NUCLEAR STRUCTURE OF 228 Th *

J. Gröger^a, T. Weber^a, J. de Boer^b, H. Baltzer^a, K. Freitag^a A. Gollwitzer^b, G. Graw^b and C. Günther^a

^aInstitut für Strahlen- und Kernphysik, Universität Bonn Nussallee 14-16, D-53115 Bonn, Germany ^bSektion Physik, Universität München Am Coulombwall 1, D-85748 Garching, Germany

(Received November 24, 1997)

The level structure of 228 Th was studied using different experimental methods. The complete octupole quadruplet, three excited $K^{\pi} = 0^+$ bands and two excited $K^{\pi} = 2^+$ bands were identified.

PACS numbers: 21.10. -k; 27.90. +b

1. Introduction

The nucleus ²²⁸Th is located in a transitional region from octupole to quadrupole deformation: the even-even isotopes ²²⁶Th, ²²⁸Th and ²³⁰Th are considered to be octupole-deformed, octupole-soft and vibrational-like, respectively. A detailed study of the structure of ²²⁸Th might thus enable insights into the mechanisms governing these shape transitions. We have investigated ²²⁸Th with a number of experimental techniques. In the present contribution we briefly summarize the different experiments and discuss the results. Detailed accounts have been published in [1–6].

2. The electron capture decay of ²²⁸Pa

The EC decay of ²²⁸Pa to ²²⁸Th has been studied using mass-separated sources. In an early investigation we measured γ -ray and conversion-electron spectra, and $e^- - \gamma$ coincidences with a setup consisting of an orange spectrometer and four Compton-suppressed Ge-detectors. These investigations lead to a level scheme with several collective bands below ~ 1.4 MeV, and

^{*} Presented at the XXV Mazurian Lakes School of Physics, Piaski, Poland, August 27–September 6, 1997.

J. GRÖGER et al.

two-quasiparticle excitations up to ~ 2 MeV [1]. However, some questions remained, in particular in connection with the $K^{\pi} = 1^{-}$ member of the octupole quadruplet. We therefore restudied this decay with $\gamma - \gamma$ coincidences using five Compton-suppressed Ge-detectors. The most significant result of the $\gamma - \gamma$ coincidence measurement was the realization that a level at 968 keV, interpreted earlier as 3⁻ level, is a doublet of levels with 0.1 keV spacing, assigned as 2⁻ and 4⁺ members of the first-excited $K^{\pi} = 1^{-}$ and 0⁺ bands, respectively [2]. This finding enabled a reinterpretation of several members of the vibrational bands as shown below.

3. The 230 Th(p,t) 228 Th reaction

Triton spectra were measured using the Q3D spectrometer of the accelerator laboratory in Munich [3]. The most significant finding was the assignment of $I^{\pi} = 0^+$ to a level at 939 keV — which was earlier interpreted as 2⁻ member of the $K^{\pi} = 1^-$ band — based on the angular distribution of the tritons establishing L = 0 transfer. Several unknown levels were observed between 1 and 1.4 MeV, which could not be interpreted in [3]. With the new assignments from the radioactive-decay work these levels can now be understood.

4. In-beam spectroscopy in the 226 Ra $(\alpha, 2n)^{228}$ Th reaction

Studies of rotational bands populated in the 226 Ra $(\alpha, 2n)^{228}$ Th reaction were performed at the Bonn cyclotron. In an earlier investigation aimed at an identification of the ground and first excited $K^{\pi} = 0^{-}$ bands to high spins, γ -rays were measured in coincidence with L_{II} conversion electrons of the $4^+ \rightarrow 2^+$ ground-band transition. The two bands were observed up to the 18^+ and 17^- members, respectively [5]. These measurements indicated that a study of excited bands should be possible, and in a subsequent measurement of $\gamma - \gamma$ coincidences the first-excited $K^{\pi} = 0^+$ and 2^+ bands were observed up to the 12^+ and 10^+ levels, respectively [6].

5. The level scheme of ²²⁸Th

The collective rotational bands observed in ²²⁸Th are shown in Fig. 1. The ground and first excited $K^{\pi} = 0^{-}$ band merge at higher spins into a single band with alternating parity, as expected for nuclei with stable octupole deformation. The intrinsic electric dipole moment induced by the octupole deformation was determined from B(E1)/B(E2) ratios and found to be independent of spin up to $I^{\pi} = 15^{-}$ with an average of $D_0 = 0.12(1)$ fm. This result is a factor of ~ 5 smaller than that for the octupole deformed ²²⁴Th and a factor of ~ 10 larger than that for 232 Th, supporting the transitional character of 228 Th [5]. The full quadruplet of octupole shape oscillations is observed (right part of Fig. 1).

Fig. 1. Level scheme of 228 Th

The moments of inertia as function of spin are displayed in Fig. 2. The characteristic zigzag of the values for the $K^{\pi} = 1^{-}$ band results from its Coriolis coupling with the neighbouring 0^{-} and 2^{-} bands, where the 0^{-} band has no even-spin members. The observed energies of the octupole levels can be reproduced satisfactorily with a common moment of inertia $\sim 25\%$ larger than that of the ground band and Coriolis coupling matrix elements $\sim 30\%$ smaller than the spherical limit [2].

Three intrinsic excitations with $K^{\pi} = 0^+$ and two with 2^+ are observed with energies well below the threshold for two-quasiparticle excitations. Only the structure of the lowest 2^+ band is theoretically understood: it has properties corresponding to those expected for one-phonon γ -vibrations. The first two excited 0^+ bands have properties very different from those expected for β vibrations. We note in particular their increased moments of inertia (see Fig. 2), their dominant decay by E1 transitions to the firstexcited 0^- band and their strong excitation in the (p, t) reaction. The third 0^+ band is only weakly observed in the ²²⁸Pa decay and in the (p, t) reac-

J. GRÖGER et al.

Fig. 2. Moments of inertia as function of spin

tion. It decays predominantly to the ground band and compared to that its moment of inertia is only ~ 10% larger. Finally, a second-excited 2⁺ band is observed, which decays predominantly by E0 transitions to the γ band. Corresponding bands are also observed in the neighbouring nuclei, but the structure of these bands is largely unexplained. Possible interpretations of these additional $K^{\pi} = 0^+$ and 2⁺ excitations have been discussed by Bohr and Mottelson who emphasize, that the interpretation of these excitations is crucial to the understanding of the β and γ vibrations [7].

This work was funded by the DFG grants Bo 1109/1, Gr 894/2-1 and Gu 179/3-2.

REFERENCES

- [1] H. Baltzer et al., Z. Phys. A352, 47 (1995).
- [2] T. Weber et al., Z. Phys. A358, 281 (1997).
- [3] H. Baltzer et al., Z. Phys. A356, 13 (1996).
- [4] T. Weber, PhD thesis, Bonn 1997.
- [5] B. Ackermann et al., Nucl. Phys. A559, 61 (1993).
- [6] T. Weber et al., submitted to Z. Phys. (August 1997).
- [7] A. Bohr, B.R. Mottelson: Nuclear Structure, Vol. II. W.A. Benjamin, 1975.