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The neutron and proton separation energies and mean square charge
radii are evaluated within the Woods–Saxon plus BCS model for even–even
nuclei with 40 ≤ A ≤ 256. The various parametrizations of the Woods–
Saxon potential are examined. The improved values of the constants of the
central part of Woods-Saxon potential are determined from a least-square
adjustment to the existing experimental data.
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1. Introduction

Mean field theory with phenomenological single–particle potential is a
powerful tool for the description of low energy nuclear phenomena. Among
existing in literature phenomenological potentials the realistic single-particle
Woods–Saxon [1] potential is the best to describe the many properties of
nuclei such as the nuclear equilibrium deformations and moments, the mean
square radii, the nucleon binding energies, the structure of the high-spin
isomers, the fission barriers and the number of the single-particle effects for
strongly deformed and fast rotating nuclei.
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To determine the Woods–Saxon (W–S) potential twelve constants should
be given. There are for neutrons: depth of the central potential (V0), ra-
dius parameter (r0), diffuseness parameter (a), strength of the spin–orbit
interaction (λ), radius parameter of the spin–orbit potential (r0−so), and
diffuseness parameter of the spin–orbit part (aso). The similar set of six
parameters there are for the protons.

The several parameter sets have been proposed for the Woods–Saxon
potential. They are usually determined by a global fit to various ground state
nuclear properties of β stable nuclei. Among the earlier known parameter
sets are those of Blomquist and Wahlborn [2], the parameters of Chepurnow
[3], given by Rost [4] and the “new” parameters [5]. All these parameters are
fitted to the contemporarily existing experimental data on spherical nuclei,
notably 208Pb.

The latest, so called “universal” [1] parametrization was adjusted to all
experimental known odd-mass nuclei (both spherical and deformed) for A ≥
40. The scope is always a better description of the available data and a
hope to achieve in this way a higher predictive power for nuclei far away
from stability. The various sets of Woods–Saxon potential parameters are
presented in Table I.

TABLE I

Different sets of parameters of the Woods–Saxon potential

Parameter units Universal Wahlborn Rost Chepurnov New

V0 MeV 49.6 51.0 49.6 53.3 49.6
κ - 0.86 0.67 0.86 0.63 0.86
a fm 0.70 0.67 0.70 0.63 0.70

rn fm 1.347 1.27 1.347 1.24 1.347
λn - 35.0 32.0 31.5 23.8·(1+2I) *
rso

n
fm 1.31 1.27 1.280 1.24 *

rp fm 1.275 1.27 1.275 1.24 1.275
λp - 36.0 32.0 17.8 23.8·(1+2I) *
rso

p
fm 1.32 1.27 0.932 1.24 *

∗ The radius constant and the strength of the spin-orbit potential are deformation de-

pendent as described in Ref. [5].

The aim of this work is to examine the existing sets of parameters of the
Woods–Saxon potential for the description of the properties of the β–stable
even-even nuclei in a wide range of the mass numbers. A reliable description
of the nuclear ground state properties along the β–stability line is essential
for a successful extrapolation to exotic nuclei as well as to superheavy nuclei.
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In our investigations we restricted ourselves only to the analyze of the
proton Sp and neutron Sn separation energies and the mean square charge
radii 〈rch〉, because these observables depend mainly on the potential struc-
ture.

On the other hand the experimentally known values of Sp and Sn as
well as the average mean square charge radii 〈rch〉 of nuclei can be used
to establish the depth and size of the average potential well. By the least
square fit to the experimental values of the above quantities we have obtained
the “optimal” parameters of the Woods–Saxon potential. We show that
“universal” parameters V0, r0p, r0n and κ must be changed.

In Section 2 a brief discussion of the formalism used in our investigations
is presented. In Section 3 we give some details about the calculations and
results. In Section 4 the adjusted parameters of W–S potential are presented
and discussed.

