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We have formulated a statistical model of nuclear properties that com-
bines the Thomas-Fermi assumption of two fermions per h3 of phase space
with an effective interaction between the nucleons. The model has been em-
ployed in the calculation of nuclear masses and density distributions. The
initial calculations assumed spherical symmetry but a later extension to
three dimensions permits the calculation of fission saddle-point shapes and
the corresponding fission barriers. It is also possible to include angular mo-
mentum and we have constructed an extension of the model which describes
approximately ground-state, superdeformed and fission-isomeric rotational
bands of even-even nuclei. The model is based on a three-term energy ex-
pression corresponding to: a) a rigid rotation of part of the nucleus, b)
the energy of initially counter-rotating gyroscopes that the overall rotation
gradually aligns in the direction of the total angular momentum, and c)
a potential energy resisting such alignment. The model can be used for a
macroscopic description of the angular momentum dependence of nuclear
fission barriers.

PACS numbers: 21.10. Dr, 21.10. Re, 21.60. Ev

1. Introduction

Over the last ten years or so we have developed a detailed model of aver-
age nuclear properties [1]. It is based on a statistical treatment of the nuclear
energy, analogous to the Thomas–Fermi approximation for the description
of smoothed electron densities in atoms and molecules. In place of the
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electrostatic interactions between atomic electrons, an effective short-range
nucleon-nucleon potential has been introduced, representing a generalization
of the momentum-dependent Seyler–Blanchard Yukawa interaction. At first
only spherically symmetric solutions were considered and the resulting model
was used to discuss nuclear binding energies, sizes and charge distributions.
Then we went on to discuss the relation of the nuclear compressibility to
the surface energy and surface diffuseness and the nuclear optical model
potential, including its energy and isospin dependences.

The next step was to generalize the discussion to arbitrary nuclear shapes,
which makes possible the crucial confrontation of the model with measure-
ments of nuclear fission barriers.

The most recent improvement we have made to this approach is the ad-
dition of angular momentum. One reason for extending the model in this
way is the need for a macroscopic theory of fission barriers of rotating nuclei.
Existing microscopic calculations of fission barriers are not sufficiently ad-
vanced to provide comprehensive, quantitative predictions, whereas macro-
scopic theories [2,3] have not gone beyond the use of rigid moments of inertia.

While these models are probably fine for describing the highly deformed
shapes at the fission saddle-point they are clearly inadequate when it comes
to describing the band spectra of rapidly rotating nuclei. Deviations of the
observed spectra from those of a rigid rotor are usually drastic, indicating
that more than an overall rotation of the matter distribution is involved.
The deviations are largest for small nuclear deformations and small angular
momenta, decreasing for superdeformed nuclei, especially at high spin. The
fact that the empirical data exhibit readily discernible overall trends, in
addition to local irregularities, provided the motivation for constructing a
simple model of the smoothed, average behaviour of rotational bands and of
the associated effective moments of inertia.

The model of nuclear rotation to be presented in what follows provides an
approximate description of rotational energies in their dependence on nuclear
shape and angular momentum, and represents a step toward a macroscopic
theory of the fission barriers of rotating nuclei.

2. The model

In addition to the Thomas-Fermi assumption of two fermions per h3 of
phase space we employ an effective interaction between the nucleons having
the following form:
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where ρ2/3 = (ρ1
2/3 + ρ2

2/3)/2 and ρ1 and ρ2 are the relevant densities
of the interacting particles (neutrons or protons) at points 1 and 2. The
spatial function f(r12/a) has been chosen to be a normalized Yukawa of
range a. We have chosen natural units for energy, density and momentum.
The equilibrium particle density of standard nuclear matter is ρ0, the nuclear
matter Fermi momentum is P0 and the nuclear matter Fermi energy is T0.

