432(132) 9 × 10−16 4 × 10−16 2 × 10−15

45Fe −0.010(198) −1.279(181) 10−6 10−8 10−4

48Ni 0.505(351) −1.290(330) 4 × 10−6 5 × 10−9 0.09
59Ge 0.058(211) −1.343(192) 10−3 10−5 0.3
63Se 0.069(288) −1.530(262) 6 × 10−5 3 × 10−7 5 × 10−2

66Kr −0.001(351) −2.832(325) 3 × 10−12 2 × 10−13 6 × 10−11

67Kr 0.155(288) −1.538(262) 2 × 10−3 10−5 0.2

4. Superallowed Fermi beta decay

Superallowed Fermi β transitions in nuclei provide an excellent labora-
tory for precise tests of the properties of the electroweak interaction, and
have been the subject of intense study for several decades. According to the
conserved-vector-current (CVC) hypothesis, for pure Fermi transitions the
product of the partial half-life, t, and the statistical phase-space factor, f ,
should be nucleus independent and given by

ft =
K

G2
V |MF|2

, (5)

where K/(~c)6 = 2π3 ln 2~/(mec
2)5, GV is the vector coupling constant for

nuclear β decay, and MF is the Fermi matrix element, MF = 〈ψf | T± | ψi〉.
By comparing the decay rates for muon and nuclear Fermi β decay, the
Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix element [7] between u
and d quarks (vud) can be determined and a precise test of the unitarity
condition of the CKM matrix is possible.

For tests of the standard model, two nucleus-dependent corrections must
be applied to experimental ft values. The first is a series of radiative cor-
rections to the statistical phase-space factor embodied in the factors δR and
∆R, giving [8]

fR = f(1 + δR + ∆R), (6)

where δR ∼ 1.3% is due to electromagnetic radiative corrections, currently
evaluated to order Z2α3, and ∆R ∼ 2.3% is what has been referred to
as the “outer” radiative correction and includes vector-axial vector inter-
ference terms. The second correction, which is discussed in detail here,
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arises because of the presence of isospin-nonconserving (INC) forces in nu-
clei that lead to a renormalization of the Fermi matrix element [9, 10].
This correction is denoted by δC and modifies the Fermi matrix element
by |MF |2= [T (T + 1) − TZi

TZf
](1 − δC).

With the above corrections, a “nucleus-independent” Ft can be defined
by

Ft = ft(1 + δR + ∆R)(1 − δC), (7)

and the CKM matrix element vud is given by

| vud |2= π3 ln 2

Ft
~

7

G2
Fm

5
ec

4
=

2984.38(6) s

Ft , (8)

GF is obtained from muon β-decay. Currently, ft values for nine superal-
lowed transitions have been measured with an experimental precision of 0.2%
or better [11]. With these precise measurements, the CVC hypothesis can
be confirmed by checking the constancy of the Ft values for each nucleus,
while the unitarity condition of the CKM matrix is tested by comparing the
average value of vud with the values determined for vus = 0.2199(17) [12]
and vub < 0.0075 [13], namely that v2

ud + v2
us + v2

ub = 1.
The correction δC can be evaluated within the framework of the nuclear

shell model [9, 10]. Due to computational limitations and uncertainties as-
sociated with determining an effective Hamiltonian, almost all shell-model
calculations for nuclei with A ≥ 10 are performed within a single major
oscillator shell, e.g., for 10C the model space spanned by the 0p3/2 and
0p1/2 oribitals. Within this context, two types of isospin mixing must be
accounted for. The first is due to the mixing between states that lie within
the shell-model configuration space. For example, for A = 10, there are 2, 7,
and 1 configurations leading to Jπ = 0+ and T = 0, 1, and 2, respectively.
Because of its two-body nature, the INC interaction is composed of isospin
operators of rank zero, one, and two, and consequently mixes together all
the Jπ = 0+ states. Traditionally, the configuration mixing correction is
denoted as δIM and in Ref. [10] it was shown that δIM is best evaluated us-
ing an INC interaction that reproduces the Coulomb energy shifts between
members of isospin multiplets [3]. Of the two types of mixing, δIM is the
smallest with a magnitude of approximately 0.04 − 0.1%.