2. The theoretical formalism

The deformed Woods–Saxon potential is widely described in the litera-
ture [1] and we restrict ourselves to represent only the basic formulae. The
potential consists of the central part Vcent, the spin–orbit part Vso and the
Coulomb potential VCoul for the protons:

V WS(~r, ~p,~s;β) = Vcent(~r;β) + Vso(~r, ~p,~s;β) + VCoul(~r;β) (1)

with
Vso(~r, ~p,~s;β) = −λ(∇Vcent × ~p) · ~s. (2)

The central part is defined by:

Vcent(~r;β) =
V0

[

1 ± κN−Z
N+Z

]

[

1 + exp
(

l(~r;β)
a

)] , (3)

where a is the diffuseness of the nuclear surface. The set of deformation
parameters βλ, which characterize the nuclear shape, is denoted by β. The
function l(~r, β), describing the distance between the given point ~r and the
nuclear surface has been determined numerically [1]. For spherical nuclei
we have l(~r, β = 0) = r − R0, where R0 = r0A

1//3, is the radius of the
corresponding spherical nucleus. In the above formulas β stands for the
parameters characterizing the nuclear shape:

R(θ) = c(β)R0

[

1 +
∑

λ

βλYλ0(cos(θ)

]

. (4)
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The function c(β) insures the conservation of the nuclear volume with a
change of the nuclear shape.

Since most of the nuclei considered here are open shell nuclei, pairing
has been included using the BCS formalism. We have used constant pairing
gaps for protons and neutrons which have been obtained from the empirical
particle separation energies by the formulae:

∆p(Z,N) = 1
4 (B(Z − 2,N) − 3B(Z − 1,N)

+3B(Z,N) − B(Z + 1,N)) , (5)

∆n(Z,N) = 1
4 (B(Z,N − 2) − 3B(Z,N − 1)

+3B(Z,N) − B(Z,N + 1)) . (6)

We have chosen nuclei with the smallest mass for a given nucleon number
A. Obviously these nuclei are stable against β–decay. We have considered
in our analysis the even–even nuclei with 40 ≤ A ≤ 256.

For an estimate of the proton (neutron) separation energies an approx-
imate method is proposed [6]. It is known from the BCS theory that in
order to separate a nucleon from an even–even nucleus one has to break
the Cooper pair and to move this nucleon from the Fermi level (λ) to the
continuum limit. This experimental relation can be written as follows:

Sp(Z,N) = ∆p(Z,N) − λp(Z,N) , (7)

Sn(Z,N) = ∆n(Z,N) − λn(Z,N) . (8)

The charge radii were calculated from the corresponding proton radii
taking into account the correction due to finite proton size:

〈~r 2〉ch = 〈~r 2〉p + 0.64 fm2 . (9)

We have neglected here only the small contributions to the mean charge
square radius originating from the electric neutron form factor and the elec-
tromagnetic spin–orbit coupling [9,10].

The global measure of the deformation of the neutron (or proton) dis-
tribution in the case of the microscopic theories can be expressed by the
corresponding quadrupole moment

〈Q2〉n,p = 〈2r2P2(cos θ)〉 . (10)

The reduced electric quadrupole transition between the rotational 2+ and
0+ states are proportional to the square of the proton quadrupole moment

B(E2) =
5

4π
〈Q2〉

2
p . (11)



Various Parametrizations of the Woods–Saxon Potential 411

3. Numerical results and discussion

The calculations were done for the frequently used sets of the parameters
of the W–S potential (see Table I). The proton (Sp) and neutron (Sn) sep-
aration energies, the mean-square charge radii (〈rch〉), electric quadrupole
moments (Q2) and the reduced electric quadrupole transition probabilities
(B(E2)) have been systematically investigated.

We have taken into account the nuclei along the β-stability line and
selected, experimentally known chains of isotopes or isobares (in order to
examine the properties of nuclei far from the β-stability line). Fig. 1 shows
the schematic diagram of the considered nuclei.

Fig. 1. The schematic diagram of the considered nuclei

The selected results are presented in Fig. 2, where the differences between
the theoretical and the experimental [7] separation energies of protons and
neutrons are plotted. The best theoretical estimates of Sn and Sp were
obtained with the Woods–Saxon potential of Chepurnov [3].

