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SUPERSYMMETRY AND EXOTIC NUCLEI∗ ∗∗
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The analysis of binding energies of the sd shell nuclei appeared to be
a new, interesting application of the supersymmetric model. After fitting
the model parameters from masses and excited energy levels of well estab-
lished nuclei it is possible to describe other exotic nuclei from the edge
of a stability line, belonging to the same supermultiplet. We have applied
such a procedure to the oxygen isotopes 26,28O. The method can be treated
more generally for the construction of a supersymmetric mass formula for
all of the sd shell nuclei. The results are quite satisfactory in comparison
with experimental data and also with other theoretical predictions. It pro-
vides an additional argument for the approximate supersymmetry of the
sd shell nuclei.

PACS numbers: 21.10. Dr, 21.60. Fw

1. Introduction

Following our recent and preliminary reports [1] as well as the method
and some of the results of our earlier publications [2, 3], we have given here
the full account of the supersymmetry application to the binding energies of
the sd shell nuclei including the procedure of dealing with exotic nuclei.

The main idea is the following. Let us apply, with positive results, the
approximate (dynamical) supersymmetry to the well established nuclei be-
longing to the same supermultiplet. It means that the supersymmetric model
is able to describe as well excited levels as electromagnetic transitions by
the means of the constructed Hamiltonian and the transition operators. The
model needs several phenomenologically fixed parameters (from three to five)
for a given supermultiplet. Suppose then, that to the same supermultiplet
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belongs an exotic nucleus from the edge of a stability line. If our super-
symmetry assumption is good enough, then the same Hamiltonian with the
same parameters must be able to describe an exotic nucleus including the
primary question whether or not that nucleus exists.

The paper is organized in the following way. In Sec. 2 we briefly sketch
the supersymmetric model in a description of the excited states of nuclei
from a given supermultiplet with the fixed model parameters. In this part we
have discussed the N = 5 supermultiplet to which belongs the exotic oxygen
nucleus A = 26. Sec. 3 comprises the extension of the Hamilton operator
toward the binding energy calculation. In this part we also consider other
supermultiplets with the rest of oxygen isotopes from A = 18 to A = 28. The
problem of smooth variation of the model parameter from one to another
supermultiplet has been also discussed. In Sec. 4 we have performed the
further generalization of the binding energy formula in such a way as to
comprise all of the nuclei of the sd shell.

2. Supersymmetry and excited levels of sd shell nuclei

Nuclei from the first half and from the second half of the sd shell need to
be differently treated. This remark is also valid in the shell model calcula-
tion. In the supermultiplet model we have described the second half sd nuclei
in several papers [4] with a quite satisfactory result. Nuclei from the first
half of the sd shell, which are under our present consideration because of
the oxygen isotopes, have been also described under the supersymmetry as-
sumption with some specific changes of the model [2]. We briefly sketch that
consideration.

The starting point is the Interacting Boson Model with l = 0 and l = 2
bosons (s and d bosons) which approximately describe pairs of properly cor-
related valence nucleons. The non-paired nucleons, one for even-odd and
two for odd-odd nuclei together with bosons form a system on which we im-
pose the supersymmetry condition. We also introduce in the model the full
isospin formalism, contrary to the so called F-spin, and hence, the number
of single particle boson states, is equal to 18. We also assume, for nucleons,
the level j = 5/2 and hence the number of nucleon single particle states is
equal to 12. The unitary-unitary supergroup is then U(18/12) and the chain
of subgroups has been then formed with the standard angular and isospin
groups SOL(3) and SUT (2) at the end of the chain.

The dynamical supersymmetric Hamiltonian is then constructed as a lin-
ear combination of the second order Casimir invariants of the relevant sub-
groups of the chain

H = H ′

0 + AC2[SOB(5)] + B C2[SOB
L (3)] + α C2[SUF

Jf
(2)]
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+ β C2[SUBF
J (2)] + γ C2[SUF

Tf
(2)] + δ C2[SUB

T (2)]

+ εC2[SUBF
T (2)] . (1)

Diagonalization of the Hamiltonian with a little algebra gives

E = E′

0 + Aτ(τ + 3) + B L(L + 1) + (−1)Tf α0 Jf (Jf + 1)

+ β J(J + 1) + γ Tf (Tf + 1) (2)

with the phenomenological parameters A; B; α; β; γ and with the label τ for
the completely symmetric irreducible representation of the boson orthogonal
group SO(5).

