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Trajectories of S-matrix poles in complex k plane are presented for a
complex square well potential. The conformal character of the connection
between the potential and the location of the poles is used to deduce the
properties of the trajectories.
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1. Introduction

Whereas complex optical potentials V = V +iW have been widely used in
nuclear physics, the analytical properties of the S-matrix for these potentials
were investigated in only few papers (see [1–5]), mainly restricted to the s
wave or states with positive energy.

One problem which should be clarified is the question which poles of the
S-matrix in the complex k plane move with increasing absorptive potential
W into the part of the second quadrant of this plane, below its bisector. The
problem appears relevant in the theory of Σ hypernuclear states. Stȩpień-
Rudzka and Wycech [6] noticed that in that part of the k plane the Σ
single particle Hamiltonian with a complex potential has eigenvalues which
may explain the observed Σ states with positive energy. These unstable
bound states (UBS’s) and the corresponding poles of the S-matrix have
been discussed in detail by Gal, Toker, and Alexander [7]. In the discussion
of the Σ hypernuclear states Gal et al. [7] and also Oset et al. [8] made
the statement that with increasing strength of the absorptive potential W
the virtual poles (located on the negative imaginary axis for W = 0) move
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clockwise into the third quadrant of the complex k plane. This statement,
which in general is not correct, has been repeated recently by Bonetti et

al. [9] in their review of the multistep direct reaction theory. A similar
incorrectness may be found in the discussion of Badalyan et al. [10] of the
S-matrix for coupled channels.

Second problem which deserves attention is the motion of the poles of
the S-matrix in the case when the strength of W tends to infinity. The
statement made by Faxedas and Sesma [5] that in this case all poles move
to infinity applies only to the s wave. Consequently, in a complete discussion
of the trajectories of the S-matrix poles in the case of very strong W , one
has to consider partial waves higher then the s wave.

In the present paper, trajectories of S-matrix poles in complex k plane
are investigated for the nonrelativistic Schrödinger equation with a complex
potential V of finite range. Special attention is paid to the two problems
mentioned above. For V we assume the square well shape for which one has
an explicit expression for the S-matrix. The present paper is an extension
of [11] to the case of an arbitrarily strong absorption W .

2. Properties of the pole trajectories

Let us consider a particle of mass m, whose motion obeys the nonrela-
tivistic Schrödinger equation with the complex square well potential

V(r) = −(V0 + iW0)θ(R − r) . (1)

The strength of V will be measured by dimensionless parameters

v = (2m/~
2)R2V0, w = (2m/~

2)R2W0 . (2)

For the S-matrix in the state with the angular momentum l and wave
vector k, one has

Sl(k) = −
βh

(2)
l (β)′jl(α) − αjl(α)′h

(2)
l (β)

βh
(1)
l (β)′jl(α) − αjl(α)′h

(1)
l (β)

, (3)

where jl, h
(1)
l and h

(2)
l are the spherical Bessel, and Hankel functions of the

first and second kind, and primes denote derivatives with respect to the
argument of the functions. The dimensionless wave numbers outside and
inside of the potential are denoted by β and α:

β = kR, α =
√

β2 + γ , (4)

where γ = v + iw.
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Poles of the S-matrix in the complex k plane are determined by the
condition that the denominator of expression (3) vanishes, which may be
written in the form:

αjl(α)′/jl(α) = βh
(1)
l (β)′/h

(1)
l (β) . (5)

Condition (5) determines the location of the poles in the complex k plane
as a function of γ,

β = Fl(γ) . (6)

By varying γ = v + iw in definite ways, we get various trajectories of the
S-matrix poles in the complex β = kR plane.

2.1. Conformal mapping of γ onto β

In the region of γ where the function Fl(γ) is analytic, it represents a
conformal transformation of γ into β. The angle preserving property of this
transformation leads us immediately to the simple rule:

If we move on a w = const pole trajectory in the direction of increasing

v, then to swtch to a v = cost trajectory in the direction of increasing w we

have to make a 90◦ turn left.

In discussing the pole trajectories, we find it necessary to know the
"critical points" at which Fl(z) is singular and transformation (6) is not
conformal. At these points dFl/dγ → ∞, and for the inverse transforma-
tion γ = fl(β) one has dfl/dβ = 0. To find these critical points, at which
dFl/dγ = dβ/dγ → ∞, we use condition (5) and the known properties of the
spherical Bessel and Hankel functions. For the crtical values of α = αc and
β = βc (the corresponding value of γ is γc = α2

c − β2
c ), we get the following

result:
Let us denote by xl,ν the ν-th zero (not counting x = 0) of jl (all the

xl,ν ’s are real), and by yl zeros of h
(1)
l (there are l complex yl’s [12]). The

critical points of transformation (6) are:

for l = 0 : βc = y1, αc = x1,ν . (7)

for l = 1 : βc =

{

y2 ,
0 ,

αc =

{

x2,ν ,
x0,ν ,

(8)

for l > 1 : βc =







yl−1 ,
yl+1 ,

0 ,
αc =







xl−1,ν ,
xl+1,ν ,
xl−1,ν .