In addition to the mixing between states contained within the configu-
ration space, mixing with states that lie outside the model space must also
be accounted for. In particular, the Coulomb interaction can strongly mix
1p − 1h, 2~Ω excitations, e.g., 0p3/1 → 1p3/2, into the ground state. Exci-
tations of this type are accounted for by examining differences in the single-
particle radial wave functions. Indeed, for closed-shell configurations, mixing
with 1p − 1h states is properly accounted for at the level of Hartree–Fock.
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Hence, the second correction to the Fermi matrix element, denoted by δRO,
was estimated by evaluating the mismatch in the radial overlap between the
single-particle wave functions of the converted proton and the correspond-
ing neutron. The explicit details for the calculation of δRO are given in
Refs. [9,10]. Schematically, though, one finds δRO ≈ 1−

∫

r2drRpRn, where

Rp(n) is the proton(neutron) single-particle wave function. In general, δRO

is the larger of the two components (δC = δRO + δIM), and has a magnitude
of the order 0.1-0.8%.

Two methods for evaluating δRO have been espoused. The first (THH) [9]
uses Woods–Saxon (WS) radial wave functions, while in the second (OB) [10],
Hartree–Fock (HF) wave functions are employed. Generally speaking, the
two methods yield approximately the same dependence on nucleon number
A, but the HF values are systematically smaller by 0.1% for the magnitude
of the correction. The reason for the difference lies in the HF mean field.
The principal effect of the Coulomb interaction is to push the proton wave
functions out relative to the neutrons. In HF, however, the proton and
neutron mean fields are coupled, and the Coulomb interaction induces an
attractive isovector mean field between the protons and neutrons. In effect,
the Coulomb interaction pushes the protons out, but because of the strong
interaction, the protons pull the neutrons out with them, hence, reducing
the magnitude of the radial overlap mismatch.

With the known corrections applied to the experimental data, the Ft val-
ues are found to be essentially constant, with a χ2/ν ∼ 0.7, but the unitarity
limit is violated at the level of approximately 0.4(1)% or 0.3(1)% for the OB
and THH corrections, respectively. This discrepancy from unitarity is diffi-
cult to reconcile, as one implication is another quark generation. However,
this implies a larger CKM matrix element than presently found for vub. In
addition, this would break the three-flavor symmetry that is at least partially
confirmed by the fact that the number of light neutrino species is limited
to three from both cosmology and high-energy experiments. Alternatively,
perhaps a small correction due to nuclear structure is still unaccounted for.
Indeed, the separation between δIM and δRO, while presently necessary, is
somewhat unsatisfying. This issue has recently been addressed for 10C,
where the isospin-mixing corrections have been evaluated [14] within the
framework of a no-core, large-basis shell-model calculation (up to 4~Ω) using
an effective interaction derived from a realistic nucleon-nucleon interaction
including Coulomb and charge-dependent terms. A value of δC ≈ 0.1% was
obtained, which is in excellent agreement with the previous estimates. Two
other possibilities, which warrant further study, are the CKM matrix element
vus and better evaluation of the radiative correction involving vector-axial
vector interference.
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5. Parity-violating electron scattering

In addition to the charged vector current, nuclei can also be used to test
the neutral-current sector of the weak interaction. For this, experiments
involving the elastic scattering of electrons on even-even, N = Z nuclei are
planned, with the observable of interest being the parity-violating electron-
scattering asymmetry [15, 16]

A =
dσ+ − dσ−

dσ+ + dσ−
= −

(

GFq
2

2πα
√

2

)

F̃C(q)

FC(q)
, (9)

where q = |q| is the magnitude of the three momentum transfer. The de-
pendence on nuclear structure is embodied in the Coulomb monopole form
factors FC(q) and F̃C(q) for the electromagnetic and neutral currents, re-
spectively. In the shell model, both form factors have the same form, and
are given by