Suppose, we consider the N = 5 supermultiplet (N — the number of
valence bosons and fermions) to which belong the following nuclei 26Mg;
26Si; 25Mg; 25Al and 24Na. If we adjust the parameters for one of the
supermultiplet nucleus, then, the same parameters must be as well good for
other nuclei, if the supersymmetry assumption is approximately valid. In
Fig. 1 we display the typical agreement (or disagreement) of the calculated
[2] and experimental data for the nucleus 24Na with adjusted parameters
for the whole supermultiplet N = 5: A = 0.19; B = 0.12; β = 0.08;
11α0 − γ = 0.82 (in MeV). In excited energy calculations the parameters α0Exp Th 24NaTf = 1 Tf = 0
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Fig. 1. The example of calculated and experimental data for the odd-odd nucleus
24Na from the supermultiplet N = 5. Levels are organized in the SO(5) represen-

tations (τ).
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and γ enter the calculations in the shown combination. We should stress
that all of the experimental (up to a proper energy) and all of the calculated
energy levels were taken into account. There is, almost perfect one to one
mapping of experimental and theoretical energy and spin levels.

3. Supersymmetry and binding energy

In the formula (1) the H ′

0 involves the core contribution but also such
terms which are the same for a given nucleus. These terms do not enter the
relative energy calculation of excited states. However, these terms have to
be taken in calculations of a nucleus ground state energy. Hence, we extract
from the H ′

0 the most important three terms: single particle energies for
fermions and bosons and the total quadratic isotopic term

H ′

0 = H0 + aNf + bNb + εT
2 . (3)

In the H0 there is mostly the core contribution although some small other
terms will be discussed in the next section. The formula (3) should be
introduced to (1) and then to (2). For simplicity, we have made another
assumption: because the parameters α0 and γ taken separately do not spoil
the excited level calculation under the condition 11α0 − γ = 0.82 MeV, we
assume α0 = 0 and then γ = −0.82 MeV. Hence, the binding energy formula
reads

E = E0 + aNf + bNb + Aτ(τ + 3) + B L(l + 1)

+ β J(J + 1) + γ Tf (Tf + 1) + ε T (T + 1) . (4)

In the formula (4) and for the supermultiplet N = 5, the E0 is the core
contribution of the oxygen isotope A = 16. We should also remember,
that the binding energy (4) has no Coulomb contribution. Hence, while
comparing with experimental data we should take the Coulomb energy into
account.

Let us now adjust the new parameters a; b; ε to the experimental binding
energies of N = 5 nuclei. From the formula (4) and from Table I

TABLE I
The quantum numbers in the supersymmetric model for the supermultiplet N = 5
nuclei

Nucleus Nf Nb τ L J Tf T E

24Na 2 3 0 0 4 1 1 E1
25Mg or 25Al 1 4 0 0 5/2 1/2 1/2 E3
26Mg or 26Si 0 5 0 0 0 0 1 E5
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we get

E1 = E0 + 2a + 3b + 2ε − 0.04 ,

E3 = E0 + a + 4b + 0.75ε + 0.08 ,

E5 = E0 − 5b + 2ε . (5)

Now we make use of the experimental binding energies [5] together with
the Coulomb contribution [6] which we display in Table II.

TABLE II

Experimental binding energy [5] and Coulomb contribution EC [6] for the core and
N = 5 supermultiplet nuclei.

16
8 O8

24
11Na13

25
12Mg13

25
13Al12

26
12Mg14

26
14Si12

E0 E1 E2 E3 E4 E5

(EB)exp –127.62 –193.52 –205.59 –200.53 –216.68 –206.05
EC 18.29 30.26 35.10 40.18 35.10 45.77
Ei ≡ EB − EC –145.91 –223.78 –240.69 –240.71 –251.78 –251.82

Solving the equations (5) we get a = −0.12; b = −22.14 and ε =
2.41 (MeV).