The mean square deviations between the theoretical and experimental
values of Sn, Sp, B(E2) and 〈rch〉 for all investigated Woods–Saxon models
are plotted in Fig. 3. It is seen that the Chepurnov set apart from the charge
radii gives the smallest deviations from the experiment. For the charge radii
〈rch〉 the other sets are somewhat better than Chepurnov parametrization.
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Fig. 2. The differences between the theoretical and experimental separation energies
of protons Sp and neutrons Sn. The theoretical estimates were obtained with the
frequently used sets of parameters of Woods–Saxon potential, see Tab. I.

Fig. 3. The root mean square errors for the neutron σ(Sn) and proton σ(S) sepa-
ration energies, the reduced transition probabilities σ(B(E2)) and the charge radii
σ(rch) obtained within different Woods–Saxon potentials.
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4. Adjustment procedure and model error

The values of Sp and Sn as well as 〈rch〉 can be used to establish the depth
(V0) and size parameter (r0) of the Woods–Saxon potential. The coefficients
(V0) and (r0) can be obtained by the least square fit of its observables to
the experimental data of all β-stable nuclei.

Model error has been defined as a simply the Root-Mean-Square (RMS)
deviation, which as usual is given by:

RMS =

[

1

n

n
∑

i=1

(Si
exp − Si

th)2

]1/2

. (12)

Here Si
th is the calculated and Si

exp the corresponding measured quantity
(in our case proton and neutron separation energy and mean square charge
radii).

In Figs 4 and 5 we show the root-mean-square errors for proton (Sp) and
neutron (Sn) separation energies for all β-stable nuclei as the function of

Fig. 4. The root-mean-square errors for proton (Sp) separation energy for all β-
stable nuclei as the function of the depth (V0) and size (r0) parameters of the
Woods–Saxon potential.
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Fig. 5. The same as in Fig. 4 for neutron separation energy Sn

the depth (V0) and size (r0) parameters of the Woods–Saxon potential. The
remaining are the “universal” parameters. The ranges of parameters V0 and
r0 are:

• V0 ⊂ ( 48.00 ÷ 55.00) 0.50 MeV (15 points),

• r0 ⊂ (1.20 ÷ 1.35) 0.01 fm (12 points).

It is seen that the condition of the minimal value of the RMS error fulfills
the simple linear relations:

r0 = aV0 + b . (13)

From this relation it is impossible choose the one set of optimal values of
depth and size parameters. The additional criterion at choice the “optimal”
parameters V0 and r0 provides the analyze of the root-mean-square errors
(RMS) for mean square charge radii (see Fig. 6). It is clear that the
“optimal” values of V0 and r0P must simultaneously fulfill condition of the
least mean square error for the proton separation energy Sp and mean square
charge radii 〈rch〉. For that reason on Fig. 7 we drown the RMS errors both
for Sp and 〈rch〉. It is easily seen that “optimal” values of V0 and proton r0p

are:
V0 = 52.4 MeV , (14)

r0p = 1.261 fm . (15)
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Fig. 6. The same as in Fig.4 for mean square charge radii

Fig. 7. The same as in Fig. 4 for proton separation energy and mean square charge
radii.

The neutron parameter r0n we have obtained on condition that the depth
parameter V0 is the same for protons and neutrons [1].

From the Fig. 5 we can see that:

r0n = 1.264 fm . (16)
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The real depth of the W–S potential for nucleus with N neutrons and Z

protons depends on the isospin of nuclei and is adjusted to the experimental
data by the parameter κ (see Eq. 3). The correct value of its parameter
is very important, especially for description of the nuclei far from the β-
stability line.

Fig. 8. The root-mean-square errors for proton (Sp) separation energy for Pb iso-
topes as the function of the (κ) and size (r0) parameters of the Woods–Saxon
potential.

Fig. 8 shows the root-mean-square errors of the proton separation energy
(Sp) for the chain of the Pb isotopes as the function of r0 and κ parameters.
It is seen that the “optimal” value of the κ parameter (minimum of the RMS
error) is equal κ = 0.70. The exact analyze for the all isotopes and isotones
used in our calculations gives:

κ = 0.68 .

The obtained “optimal” values of the V0, r0p, r0n and κ parameters give
the proper values of proton and neutron separation energies and the mean
square charge radii for all experimentally known nuclei from the β-stability
line and also far from its line. It is worth noticed that these parameters
differ considerably from the so called “universal” set.
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