By making the total energy of a nucleus stationary with respect to
particle-preserving variations in the density of the neutrons and protons, one
obtains Euler–Langrange equations for the ground-state neutron and pro-
ton density distributions. With considerably more effort one can determine
the unstable saddle-point configurations for nuclear fission and the associ-
ated heights of the fission barriers. The (optical model) potential felt by a
neutron or proton traveling through a nucleus or through nuclear matter,
including its energy and isospin dependence, can also be calculated.

The overall optimization and fine tuning of the seven parameters by com-
parisons with a full range of diverse data has been performed, with the follow-

ing results:
a = 0.59294 fm,
α = 1.94684, β = 0.15311, γ = 1.13672,
σ = 1.05, ξ = 0.27976, ζ = 0.55665 .

These values correspond to the following nuclear properties:

radius constant of nuclear matter, r0 = 1.14 fm,
volume energy coefficient, a1 = 16.24 MeV,
symmetry energy coefficient, J = 32.65 MeV,
surface energy coefficient, a2 = 18.63 MeV,
curvature correction coefficient, a3 = 12.1 MeV,
compressibility coefficient, K = 234 MeV.

3. Nuclear masses

In [1] we discuss in more detail the determination of the force coefficients
and the fit to the 1654 measured nuclear binding energies. Figure 1, from
Ref. [1] shows the remaining deviations between measurement and theory
and compares the model being described here with the predictions of earlier
work based on the Finite Range Droplet Model [7].

4. Fission barriers

When we extended our calculation capabilities to include deformed nuclei
in three dimensions it became possible to calculate fission barriers. A prelim-
inary comparison between the calculated and measured values is contained
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Fig. 1. The difference (measured mass) minus (theoretical mass) for 1654 nuclei.

Lines connect isotopes. Upper panel is based on [7], lower panel on the present

model.

in Ref. [1] and the results of a more recent comparison [8] are displayed in
Fig. 2.

5. The rotation model

The model nucleus rotating with angular momentum ~L is assumed to
consist of two components, and its energy to be composed of: a) the energy
of part of the nuclear matter assumed to rotate rigidly about the direction
of ~L; b) the energy of any number of pairs of identical gyroscopes initially

counter-rotating around axes at right angles to ~L, which the overall nuclear
rotation gradually aligns along ~L; and c) a potential energy which resists
such alignment. Thus:

E(L, θ) =
(L − ℓ sin θ)2

2(1 − ν)J
+

ℓ2

2νJ
+

1

2
k sin2θ . (2)

In this expression ℓ (assumed to be a function of L) is the sum of the
magnitudes of all the gyroscopes’ angular momenta, νJ is the sum of their
moments of inertia (about their respective rotation axes), (1 − ν)J is the
moment of inertia of the rigidly rotating part, whose angular momentum is
L reduced by the angular momentum contributed by the gyroscopes. This
contribution is equal to ℓ sin θ, where θ is the common angle between the axis
of a gyroscope and the plane normal to ~L. The parameter k characterises
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Fig. 2. A comparison of measured (solid squares) and calculated fission barriers,

with the shape dependence of the congruence energy [8] included. The black dia-

monds show the remaining differences. “Fissility” is defined as Z/A(1 − 2.2I2).

the strength of the potential resisting the alignment of the gyroscopes along
~L. This potential, designed to simulate nuclear pairing, is taken to depend
in a simple cyclic way on the angle θ. The symbol J represents the moment
of inertia of the nuclear density distribution.

The form of Eq. (2) was inspired in the first place by the paper of
Stephens and Simon [4], but also by the theories of pair breaking associated
with the names of Mottelson, Valatin, Belyaev and Migdal, as described
in Ref. [5]. The common thread in these approaches is that pairing of nu-
cleons in time-reversed orbits inhibits the nucleons from contributing their
share to the total angular momentum L. With increasing L the pairing is
more or less gradually (or more or less abruptly) broken. The Mottelson–
Valatin–Belyaev–Migdal approach draws on the macroscopic analogy with
the destruction of superconductivity by a magnetic field. Stephens and Si-
mon pointed out that microscopic effects can be very important, so that the
alignment of one or two high-j pairs can produce large oscillations (even
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back-bending) on top of any gradual quenching of the pairing correlations.
The underlying physics is, however, the same: The destruction of pairing,
caused by rotation, in (a portion of) the nuclear matter. Our gyroscopes
are meant to represent, in some average sense, this originally paired matter,
giving reduced moments of inertia for low spins and rigid rotation at high
spins (when pairing has been destroyed).