Now, there is a crucial question of our consideration, namely, whether
or not the oxygen isotope 26O, which belongs to the same supermultiplet is
a stable one and may, or not be found experimentally. For this nucleus we
get in our model Nf = 0; Nb = 5; τ = L = J = Tf = 0; T = 5 and

E6 = E0 + 5b + 30ε = −184.31 MeV .

Let us compare the calculated binding energy of 26O with — from one
side — the experimental value of 24O and — from the other side — with
one of the last theoretical prediction for 26O [7] obtained in the relativistic
mean field approach (in MeV):

(EB − EC)exp (EB − EC)mean field (EB − EC)supersymmetric

for 24O for 26O for 26O

–187.17 –191.03 –184.31

The numbers show that in the relativistic mean field approach the nu-
cleus 26O seems to be stable against the neutron pair emission while in the
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supersymmetric model it is not bound. However, this statement should be
falsified by the calculation, in our supersymmetric model, the binding en-
ergies of other oxygen isotopes. Hence, let us consider the supermultiplets
N = 2; 3; 4; 5; and 6 to which belong the oxygen isotopes 20O; 22O; 24O;
26O and 28O respectively. In this part of discussion we take only even-even
nuclei for which the supersymmetric binding energy formula takes on the
simpler form

E = E0 + bNb + ε T (T + 1) , (6)

where E0, as before, is the binding energy of the core 16O. After inspection
of more than twenty nuclei, we have found the following variation of the
parameters b and ε:

1◦. The parameter ε is, in the first approximation, the same for considered
supermultiplets and is equal ε = 2.41 MeV, as for N = 5.

2◦. The parameter b smoothly changes from one to another supermultiplet
according to the rule

bN−1 − bN = 0.60 MeV .

Taking the values of the parameters, we present in Tables III and IV the
comparison of experimental and theoretical binding energies for even-even
nuclei in the supermultiplets N = 2, 3, 4, 5, 6.

TABLE III

Comparison of experimental and theoretical binding energies for even-even nuclei
belonging to the supermultiplets N = 2, 3, 4. We omit here the mirror nuclei from those
supermultiplets.

N = 2 N = 3 N = 4

20O 20Ne 22O 22Ne 24O 24Ne 24Mg

(EB − EC)exp –169.66 –186.58 –180.16 –208.68 –187.14 –217.75 –233.36

(EB − EC)th –172 –186 –180 –204 –184 –218 –232

TABLE IV

The same as Table III but for supermultiplets N = 5, 6.

N = 5 N = 6

26O 26Mg 28O 28Ne 28Mg 28Si

(EB − EC)exp — –251.78 — –233.09 –266.73 –282.31
(EB − EC)th −184 −252 −181 −234 −268 −282
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The most interesting are the calculated binding energies of the nuclei
24O; 26O and 28O which are equal to –184; –184; and –181 (MeV) respec-
tively. Hence, in our model, in the first approximation, there is no conclusion
about stability of the exotic nucleus 26O. Beyond any theoretical doubts, the
isotope 28O is not a stable one. Hence, we perform more detailed treatment
in which we allow for a small variation of the parameter ε in such a way as
to get almost perfect reproduction of binding energies of known nuclei. The
small variation of the parameter ε is given on Fig. 2. Let us notice the small
values of the parameter in the middle of the sd neutron shell.

2.22.42.62.8
2 3 4 5 6" N

Fig. 2. The small variation of the parameter ε versus the supermultiplet label N .

Table V presents the experimental data and detailed calculation of the
binding energies of oxygen nuclei together with other theoretical predictions,
known from literature.

TABLE V

Final results for oxygen isotopes, including the Coulomb contribution EC=+18.29 MeV,
and comparison with experimental data and other theoretical predictions.

18O 20O 22O 24O 26O 28O

Eexp –139.81 –151.37 –161.87 –168.85 — —
Eth (this work) –139.79 –151.37 –161.85 –168.82 –166.02 –160.38

Eth [5] –168.43 —
Eth [7] –170.46 –172.94 –177.40
Eth [8] –165.39 –167.85 –166.01

Eth [9, 10] –168.48 –169.66 –168.88
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In our more exact calculations the conclusion is clear: the last bound
oxygen isotope is the 24O. This conclusion is contrary to the other theoretical
prediction, but it is in accord with the recent experimental search [11].

