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The nucleon–nucleon interaction is studied in the Tuebingen Chiral
Quark model. The quark–quark hamiltonian includes, in addition to a
quadratic confinement potential and the usual one-gluon exchange, pion
and sigma exchanges between quarks generated by chiral symmetry break-
ing. An expansion up to second order in v/c is used. The requirement of
chiral symmetry reduces the number of free parameters in the model. The
σ meson is exchanged between quarks and not as in earlier versions be-
tween nucleons. Within the model the nucleon-nucleon phase shifts and the
deuteron properties are studied. The longitudinal and transversal form fac-
tors form factors of the deuteron are calculated in this microscopic meson–
quark cluster model.

PACS numbers: 21.30. Cb, 21.30. Fe

1. Introduction

The first idea about the nature of the nucleon-nucleon interaction came
from Yukawa in 1935. He assumed that the strong interaction between
two nucleons is carried by an interaction quantum, which is a particle of
a medium heavy mass of about 200 MeV, the meson. After finding the π
meson one thought one has found the carrier of the strong nuclear force.
But the fifties saw a time where more and more mesons were found which
contribute to the nucleon-nucleon interaction. One of the high points of this
development was the suggestion of Gregory Breit in 1958 that the short range
repulsion should be due to a vector, isoscalar meson, the omega meson (ω)
with a mass of about 800 MeV. It was a big success of the meson exchange
theory of the nucleon-nucleon interaction when this ω meson was found also
experimentally.
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But just the ω meson shows that this cannot be the whole story. Flavor
symmetry SU(3) predicts from the ρ-nucleon coupling the ω-nucleon cou-
pling squared g2

ωNN/(4π) = 4.5. In reality one needs to reproduce the short
repulsion according to the Bonn-potential values between 12 and 24. Nor-
mally flavor SU(3) is only violated within 30 % or less. The need to blow
up the square of the ω − NN coupling constant by a factor 2 and more
indicates that the ω meson must carry a load for which it is not prepared.
After we learned that the nucleon is composed out of three valence quarks,
gluons and sea quarks it is natural to look on the quark level for the nature
of the short range repulsion. Indeed we will show in the next chapter that
the short range repulsion of the NN interaction can be understood in the
quark model by the symmetry of the 6-valence quarks [1–7]. The main pur-
pose of this work is to search for quark degrees of freedom in the deuteron
properties and in the nucleon–nucleon (NN) interaction.
In the second chapter we extend the quark cluster model to include chiral
symmetry, which is broken afterwards by quark condensates [8–15]. This
connects the sigma meson quark coupling constant to the pion–nucleon cou-
pling. PCAC gives a relation [16] between the sigma meson mass and the
pion and quark masses. In this way the number of parameters can be dras-
tically reduced. Furthermore one does not need to have two different values
for the quark-sigma meson (or nucleon-sigma meson) coupling for S and
higher partial waves [10–13].

In the third chapter we calculate the deuteron wave function in the quark
cluster model. For the electromagnetic deuteron form factors of the elastic
electron deuteron scattering we include the impulse term where the photon
is directly interacting with the quarks and exchange currents [17–20].

2. The quark model and the nn interaction

At large distances the nucleon-nucleon interaction can be represented
quite successfully by exchanging mesons between the centre of mass of nu-
cleon 1 and the centre of mass of nucleon 2. At smaller distances it makes
no sense to exchange mesons between the centre of mass of the two nucle-
ons, since due to antisymmetrization it is not even known where the centre
of masses of the two nucleons are, since the antisymmetrizer attaches the
6-valence quarks in each of the ten terms of the antisymmetrization to other
nucleons. The difficulty of the meson exchange model at short distances
might be indicated by the too large ω−NN coupling constant needed to re-
produce the data as indicated in the introduction. At short distances (below
1 fm), where the quark contents of the two nucleons overlap, the quark de-
grees of freedom should play a major role in describing the nucleon–nucleon
(NN) interaction and especially the short range repulsion.
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In principle we should describe the NN interaction by quantum chromo-
dynamics (QCD). But QCD is highly nonperturbative. This shows up in
the color confinement phenomenon at large distances and the appearance of
chiral condensates 〈ψ̄ ψ〉 6= 0 of quarks which break chiral symmetry. As
a consequence of chiral symmetry breaking current quarks acquire a con-
stituent mass mq = mN/3 ≈ 330 MeV. This symmetry breaking only occurs
at small momenta |q| < ΛCSB. These ideas have been included by Shuryak
[8] into an instanton liquid model of QCD. Using this picture Diakonov [9]
derived an effective low-momentum Lagrangian,

LQCD = ψ̄a
f ′(iγβ∂β −m(q2)eiγ5(~π · ~τ)ψα

f . (1)