FC(q) =

protons
∑

µ

np
µq

p
Ef

p
µ(q) +

neutrons
∑

µ

nn
µq

n
Ef

n
µ (q), (10)

where µ denotes the labels for each single-particle orbit, n
p(n)
µ the number of

protons(neutrons) occupying each single-particle orbit, and f
p(n)
µ (q) is the

form factor for the individual single-particle states given by

fp(n)
µ (q) =

1√
4π

∞
∫

0

r2dr(Rp(n)
µ (r))2j0(qr), (11)

where R
p(n)
µ (r) is the proton(neutron) radial wave function for the single-

particle orbit µ. For the Coulomb part, the charges are given by qp
E = 1 and

qn
E = 0, while for the neutral current, the corresponding weak charges are
qp
W = (1 − 4 sin2 θW)/2 and qn

W = −1/2, where θW is the Weinberg angle.
In the limit that isospin is a good quantum number, both np

µ = nn
µ and

Rp
µ(r) = Rn

µ(r), and Eq. (10) reduces to

A0 = [GFq
2/πα

√
2] sin2 θW = 3.22 × 10−6q2. (12)

It is the simple form of Eq. (12) that makes experiments on even-even N = Z
nuclei an attractive choice for testing the standard model. In particular,
the experimental goal is to perform a 1% measurement of A, and, thus, a
1% measurement of sin2 θW. Naturally, any deviations from the simple q2

dependence as well as the expected curvature, might be a signature of physics



Effects of the Coulomb Interaction in Nuclei. . . 165

beyond the standard model. Isospin, however, is not a conserved quantity
and the effects of this broken symmetry must be evaluated. Because isospin
is an approximate quantum number, deviations from Eq. (12) are expected
to be small and are quantified by the factor Γ (q) [16] defined as

A = A0(1 + Γ (q)), (13)

where, from Eq. (9), Γ (q) may be written as

Γ (q) = −[1 + F̃C(q)/2 sin2 θWFC(q)]. (14)

An estimate of Γ (q) proceeds in a similar manner as δC for the Fermi
matrix element. Namely, that isospin-mixing both within the configuration
space and 1p − 1h states must be accounted for. For the former, shell-
model calculations in proton-neutron formalism using the INC interaction
of Ref. [3] are carried out, with the principal effect being that np

µ 6= nn
µ.

Again, 1p − 1h mixing is taken into account by using Hartree–Fock proton
and neutron radial wave functions to evaluate the form factors in Eq. (11).

Shown in Fig. 1, is the correction factor Γ (q) for the targets 4He, 12C,
16O, and 28Si as a function of momentum transfer up to 1.2 fm −1. The
dotted line in the figure illustrates the level at which isospin-mixing correc-
tions exceed 1%. From the figure, it is apparent that the experiments have
to be performed at the lowest of momenta transfers. From Ref. [17], the
momenta transfer that maximize the figure of merit for 4He and 12C, which
would provide a 0.7% measurement of A, are 0.97 fm−1 and 0.62 fm−1, re-
spectively. From Fig. 1, the corrections due to isospin-symmetry breaking
are then expected to be 0.5% and 0.7% for 4He and 12C, respectively.
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Fig. 1. Calculated values of Γ (q) (in %) obtained for 4He, 12C, 16O, and 28Si.
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6. Conclusions

Although most of the nuclear binding is provided by the charge-sym-
metric part of the strong interaction, the isospin-nonconserving components
of the nuclear Hamiltonian, such as the Coulomb and other weaker parts of
the strong interaction, play an important role determining the structure of
nuclei. In addition, since these INC components are fairly weak, isospin re-
mains an approximate quantum number and is powerful spectroscopic tool.
In these lectures, it was shown that this approximate symmetry can be ex-
ploited to predict the binding energies of nuclei along the proton drip-line.
The extent to which isospin-symmetry is broken can also play an important
role for some observables. Two classic examples that have important ramifi-
cations regarding precise tests of the standard model for the weak interaction
were illustrated in this lecture.
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