4. Search for the mass formula

In this section we present briefly somewhat more general approach to the
calculations of a nuclear binding energy. Details of the method have been
given in [3].

As in the previous sections the main assumption is a dynamical symmetry
of the Hamiltonian. We try to construct the most general Hamilton operator
taking into account the first and second order Casimir invariants (Ĉi) of all
groups (algebras) of the appropriate chain:

H =
∑

i

e1iĈ1[gi] +
∑

i

e2iĈ2[gi] , (7)

where e1i, e2i are the coefficients constant, in principle, for a given supermul-
tiplet. The next step is to determine the irreducible representations (IRs)
of considered groups which describe the lowest energy states. The values of
quantum numbers such as the total spin and isospin, and respective groups,
have direct physical meaning, but the proper choice of IRs of some other
groups needs more detailed studies of excited levels and also electromag-
netic transitions.

In [3] we discuss the IBM4 bosons, i.e. bosons with isospin and spin
quantum numbers, the same as those of a pair of nucleons in LS coupling.
Fermions, i.e. unpaired nucleons can occupy j = 1/2, 3/2 and 5/2 levels.
Obviously, the fermion spin and isospin are equal to 1/2. The largest su-
persymmetry group is then the unitary supergroup U(36/24). Not entering
the details, it should be added that in the orbital part of the group chain we
adopted the SO(6) symmetry while in the spin-isospin part we constructed
boson-fermion SU(4) group. The lowest representations of this group are de-
termined, in analogy to the shell model, by the lowest value of the Casimir
invariant.

The lowest eigenvalue of the Hamiltonian (7) corresponds to the nuclear
part of the binding energy and can be written in the form

Eη = αηN + βN2 + γηT + δT 2 + κη , (8)

where N is a total number of supersymmetric particles (i.e. sum of a number
of bosons and fermions). T is the isospin of the ground state, and the
coefficients αη, β, γη, δ and κη are the linear combinations of the original
ones ei. The subscript η distinguishes even-even, odd-odd and odd nuclei
and also both halves of the sd shell, what is explained below.
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The values of parameters α, β, γ, δ and κ are, in principle, given sepa-
rately for each supermultiplet. However, we made the following observation.
The parameters ei smoothly change, in principle, from one to the other su-
permultiplet either increasing or decreasing. The final parameters (8) being
linear combinations of the parameters ei, mostly diminish the differences
of their values between the sd shell supermultiplets. It is the ground for
introducing the approximation by taking the constant parameters for each
half of the sd shell and separately for even-even, odd-odd and odd nuclei.

We are aware that in comparison with experimental binding energies
expected differences will point out not only on the approximation of the
supersymmetry, but also on the approximated constant values of the final
parameters which then are fitted to experimental energies.

N

Z
8 8 2014
20
14

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
Fig. 3. Difference (in MeV) between calculated and experimental [5] binding energy

of nuclei in the sd shell. The size of the squares corresponds to the absolute value

of the difference.
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After adding the Coulomb energy, which is calculated following the shell
model approach [6], one can compare obtained results with experimental
data [5]. The difference between theoretical and experimental binding energy
for the sd shell nuclei is presented in Figure 3. For each half of the shell
there are about 70 calculated values with ten free parameters of the model.

. . .

. .
. .

.

.
.

.

.
.

Fig. 4. Difference d (in MeV) between calculated and experimental [5] binding en-

ergy of Ne isotopes for the supersymmetric model and other theoretical approaches:

the Liran–Zeldes model [12], the Möller–Nix macroscopic-microscopic model [13],

the finite range droplet model [8].
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Fig. 5. The same as in Fig. 4 but for P isotopes.

In Figs 4 and 5 we also present the comparison of our results with other
theoretical predictions of the binding energies for the Ne and P isotopes.
Figure 4 shows that our supersymmetry results are, at least, at the same
level of accuracy as other theoretical predictions [8, 12, 13].
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5. Conclusions

The results of binding energy calculations in the supersymmetric model
provide one more argument for existing of the approximate supersymmetry
in the sd shell nuclei. Besides that, we have also shown the way of dealing
with the exotic nuclei in the supersymmetric model.
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