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The optimized expansion is applied to calculate the effective action for
the Nambu-Jona-Lasinio model. The method is non-perturbative, the re-
sults derived from the effective action calculated to the first order of the
optimized expansion corespond to an infinite summation of perturbative
Feynman diagrams both in the Schwinger–Dyson equation for propaga-
tor and in the two-body Bethe–Salpeter equation. We show that this is
equivalent to the mean field (relativistic Hartree plus random phase) ap-
proximation. The optimized expansion offers thus a systematic method to
improve the relativistic mean field approximation in a consistent way.

PACS numbers: 03.70. +k, 21.60. Jz

1. Introduction

Quantum field theory of a self-interacting massless Dirac field has been
proposed by Nambu and Jona-Lasinio (NJL) as a model of nucleon inter-
actions [1]. Formulating a nonperturbative self-consistent approximation,
inspired by the microscopic theory of superconductivity, Nambu and Jona-
Lasinio demonstrated that a chiral symmetry is spontaneously broken and a
nucleon mass is generated dynamically in the model. In terms of Schwinger-
Dyson equations their approximation corresponds to keeping only the lowest
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order diagrams both in the one-body equation for the propagator (Hartree
approximation) and in the two-body Bethe-Salpeter equation (random phase
approximation). Nowaday the NJL model, reinterpreted as a theory with
quark degrees of freedom, is widely used as an effective theory which displays
essential features of QCD in the self-consistent approximation of Nambu and
Jona-Lasinio [2]. A nonperturbative treatment allowing to go beyond this
approximation is thus of great interest, and such a possibility is offered
by the effective action (EA). The EA is a generating functional for one-
particle-irreducible (1-PI) Green’s functions (proper vertices), an approxi-
mation to this functional generates thus a consistent set of approximations
for all Green’s functions of the theory. A systematic approximation scheme,
based on the 1

N
expansion of the EA, in the theory of N color degrees of

freedom, has been applied recently to the NJL model [3,4]. The leading or-
der gives a self-consistent approximation of Nambu and Jona-Lasinio (both
for the propagator as well as for the Bethe-Salpeter equation), higher or-
ders provide a method for systematic improvement of this result. In the
chiral limit (m0 → 0) the method is symmetry conserving - although the
chiral symmetry is spontaneously broken, the definite symmetry relations
(Ward-Takahashi identities) are preserved order by order in 1

N
expansion.

The method relies however on auxiliary field formulation and can be ap-
plied only to very limited class of field theory models. Here we propose an
alternative scheme, based on the optimized expansion (OE) which is formu-
lated in terms of fundamental fermion fields without introducing auxiliary
fields. The OE can be thus useful to discuss models where the auxiliary
field method does not work, e.g. to the tree-flavor NJL model with t’Hooft
interaction. Another advantage of the OE is the fact that the expansion
parameter is not related to the number of fields.

The OE has been developed [5] in scalar QFT with λΦ4 interaction. In
this case the first order effective action coincides with the Gaussian approx-
imation obtained by applying the time dependent variational principle to
the functional Schrodinger equation [7,8]. The OE has been also applied in
the fermion theory with (Ψ̄Ψ)2 interaction (Gross-Neveu model) and it has
been shown [6] that the first order result for the EA gives account of fermion
mass generation and provides the exact result in the large N limit.

Here we consider the simplest version of the NJL model with a classical
action given by

S[Ψ̄ , Ψ ] =

∫

dnx
(

Ψ̄ iA(x) (i 6 ∂ −m0)Ψ
i
A(x)

+
g

2N

(

(Ψ̄ iA(x)Ψ iA(x))2 + (Ψ̄ iA(x)(iγ5)ABΨ
i
B(x))2

)

)

, (1)

where Ψ represents the quark field with N colors (flavours are ignored for
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simplicity) and a current mass m0 has been included for generality (m0 →
0 gives the chirally-symmetric NJL theory). We shall suppress the space
arguments and integration, as well as the color (i) and Dirac (A) indices
and summation over them, writing the NJL action (1) as

S[Ψ̄ , Ψ ] = Ψ̄D−1Ψ +
g

2N

(

(Ψ̄Ψ)2 + (Ψ̄ iγ5Ψ)2
)

, (2)

where
D−1
ij (x, y) = (6 ∂ −m0)δ(x − y)δij . (3)

Quantization is done by representing the generating functional for Green’s
functions as a path integral over the fields

