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We develop a microscopic classical trajectory approach to low energy
reactions induced by projectiles which are loosely bound towards decay in
two or three particles. The reactions are assumed to proceed as dissocia-
tion of the projectile into its constituent particles, each of which may be
absorbed by the target or bypass it. The model is applied to d−93 Nb colli-
sion at E = 15–25 MeV. The calculated values of (d, p), (d, n), (d, np), and
complete fusion cross sections are in reasonable agreement with quantum re-
sults and available experimental data. As another application we calculate
the integrated cross sections for (6He, n), (6He, α), (6He, nn), (6He, αn),
(6He, αnn), and complete fusion reactions following the 6He+232Th colli-
sion at few MeV above the Coulomb barrier.

PACS numbers: 24.10.–i, 24.10.Lx, 25.60.–t

1. Introduction

In recent years, experiments have been performed on the emission of
loosely bound particles, such as d, t [1,2] and radioactive isotopes of He, Li
and Be [3] from hot nuclei. In the theoretical description of the emission
of such particles a fundamental ingredient is provided by the corresponding
transmission coefficients, usually taken from the reversed reaction of the
complete fusion of the emitted particle with the residual nucleus.

For loosely-bound projectiles, the complete fusion proceeds in a strong
competition with noncomplete fusion reactions, in which breakup of the
projectile is followed by fusion of the ‘core’ particle with the target nucleus.
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The integrated cross sections for such processes could be described within
the so-called breakup-fusion (BF) approach [4, 5].

It should be realized, however, that the BF method requires knowledge
of projectile–target optical–model (OM) potentials which are not well known
for neutron drip line nuclei. Moreover the OM description of both elastic
scattering and reaction cross section for halo–nuclei may be not possible by
same OM parameters [6]. Besides, the BF approach is restricted to two-
particle decays, whereas a typical halo nucleus breaks up into three or more
particles [7].

In this work we attempt a microscopic–semiclassical (MS) description of
the reactions involving loosely bound nuclei, which avoids using the optical
projectile-target potential and is applicable to projectiles consisting of two
or three subsystems which can be treated as structureless.

2. MS approach

To explain the idea of the MS model [8] consider the deuteron-induced
reactions. Let us introduce an ensemble of N deuterons moving towards a
heavy nucleus. At time t = 0, all deuterons s = 1, 2, . . . N are assumed to
have the same position R and momentum P but may differ by the intrinsic
n− p coordinate r = rp−rn and corresponding momentum k =1

2(pp − pn).

The value ofR is arbitrary, much larger than the radius of the target. The
values of R/R and P should be consistent with the fact that all deuterons
have energy E and angular momentum L. The absolute values of r are
distributed in accordance with ϕ2

d(r) = r2 |ψ(r)|2, where ψ(r) is the deuteron
intrinsic wave function, the directions r̂ are distributed isotropically and the
intrinsic momenta are taken from the classical expression

k(s)
=±

√

2µ
(

−Bd − V (r(s))
)

r̂(s), (1)

where µ is the reduced mass of the n−p pair, Bd is the binding energy of the
deuteron, V (r) is the n− p interaction potential. Eq. (1) takes into account
that the intrinsic deuteron orbital momentum is zero.

Assuming the target nucleus to be so heavy that recoil is negligible we

can characterize the whole system by the positions of neutron r
(s)
n (t) and

proton r
(s)
p (t), and corresponding momenta p

(s)
n (t) and p

(s)
p (t). These

are obtained from Hamiltonian equations containing besides V (r) the real
nucleon-target interaction potentials Vn and Vp.

The most important quantities to be found for each phase space trajec-

tory are the current intrinsic energies of n − p pairs ε
(s)
t , and the survival
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factors (i = n or p)

P
(s)
i = exp





2

~

∞
∫

0

Θ(ε
(s)
t )Wi[r

(s)
i (t)]dt



 ,

where Wn(rn), Wp(rp) are the imaginary nucleon–nucleus potentials.
The dissociation probability Fd(t) is determined as the relative number

of the members of the ensemble for which ε
(s)
t is positive

Fd(t) =
1

N

N
∑

s=1

Θ(ε
(s)
t ).