Here ψ̄α
f is the quark spinor with color α and flavor f, f ′. m(q2) is the

dynamical mass of the quarks.
From Eq. (1) one can derive the effective interaction between quarks and

pions and its chiral partner the σ meson:

Hchiral = m(q2)ψ̄ exp

(

iγ5~τ · ~φ

fφ

)

ψ . (2)

If one linearizes this expression using,

π = ~φfπ sin(φ/fπ) ,

σ = fπ[cos(φ/fπ) − 1] (3)

one obtains:
Hchiral = gchF (q2)ψ̄(σ + iγ5~τ · ~π)ψ , (4)

where gch = mq(0)/fπ, F (q2) = mq(q
2)/mq(0). This expression differs from

the Hamiltonian in the linear σ-model in the modification of the coupling
constant gch by the form factor F (q2),

F (q2) =

[

Λ2
CSB

Λ2
CSB + q2

]1/2

. (5)

This allows us now to write down the potential generated between quark i
and j by the exchange of π and σ mesons [10–13, 22],

VOPE(~rij) =
1

3
αch

Λ2

Λ2 −m2
π

mπ

{

[

Y (mπ rij) −
Λ3

m3
π

Y (Λrij)

]

~σi · ~σj +

[

H(mπ rij) −
Λ3

m3
π

H(Λrij)

]

Sij

}

~τi · ~τj , (6)
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VOSE(~rij) = −αch

4m2
q

m2
π

Λ2

Λ2 −m2
σ

mσ

[

Y (mσ rij) −
Λ

mσ
Y (Λrij)

]

, (7)

Here αch is the chiral coupling constant. rij is the interquark distance. Sij

is the quark tensor operator,

Sij = 3(~σi . r̂ij)(~σj · r̂ij) − ~σi · ~σj , (8)

Y (x) and H(x) being the Yukawa functions defined as,

Y (x) =
e−x

x
, H(x) =

(

1 +
3

x
+

3

x2

)

Y (x) . (9)

The scale for chiral symmetry breaking must lie between 1 GeV and 600
MeV to reproduce the adequate cut-off for the instanton fluctuations [8], we
chose 829 MeV. In addition to the π and σ exchange between quarks one
introduces in the quark cluster model confinement,

Vcon(~rij) = −ac (~λi · ~λj) r
2
ij , (10)

and the one gluon exchange potential,

VOGE(~rij) =
1

4
αs
~λi · ~λj

{

1

rij
−

π

m2
q

[

1 +
2

3
~σi · ~σj

]

δ(~rij)

−
3

4m2
q r

3
ij

Sij + two-body spin-orbit

}

. (11)

Here ~λi are the eight color octet matrices acting on quark i. The two body
spin-orbit contribution is not written down. It plays an important role in
higher (L 6= 0) partial waves. The total Hamiltonian of the quark cluster
model has, with chiraly invariant quark–pion and quark–sigma interaction
for the six quarks of two baryons, the form:

Hquark =

6
∑

i=1

[mi +
~p2

i

2mi
] − TC.M. +

6
∑

i<j=1

[VOGE(~rij) + VOPE(~rij)

+ VOSE(~rij) + Vcon(~rij)] . (12)

The quark mass is taken to be mq = 313 MeV. It is essentially mN/3 =
mq. The oscillator length is determined to fit, with the pion cloud around

the nucleon the electric proton root mean square radius 〈r2〉1/2 = 0.83 fm
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[21]. αch can be connected with the experimental pion–nucleon coupling
constant [10]

αch =

(

3

5

)2 g2
πNN

4π

m2
π

4M2
N

. (13)

For the mass of the σ meson PCAC provides a relation [16]

m2
σ = (2mq)

2 +m2
π . (14)

If one fixes the pion mass by the physical value, one obtains a value for mσ

between 650 and 700 MeV. We chose 675 MeV. The cut off mass for chiral
symmetry breaking can be related to the cut off mass in the pion–nucleon
form factor [10]

Figs 1 and 2 show the results for the 1S0 and the 3S1NN phase shifts.
For the 1S0 phase shift the coupling to the 5D0 N∆ channel is essential [22].
Figures 3 to 12 show the higher partial waves apart 3F2 and 3F3 where the
5F2,

5P2,
7F2,

7P2,
7H2 and 5F3,

5P3,
5H3,

7F3,
7P3 and 7H3 partial waves of

the N∆ and ∆∆ channels play an important role, which we want to include
in the future. The quark cluster model explains also nicely the short range
repulsion of the nucleon–nucleon interaction [1, 2].

Fig. 1. Singlet 1S0 NN phase shift including chiral symmetry and coupling to the
5D0 N∆ channel (solid line). The dots are the experimental phase shifts [23]. The

dashed line is the result without the inclusion of the 5D0 N∆ channel.



202 A. Faessler

Fig. 2. 3S1NN phase shift. The dots are the experimental values [23]. The solid

line is the result of the present model calculation including chiral symmetry. The

dashed curve is the result without coupling to the 3D1NN partial wave.