Z[η, η̄] = eiW [η,η̄] =

∫

DΨDΨ̄ei(S[Ψ,Ψ̄]+η̄Ψ+Ψ̄η) (4)

with Grassmann sources η and η̄ introduced. The EA is defined as

Γ [ψ, ψ̄] = W [η, η̄] − ψ̄η − η̄ψ, (5)

where the background fields, defined by means of left variational derivatives

ψ =
δW

δη̄
and ψ̄ = −δW

δη
, (6)

are the vacuum expectation values of Grassmann fields in the presence of ex-
ternal sources. When the sources are turned off the background Grassmann
fields should vanish, since Lorentz invariance is not expected to be broken.
The vacuum energy density is thus given by

Evac = − Γ [ψ, ψ̄]
∫

d4x

∣

∣

∣

∣

0,0

(7)

and n-particle proper vertices can be generated as

Γ n(x1, ..., xn, y1, ..., yn) =
δ2nΓ [ψ, ψ̄]

δψ(x1)...δψ(xn)δψ̄(y1)...δψ̄(yn)

∣

∣

∣

∣

0,0

. (8)

2. Optimized expansion

The path integral for the generating functional Z[η, η̄] cannot be evalu-
ated analytically and approximation methods are necessary. The steepest-
descent method, representing the path integral (4) as a series of calculable
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Gaussian integrals proves to be very useful to this end. Upon translating the
integration variables to the stationary point of the exponent and rescaling
them by ~, the functional Z[η, η̄] is obtained as a series in ~, providing the
usual loop expansion for the effective action [9]. The optimized expansion
(OE) is obtained in an analogous way, but with a classical action (2) written
in a modified form

Smod[Ψ̄ , Ψ ] = Ψ̄G−1Ψ + ǫ
(

Ψ̄(D−1 −G−1)Ψ +
g

2N
(Ψ̄Ψ)2 + (Ψ̄ iγ5Ψ)2

)

, (9)

where a fermion propagator, G(x, y), is arbitrary. A formal parameter ε has
been introduced to identify orders of the perturbation and its value has to
be set equal to one at the end. Upon translating the integration variables
by ψ0 and ψ̄0 which make the exponent in Eq. 4 stationary:

δSmod

δΨ

∣

∣

∣

∣

Ψ=ψ0,Ψ̄=ψ̄0

= η̄ and
δSmod

δΨ̄

∣

∣

∣

∣

Ψ=ψ0,Ψ̄=ψ̄0

= −η, (10)

and expanding the exponential into a Taylor series, we obtain Z[η, η̄] as a
series in a formal parameter ε:

Z[η, η̄] = eiSmod[ψ̄0,ψ0]+iη̄ψ0+iψ̄0η

∫

DΨDΨ̄eiΨ̄G
−1Ψ

×
{

1 + iε

[

Ψ̄(D−1 −G−1)Ψ +
g

N
(ψ̄0ψ0)(Ψ̄Ψ)

+
g

N
(ψ̄0Ψ)(Ψ̄ψ0) +

g

N
(ψ̄0iγ5ψ

0)(Ψ̄ iγ5Ψ)

+
g

N
(ψ̄0iγ5Ψ)(Ψ̄ iγ5ψ

0) +
g

2N
(Ψ̄Ψ)2 +

g

2N
(Ψ̄ iγ5Ψ)2

]

+O(ε2)

}

. (11)

Taking the trial propagator G diagonal in the color indices, Gii = G, and
performing the Gaussian integration term by term we have

Z[η, η̄] = eiSmod[ψ̄0,ψ0]+iη̄ψ0+iψ̄0ηDetNG−1

{

1 + ε

[(

N(D−1 − G−1)AB

+
g

N
ψ0
Aψ̄

0
B + g(ψ̄0iγ5ψ

0)(iγ5)AB +
g

N
(iγ5)ACψ

0
C ψ̄

0
D(iγ5)DB

)

GBA

+g(ψ0
Bψ̄

0
B)GAA − Nig

2
GAAGBB +

ig

2
GABGBA

−Nig
2

GBA(iγ5)ABGDC(iγ5)CD

+
ig

2
GDA(iγ5)ABGBC(iγ5)CD

]

+O(ε2)

}

, (12)
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where the determinant is taken with respect to space arguments and to Dirac
indices. Performing the Legendre transform the EA can be obtained to the
k-th order in ε. We can take the advantage of the freedom of choosing
the trial propagator, G(x, y), to optimize the expansion. The exact EA
does not depend on the trial propagator. We require thus the k-th order
approximant, Γ(k), to be as insensitive as possible to the small variation of
the trial propagator, G(x, y), by choosing that propagator to satisfy the gap
equation:

δΓ(k)

δG(x, y)
= 0. (13)

To the first order of the OE the EA is obtained equal to

Γ1

[

ψ, ψ̄,G] = Ψ̄D−1Ψ +
g

2N

(

(Ψ̄Ψ)2 + (Ψ̄ iγ5Ψ)2
)