The asymptotic value of Fd(t) at t → ∞ provides the total reaction trans-
mission coefficient TR(L)

TR(L) = Fd(∞). (2)

The survival factors give the probability for the particle (n or p) to avoid

absorption by the target nucleus, the complementary factors Q
(s)
i = 1−P

(s)
i

being the probability to be absorbed. The step function Θ(ε
(s)
t ) entering

P
(s)
i ensures that the absorption gains its contributions from that part (or

parts) of the trajectory when n and p are not bound to each other.

The factors P
(s)
i , Q

(s)
i are utilized to calculate the partial probabilities

(‘transmission factors’) of (d, p), (d, n), and (d, np)–reactions

Td,p(L) =
1

N

N
∑

s=1

P (s)
p Q(s)

n ,

Td,n(L) =
1

N

N
∑

s=1

P (s)
n Q(s)

p ,

Td,pn(L) =
1

N

N
∑

s=1

P (s)
p P (s)

n Θ(ε(s)
∞

) ,

which combined with (2) allow one to find the complete fusion transmission
coefficient

Tfus(L) = TR(L) − Td,p(L) − Td,n(L) − Td,pn(L) .

In the following calculations, we use the Hulthen-like wave function ψH.
The Hulthen potential has singularity at r = 0 which causes difficulties in the
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trajectory calculations. To avoid these, we replaced it with the exponential

potential −V0 exp
(

− r
r0

)

, where V0 =125 MeV, r0 = 0.87 fm. It provides

the correct binding energy of the deuteron and the wave function very close
to that in the Hulthen potential.

The optical potentials for nucleons are taken from [9]. The Coulomb
potential is that of a uniformly charged sphere with the radius parameter
rc = 1.25 fm. The statistical ensemble consisted of N = 100 deuterons. The
random numbers distributed according to r2ψH(r)2 were generated by the
acceptance-rejection method.

In Table I we compare the cross sections

σc =
2π~

2

k2

∑

L

(2L+ 1)Tc(L) ,

where c = (d, p), (d, n), (d, np), fus and R with the BF calculation by Mas-
troleo et al. [5]. The comparison is shown for d−93Nb collision at 15 and
25 MeV. One observes a very good overall agreement between two methods.
The only serious deviation (about 30%) is detected for σd,np at E = 15 MeV.
This cross section, however, comprises a small part of the non-fusion reac-
tions. The experimental data on σd,p + σd,np from [10] are 436 and 514 mb
at E =15 and 25 MeV, respectively. The corresponding MS results (440 and
501mb, respectively) are in close agreement.

TABLE I

Calculated cross sections (mb) in the d−93Nb collision

MS BF [5] MS BF [5]

Ed, MeV 15 15 25 25

σR 1497 1505 1867 1806

σd,p 369 392 397 356

σd,n 227 240 304 267

σd,np 71 49 104 91

σfus 830 824 1062 1092
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3. Three-particle projectiles

In the extension of the MS model to 3-particle projectiles, the most
difficult problem is the construction of a classical ensemble, compatible with
the appropriate ground state wave function Ψ . To solve this problem it is
convenient to use the hyperspherical harmonic method. To be specific we
take an example of 6He projectile, a recognized halo nucleus with the 2n-
separation energy B = 0.97 MeV, which will be treated as consisting of α,
n1, and n2.

The translationally invariant normalized Jacobi coordinates x, y and
the momenta kx, ky conjugate to them are determined according to [11].
In its simplest form, the hyperspherical harmonic method assumes that the
potential V (x,y) can be represented by an ‘average’ field V (ρ) depending

only on the hyperradius ρ =
√

x2 + y2.
As a first step here and guided by calculations [12] we assume for 6He a

pure K=2 state with lx=0, ly=0. Here K is the hypermomentum quantum
number, lx = x × kx and ly = y× ky. Then, up to normalization factor,
the distribution over x, y can be written as

|Ψ(x,y)|2 dxdy ∼ χ2(ρ) sin2 4θdθdx̂dŷ,

where θ ∈
[

0, π
2

]

, is the angular variable defined by tan θ = x/y and χ(ρ) is
obtained from the Schrödinger equation

~
2

2m

[

−
d2χ

dρ2
+

L(L + 1)

ρ2
χ

]

+ V (ρ)χ = −Bχ,

where m is the nucleon mass, L = K + 3
2 .