Fig. 3. Phase shift of the 1P1 partial wave with the parameters given in Table I

compared with the data.
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TABLE I

The parameters

mq b αs g2

πNN/4π ac mσ ΛCSB

MeV fm MeV · fm−2 fm−1 fm−1

313 0.518 0.485 13.7 46.94 3.42 4.2

Fig. 4. Phase shifts of the 3P0,
3P1 and 3P2 partial waves of the nucleon–nucleon

interaction as a function to the laboratory bombarding energy compared with the

data.

Fig. 5. Phase shift of the 1D2 partial wave.
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Fig. 6. Phase shifts of the 3DJ (J = 1, 2, 3) partial waves.

Fig. 7. Phase shift of the 1F3 partial wave.
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Fig. 8. Phase shift of the 3F4 partial wave.

Fig. 9. Phase shift of the 1G4 partial wave.
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Fig. 10. Phase shift of the 3G3 partial wave.

Fig. 11. Phase shift of the 3G4 partial wave.
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Fig. 12. Phase shift of the 3H4 partial wave compared with the data.

Fig. 13 shows the spatial symmetries of the 6-quarks at small distances.

Fig. 13. The left hand side shows two nucleons in the quark model at distance r. In

each of the two nucleons all three valence quarks are in the 1s state. Group theory

tells us that if the two nucleons are in a relative orbital S-state. The permutation

symmetry of all 6 valence quarks can either be only completely symmetric [6] or

have the [42] symmetry. The square of the Clebsch–Gordan coefficients of the

permutation group of 6 objects gives also the probability to find the completely

symmetric spatial representation [6] or the [42] symmetry.
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One sees that it is more probable by the weight 8/9 to have at short dis-
tance the [42] symmetry compared with the completely symmetric orbital
wave function [6] which has only the weight 1/9. Fig. 13 indicates also the
lowest energy realizations of the orbital symmetries [6] and the mixed or-
bital symmetry [42]. The last configuration requests at zero distance of the
two nucleons (r = 0) that two quarks are in the 1p state for the lowest
energy realization of this configuration. The usual way of representing the
two nucleon wave function by 6 quarks in the 1s state is only contained with
the probability 1/9. It is obvious that the [42] orbital symmetry cannot be
neglected. If for a moment we neglect 1/9 compared to 8/9 we have at small
distances r ≈ 0 at least two harmonic oscillator quanta excited. Or in other
words at least two quarks have to be not in the 1s state. For the lowest
configuration they are in the 1p state. That means at short distances this
configuration with the probability 8/9 has at least two harmonic oscillator
quanta excited. If one moves again the two nucleons apart at distance r as
on the left hand side of Fig. 13, one sees that inside the two nucleons one
has no harmonic oscillator quanta excited. Since one has to conserve the
number of harmonic oscillator quanta, the two quanta must be contained in
the relative motion. If one expands the relative S wave function of the two
nucleons in harmonic oscillators

u(r12) = α1|1s〉 + α2|2s〉 + α3|3s > + . . . ,

with :

α1 = 0, (Pauli forbidden) , (15)

one finds that the 1s amplitude must be zero since all parts of the wave
function have to contain at least two harmonic oscillator quanta if one con-
siders the orbital [42] symmetry. Thus the relative wave function u(r12)
is dominated at small distances by |2s〉 and therefore has a node near the
so-called hardcore radius (r = 0.4 fm). This node is seen in the asymptotic
phase shift measured by the differential cross section. To explain the node
one requests that the nucleon-nucleon interaction potential has a hard or
soft core at this radius. In reality the node in the wave function is enforced
by the orbital [42] symmetry.

3. Conclusions

In this contribution I have essentially communicated three messages:

(i) A short range repulsion of the nucleon–nucleon interaction is not due to
the hard or soft core in a static nucleon–nucleon potential but is due to
many body symmetries of the 6-valence-quarks of the two interacting
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nucleons. At short distances the spatial symmetry is of [42] nature with
the probability 8/9. This requests that one has at least two harmonic
oscillator quanta in the relative wave function. That means one has a
node in the interaction region which produces a hard core phase shift
in the differential cross section.

(ii) Inclusion of chiral symmetry allows to calculate the NN data without
fitting any six quark data. For the 1S0 phase shift the 5D0 N ∆
admixture plays an important role. The contribution of the two body
spin-orbit force from gluon and σ exchange may add or subtract in
different partial waves. This improves the description of the 3LJ (with
J = L − 1, L and L + 1) phase shifts without fitting the two-body
spin-orbit strength.

I would like to thank Profs F. Fernández, Zhang Zong-ye and Drs A. Val-
carce, A. Buchmann, L. Glozman, U. Straub and Y. Yamauchi with whom
this work has been performed.
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