−iNTrLnG−1 + i

(

N(G−1 −D−1)AB − gψ̄CψCδAB − g

N
ψAψ̄B

−g(iγ5)ABψ̄C(iγ5)CDψD − g

N
(iγ5)ACψCψ̄D(iγ5)DB

)

GBA

−g
2

(

NGAAGBB − GABGBA +NGAB(iγ5)BAGDC(iγ5)CD

−GDA(iγ5)ABGBC(iγ5)CD

)]

. (14)

The gap equation reads

δΓ1

δGBA(x, y)
= iN

(

G−1
AB −D−1

AB − gψ̄CψCδAB

− g

N
ψAψ̄B − g(iγ5)ABψ̄C(iγ5)CDψD

− g

N
(iγ5)ACψ̄CψD(iγ5)DB

)

− g
(

NGCCδAB − GBA

+N(iγ5)ABGCD(iγ5)DC − (iγ5)ACGCD(iγ5)DB

)

= 0 (15)

and can be fulfilled by the trial propagator of the form

G−1(x, y) = (6 ∂ −Ω)δ(x − y). (16)

The energy density (7) is given by

Evac = −4NI1(Ω) + 4N(Ω −m0)ΩI0(Ω) + (4N − 2)2g(ΩI0(Ω))2 , (17)
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where Ω fulfills the algebraic equation

m0 −Ω =
(4N − 2)g

N
ΩI0(Ω) (18)

with

I1(Ω) =
1

2

∫

d4k

(2π)4
ln(k2 +Ω2) and I0(Ω) =

∫

d4k

(2π)4
1

k2 +Ω2
. (19)

Our Eq. (18) coincides with the gap equation obtained by Nambu and Jona-
Lasinio. By using the gap equation, the energy density can be represented
in the form

Evac = −4NI1(Ω) + 2N(Ω −m0)ΩI0(Ω)

= 2N

∫

d3k

(2π)3

[

−2
√

k
2 +Ω2 +

Ω(Ω −m0)√
k2 +Ω2

]

, (20)

which coincides with the result obtained by a variational method by
Suzuki [10]. He pointed out that the result of Nambu and Jona-Lasinio
(where the second term is missing) is in error which was later attributed
to double counting of the interaction in the self-consistent mean-field ap-
proach by Hatsuda and Kunihiro [11]. We want to point out that in the EA
formalism double counting is avoided automatically.

The implicit expression for the EA allows one to calculate all proper
vertices in the OE as derivatives with respect to the background fields ψ
and ψ̄. The inverse of the full propagator is obtained in the form

Γ 2
ij(x, y) =

δ2Γ [ψ, ψ̄]

∂ψi(x)δψ̄j(y)

∣

∣

∣

∣

0,0

= (6 ∂ −Ω) δ(x− y)δij = G−1(x, y)δij , (21)

where Ω, as a solution of the gap equation (18), coincides with the self-
consistent mass obtained by Nambu and Jona-Lasinio. Our approach can
be regarded as an extension of the self-consistent perturbation method de-
veloped in the original work of Nambu and Jona-Lasinio [1]. They calculate
the self-energy using a free propagator with an arbitrary mass, which is later
fixed by requiring the given order radiative corrections to the self-energy to
vanish. In the OE the EA is calculated using an arbitrary trial propagator,
which is fixed later by requiring the given order approximation to the EA do
not depend on that propagator (13). Since the EA is a generating functional
for 1-PI Green’s functions, this pushes further the idea of self-consistency -
all the proper vertices are generated from the approximate expression for the
EA. In the NJL approach only the mass is determined self-consistently, other
vertices are calculated perturbatively with the use of the improved propaga-
tor. Even in the lowest order higher 1-PI vertices differ, although the propa-
gator happens to be the same in both approaches. In the NJL approach the
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four-fermion vertex is equal to that obtained in perturbation theory, in the
OE the fourth derivative of the implicit expression for the EA (14) and (15)
generates an approximation to the two-particle Bethe-Salpeter equation. In
the NJL approach the Bethe-Salpeter equation is treated independently of
the gap equation for the self-consistent mass, it is thus unclear how to relate
the approximations to these two equations beyond the first order. This is
in contrast to the case of the OE where differentiation of the aproximate
expression for the EA generates a definite approximations both to the gap
equation and to the two-particle Bethe-Salpeter equation. The systemati-
cal improvement of the self-consistent approximation of Nambu and Jona-
Lasinio offered by the OE requires further study.

REFERENCES

[1] Y. Nambu, G. Jona-Lasinio, Phys. Rev.122, 345 (1960).

[2] S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
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