Assuming that ℓ = νL (see below) and minimizing the energy with re-
spect to θ, we find:

E(L) =
L2

2J

[

ν +
1

1 − ν + ν(L/L1)2

]

for L ≤ L1 (3)

E(L) =
L2

2J
+

1

2
k for L ≥ L1 , (4)

where
L1

2 = kJ/ν. (5)

There are two limiting cases which have guided our choice of the de-
pendence of ℓ on L. As regards large L, the choice of ℓ = νL follows from
the requirement that after pairing has been destroyed, the moment of iner-
tia should be rigid. For small L it would be reasonable to have ℓ tend to
a constant ℓ◦ related to some average intrinsic angular momentum of the
paired nucleons. In Ref. [6] we have tested the sensitivity of our model to
the finiteness of ℓ◦. We find that neglecting ℓ◦ and having ℓ = νL for all L
might be an acceptable approximation.

If the rigid-body moment of inertia J is assumed to be known, eqs. (3,4)
become formulae with two adjustable parameters, ν and k (or ν and L1),
which can be used to fit rotational spectra of individual nuclei. In this
sense they are similar to the two-parameter scheme of the Variable Moment
of Inertia Model (VMI) [9]. For many ground-state bands the quality of
the fits using either the VMI or our current model turned out to be quite
similar. But, unlike the VMI formulae, the present model is able to describe
the approach (and transition) to rigid rotation, which is observed to take
place for large angular momenta and/or large deformations.

As regards the pairing strength k we shall assume that in momentum
space pairing effects are confined to a fixed neighborhood of the Fermi sphere,
which implies that k should be proportional to a fixed fraction of the particle
number A. Thus

k = κA , (6)

where κ is a constant, which we adjusted to have the value 0.036 MeV.
In searching for a global prescription for the shape dependence of the

parameter ν we became aware of a curious systematics of low-spin effective
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moments of inertia, illustrated in Fig. 3. The various symbols in this figure
show the experimental values of the effective moment of inertia at angular
momenta close to zero, divided by the rigid moment of inertia (taken about
a minor axis) of a spheroid with semi-axes a, a, c > a and volume (4π/3)R3,
where R = 1.2A1/3 fm. The values of c/a at which the points are plotted
were deduced from the measured intrinsic quadrupole moments Q of the
nuclei in question.

The lower curve in Fig. 3 corresponds to irrotational hydrodynamical flow
inside the spheroid. The middle curve corresponds to the moment of inertia
of what remains of a spheroid (its ‘tips’) after removal of an inscribed sphere
whose radius is equal to the minor semi-axis a. Thus, at low spin, we have a
curious ‘as if’ feature of nuclear rotations: nuclei behave approximately as if
their tips were rotating rigidly, and the inscribed sphere were standing still.
Without implying that paired nuclear matter simulated by the gyroscopes is
actually confined inside such a sphere and that the rigidly rotating matter is
located in the tips, we experimented with the prescription that νJ in Eq. (2)
should be the moment of inertia of a suitably defined inscribed sphere. The
moment of inertia (1 − ν)J in the first term in Eq. (2) would then be the
moment of inertia of the complementary tips. This assumption turned out to
work fairly well in reproducing observed rotational bands, but its theoretical
justification remains an open question.