(9)
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2.2. The limit of w → ∞
We consider trajectories along which the poles move when v is kept

constant, and w is varied from 0 to ∞. The location of the starting points
w = 0 of these trajectories, i.e., the location of the poles for real potential
with the depth v, is well known from the early work of Nussenzweig [13].
For the end points of the trajectories, i.e., in the limit w → ∞, there are
two possibilities: 1. β → ∞, or 2. β → βF , where βF is finite. We shall see,
that the separation of the two types of trajectories is connected with some
of the critical points discussed above. To get approximate expressions for β
when w → ∞, one starts from condition (5) and uses the asymptotic form
of the Hankel functions. In this way one gets the following results.

2.2.1. The case of limw→∞ β = ∞

Here, one gets the following approximate expressions for β and α valid
for large values of w:

β ≃ ±(−1 + i)
√

w/2

[

1 + i
(xl,ν)

2 − v

2w

]

, α ≃ xl,ν

[

1 ± (−1 + i)√
2w

]

. (10)

2.2.2. The case of limw→∞ β = βF

Here, one gets

βF = yl . (11)

The Hankel function h
(1)
l

(y) has l complex zeros yl, thus h
(1)
0 has no zeros

at all. Consequently, in the s state (l = 0) for w → ∞ all the trajectories
move to infinity. On the other hand, for l > 0 some of the trajectories move
to infinity, and some of them converge to the points βF = yl.

3. Results and conclusions

The results for the 1s, 2s, 1p, and 2p states are shown in figures 1–4.
In the case of the 1s state there are no critical points, and in the case of

the 2s state there is one critical point, β = −i. In the case of the p states
there are three critical points at βc =

√
3/2 − i3/2, −

√
3/2 − i3/2, and

0. The second critical points lies in the third quadrant in which there are
no trajectories for absorptive potentials (w > 0) considered here. The first
critical point is indicated in figures 3 and 4 by an open square. The critical
trajectories (indicated by broken lines), which go through the critical point,
saparete the trajectories which tend to y1 = −i when w → ∞ from those
which tend to ∞ when w → ∞.
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Fig. 1. Trajectories of the poles of the S-matrix for the 1s state. Arrows on the

w = 0 trajectory indicate the direction of increasing v, and on the v = constant

trajectories the direction of increasing w. Numbers at the starting points of the

v = constant trajectories are the corresponding values of v. The straight dotted

line is the bisector.

Fig. 2. As figure 1 but for the 2s state.
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Fig. 3. As figure 1 but for the 1p state. The open square is the critical point, and

the broken line is the critical trajectory.

Fig. 4. As figure 1 but for the 2p state. The two critical trajectories (broken lines)

meet in the critical point (open square).
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When w → ∞ the v = constant trajectories, which at w = 0 start from
the bound or twin resonance states, approach the bisector of the second
quadrant. The trajectories for the nl states with v < (xl,n)2 approach
the bisector from below. This means that the nl unstable bound states
(UBS’s), i.e., states in the part of the second quadrant of the complex k
plane below its bisector, may be reached (by increasing w) starting from and
only from bound states with v < (xl,n)2 or from the twin resonance states.
An exception is the 1s state, for which all virtual states , i.e., states on the
negative imaginary axis, are good starting points (there are no resonances in
the 1s state). To be quite precise, one should add that for the ns states with
n ≥ 1 the small part of the negative imaginary axis above −1 also presents
good starting points.

All v = constant trajectories of the Sl poles, which start from the res-
onance and virtual states, remain in the fourth quadrant (except of course
for the 1s state trajectories, and also those ns trajectories which start from
the negative imaginary axis above −1). When w → ∞, they either escape
to infinity, or they tend to a finite value of β = βF = yl. The last thing
happens to the v = constant trajectories for v within intervals determined
by critical points of the conformal connection β = Fl(γ). Again the ns state
trajectories which appear in the fourth quadrant, i.e., those with n ≥ 1, are
an exeption: they all escape to infinity, when w → ∞.

Note added in proof. A more detailed presentation of the results of this
paper is given in [14].
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