The specific values of ρ and θ should be sampled in accordance with χ2(ρ)
and sin2 4θ, respectively. Then the initial Jakobi coordinates are given by

x = ρ sin θ x̂, y = ρ cos θ ŷ ,

where x̂, ŷ are isotropic unit vectors.
Given x, y, the assumption lx = ly = 0 allows one to determine kx, ky

from the expressions
kx = pxx̂, ky = pyŷ,

where
px = pρ sin θ +

pθ

ρ
cos θ, py = pρ cos θ −

pθ

ρ
sin θ,
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pρ = ±

√

2m (−B − V (ρ)) −
p2

θ

ρ2
, pθ = ±~

√

L(L + 1).

To illustrate this formalism, consider the 6He+232Th collisions at few
MeV above the Coulomb barrier. The potential V (ρ) for 6He is taken from
Ref. [13]. The neutron optical potential is taken from the same source [9] as
in the deuteron case. The parameters of the α–Th optical potential (rc = 1.3
fm, V0 = −200 MeV, r0 = 1.3 fm, a = 0.6 fm, W = −36 MeV, rW = 1.6
fm, aW = 0.44 fm) are taken from [14]. These were obtained by fitting
the experimental angular distribution of α particles elastically scattered on
232Th at 23.5 MeV.

The partial cross sections of (6He, n), (6He, α), (6He, nn), (6He, αn),
(6He, αnn) and complete fusion reactions on 232Th together with the total
reaction partial cross sections are shown in Fig. 1. The calculation is per-
formed at E =25.5 MeV which is about 3.8 MeV higher than the Coulomb
barrier estimated assuming point like 6He. The corresponding grazing an-
gular momentum defined in the potential Vα(R) + 2Vn(R) was found to be
Lgr = 11.8~. For each L we sampled N = 1200 collisions.

Fig. 1. Partial cross sections for 6He+232Th at 25.5 MeV. Short dashed and long

dashed lines represent σfus on 222Th and 242Th, respectively.

Only at low L (L < Lgr), the σfus(L) comprise an essential part of
σR(L). The (6He, n) and (6He, α) reactions come into play at very low
L. The (6He, αn) and especially (6He, αnn) cross sections are extending
to very large L (corresponding distances of closest approach are two-three
times larger than the barrier radius) which is due to Coulomb breakup.
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The (6He, nn) reaction is strongly suppressed at all L because of Coulomb
repulsion of α–core.

To probe the sensitivity of the complete fusion transmission coefficients
to the neutron excess in the target nucleus, we show σfus of 6He with 222Th
and 242Th. One can see an increase of σfus as the neutron excess increases.
This is in qualitative agreement with an increase of the ratio 6He/4,3He with
growing neutron excess of the emitting system observed by Dempsey et al. [3]

in the emission from the composite systems formed in the 124,136
54 Xe+112,124

50 Sn
collisions at 55A MeV.

4. Conclusion

To conclude, we formulated a simple semiclassical model for interac-
tions of loosely bound projectiles with heavy nuclei. The model provides
the energy-integrated cross sections of incomplete fusion reactions. It can
be used for estimating the n and 2n removal cross sections in low-energy
collisions with halo nuclei.

The present scheme is easy to apply, especially because it does not need
the optical potential for projectiles. In this respect it is similar to the
Glauber type microscopic models [15–17] used at high energies.

Despite its simplicity the model is in good agreement with the available
quantum calculations. The complete fusion transmission coefficients gen-
erated within this model can be used in the statistical calculations of the
evaporative emission of loosely bound particles from hot nuclei.
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