The formulation just described can be applied directly to nuclei idealized
as sharp-surfaced or diffuse spheroids. Obvious improvements of such an
idealization include, first, replacing the spheroids by density distributions
that follow, for a given Q, from solving the Thomas-Fermi equations of
Ref. [1]. (This is essential for the discussion of fission barriers). Second, the
radius r of the inscribed sphere used to estimate ν may be considered as a
(somewhat) adjustable parameter. We adopted the following procedure for
calculating r. An effective neck radius a was deduced from the Thomas-
Fermi calculations and then slightly reduced by the amount δ. The radius
r of the inscribed sphere is then calculated as

r = a − δ , (7)

where δ is an adjustable parameter, for which we adopted the value 0.5 fm.
The relative moment of inertia ν was then calculated as the ratio of the
rigid moment of inertia of a sphere of density ρ◦ and radius r to the rigid
moment of inertia J of the Thomas-Fermi density distribution, taken about
the rotation axis.
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Fig. 3. Systematics of experimental effective moments of inertia divided by the rigid

moment of inertia of a spheroid (with semi-axes a, a, c > a) rotating about a minor

axis. The cluster of points on the left refers to rare-earth and actinide nuclei. The

vertical cross refers to superdeformed 194Hg, the next point up to superdeformed
194Pb and the three remaining points to fission-isomeric states in 236U, 238U and
240Pu. The values of c/a were deduced from the measured quadrupole moments,

using the standard radius constant r0 = 1.14 fm. The moments of inertia are based

on r0 = 1.2 fm, allowing approximately for surface diffuseness. The long-dashed

curve refers to the assumption of irrotational flow inside the spheroid and the

short-dashed curve to the moment of inertia of what remains of a rigidly rotating

spheroid after the removal of an inscribed core of radius a.

6. Comparison with measurements

In Ref. [6] we compare measured and calculated gamma ray energies γI

and the associated level energies EI using the global parameter set κ = 0.036
MeV, δ =0.5 fm. We display eight ground-state bands (154,156Dy, 160Er,
172Hf, 178Os, 232Th, 238U and 244Pu), four superdeformed bands (194Pb,
194Hg, 152Dy and 132Ce) and two fission-isomeric bands (236U and 240Pu).
Here we only have space to consider a few of these cases. In Fig. 4 the data
correspond to the ground-state bands of 160Er and 172Hf followed by a band
(or bands) estimated to be the lowest-energy (yrast) band at the given spin.
(All experimental data are from Ref. [10].)
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Fig. 4. The upper panels show the gamma-ray energies as functions of the spin

I, the lower panels the corresponding level energies as functions of I(I + 1). The

experimental points for 160Er and 172Hf are from Ref. [10]. The solid curves are

the model’s predictions, based on the measured quadrupole moment Q indicated,

and on the rigid moment of inertia J and core moment νJ that follow from a

Thomas-Fermi calculation constrained to have that quadrupole moment. (We used

Eqs. (3), (4), with L2 = I(I +1)~2). The short-dashed lines refer to the rigid rotor

predictions. The long-dashed line is the energy of a rigid rotor augmented by the

alignment energy k/2.

In the case of the superdeformed bands in 194Pb and 194Hg in Fig. 5 the
agreement between theory and experiment is quite close. We should point
out that in the case of 194Hg we took the liberty of assuming the quadrupole
moment to be Q = 19.2 barn, when the quoted measurement is 17.2±2 barn.
In other cases we took the nominal measured value of Q as the constraint
in our Thomas-Fermi calculations (from which followed the rigid moment of
inertia J and the parameter ν).
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Fig. 5. This is like Fig. 4 but for 194Hg and 194Pb.

7. Discussion

The objective of our model was to approximate the increase in nuclear
mass (decrease in binding energy) caused by rotation. Figs. 4 and 5 to-
gether with the other cases considered in [6] show that these mass increases
(ranging up to 30 MeV) are usually reproduced to better than 1 MeV. Our
model achieves this at the price of one freely adjustable parameter κ and
a second parameter δ = 0.5 fm chosen to slightly reduce the size of the in-
scribed sphere. From a practical point of view this seems like an acceptable
performance for a macroscopic model of nuclear masses and deformations.
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