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Grand Unifications of the electroweak and the strong interaction prefer that
the neutrino is a Majorana particle and therefore essentially identical with its own

antiparticle. In such grand unified models the neutrino has also a finite mass and
a slight right-handed weak interaction, since the model is left-right symmetric.

These models have vector bosons mediating the left- and the right-handed weak

interactions. If these models are correct, the neutrinoless double beta-decay is
feasible. Although the neutrinoless double beta-decay has not been seen it is

possible to extract from the lower limits of the lifetime upper limits for the ef-

fective electron-neutrino mass and for the effective mixing angle of the vector
bosons mediating right-handed and the left-handed weak interaction. One also

can obtain an effective upper limit for the mass ratio of the light and the heavy

vector bosons. A condition for obtaining reliable limits for these fundamental
quantities from the measured lower limits of the half lives of the 0νββ decay are

that the nuclear matrix can be calculated correctly. These nuclear structure cal-

culations can be tested by calculating the two neutrino double beta decay (2νββ)
for which we have experimental data and not only lower limits as for the 0νββ

decay. The 2νββ decay is dominated by the Gamow Teller (GT) transitions.

The intermediate 1+ states in the odd-odd mass nucleus are usually calculated
within the Quasi-Particle Random Phase Approximation (QRPA). The QRPA

treats Fermion pairs as bosons. This overestimates the ground state correla-

tions and leads to the collapse of the 2νββ decay probability for the physical
Jπ = 1+, T = 1 particle-particle interaction. We have extended the QRPA in-

cluding the Fermi commutation relations. One finds now agreement (in almost
all cases) for the 2νββ decay probability. This increases also the reliability of the

conclusions extracted from the upper limits of the 0νββ decay for the neutrino

mass, the left-right mixing angle and the lower limit for the mass of the “heavy”
vector boson.

PACS numbers: 23.40. –s, 14.60. Pq, 14.60. St

∗ Presented at the XXV Mazurian Lakes School of Physics, Piaski, Poland,
August 27–September 6, 1997.

∗∗ Supported by the European Union under the network contract CT93-0323 and the
Deutsche Forschungsgemeinschaft Fa67/17-1 and Fa67/19-1.

(79)



80 A. Faessler

1. Introduction

Grand unified theories predict mostly that the neutrino is a Majorana
particle [1], that means it is up to a phase identical with its antiparticle. Left-
right symmetric theories inaugurated by Mohapatra, Pati and Senjanovic [2]
and especially theories based on SO10 which have first been proposed by
Fritzsch and Minkowski [2] predict in improved versions [1] not only, that
the neutrino is a Majorana particle, but automatically predict also that the
neutrino has a mass and a weak right-handed interaction. The basic idea
behind grand unified models is an extension of the local gauge invariance
from quantum chromodynamics (SU3) involving only the coloured quarks
also to electrons and neutrinos. The presently favoured models are left-right
symmetric models. They contain left- and right-handed vector bosons W±

L

and W±

R .

W±

1 = cos ζ W±

L + sin ζ W±

R ,

W±

2 = − sin ζ W±

L + cos ζ W±

R . (1)

The vector bosons mediating the left and right-handed interaction are
mixed if the mass eigenstates are not identical with the weak eigenstates.
The left-right symmetry is broken since the vector bosons W±

1 and W±

2

obtain different masses by the Higgs mechanism. Since we have not seen a
right-handed weak interaction the mass of the heavy, mainly “right-handed”
vector boson must be much larger than the mass of the light (81 GeV) vector
boson, which is responsible for the left-handed force.

The weak interaction Hamiltonian must now be generalized.

HW ≈ GF√
2

[

(L · l) + tan ζ(R · l) + tan ζ(L · r) +

(

M1

M2

)2

(R · r)
]

,

L/R = ψ̄p(gV γµ ∓ gAγµγ5)ψn ,

gv = 1 ; gA = 1.25 ,

l/r = ē(γν ∓ γνγ5)ν . (2)

The capital L and R indicate the hadronic right- and left-handed currents
changing a neutron into a proton. The lower case l and r are the left and
right handed leptonic currents which annihilate a neutrino (or create an
antineutrino) and create an electron (or annihilate a positron). ζ is the
mixing angle of the vector bosons (2) and M1 and M2 are the light and
heavy vector boson masses. The weak interaction Hamiltonian (3) is given
for ζ ≪ 1 and M2 ≫M1.
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Grand unified theories with Majorana neutrinos allow the double beta-
decay without neutrinos. Or inversely: The existence of the double neutri-
noless beta-decay would establish that the neutrino is a Majorana particle.
Figure 1 shows the diagram for the neutrinoless double beta-decay. rys.1

Fig. 1. Diagrams for the neutrinoless double beta decay with a Majorana neutrino.
By having only two particles in the final states in the continuum, the phase space
is increased by a factor of about 106 compared to the 2νββ decay. Even with a
Majorana neutrino this process is only possible if the neutrino has a finite mass
and it is also favored with a right-handed weak interaction. But a right-handed
weak current must be accompanied by a finite neutrino mass to yield a finite 0νββ

decay.

But even if the neutrino is a Majorana particle, the process in Figure 1
can not happen since for a pure left-handed weak interaction theory, the
emitted neutrino must be right-handed (positive helicity), while the ab-
sorbed neutrino must be left-handed (negative helicity). But grand unified
theories predict also that the neutrino has a mass and a slight right-handed
weak interaction. With a finite mass the neutrino has not any more a good
helicity and the interference term between the leading helicity and the small
admixtures allows a neutrinoless double beta-decay.

2. Description of the two-neutrino double beta-decay in the
renormalized QRPA

Since there are measurements available for the two neutrino double beta-
decay with the geochemical method [3–5], and for five nuclei even laboratory
measurements [6–16], one could try to calculate for a test of the theory the
double beta-decay with two neutrinos and compare them with the data.
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Fig. 2. The upper part shows the way how in the Random Phase Approximation
(RPA) the 2νββ decay is calculated. For the Fermi transitions the β−(n → p)

amplitude moves just a neutron into the same proton level and the β+(p → n)

amplitude moves a proton into the same neutron level. For the Gamow–Teller
transitions it can also involve a spin flip, but the orbital part remains the same. One
immediately realizes that the occupation and non-occupation amplitudes favour the
β− amplitude, but disfavour the β+ amplitude. There one has a transition from an
unoccupied to an occupied single particle state, which is two-fold small (s2) first
by the fact that the occupation amplitude for the proton vp and secondly that the
unoccupation amplitude for the neutron state un are both small. Therefore, the
2νββ is drastically reduced.

Figure 2 explains why the 2νββ decay amplitude is so drastically re-
duced. Therefore the small effects which normally do not play a major role
can affect the 2νββ transition probability. If one looks to the second leg
of the double beta-decay which is calculated backwards as a β+(p → n)
decay from the final nucleus to the intermediate nucleus one finds that the
matrix elements involved in these diagrams are Pauli suppressed by a factor
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(unvp)
2 = (small)4. The neutron–particle proton-hole force in the isovec-

tor channel, which is usually included is repulsive while the particle–particle
force usually neglected is attractive. Therefore both excitations tend to can-
cel each other and therefore the amplitude β+ is drastically reduced. To
show the dependence on the particle–particle matrix element we multiply
this matrix element derived from the realistic Bonn potential by solving the
Bethe Goldstone equation (Brueckner reaction matrix element) with a factor
gpp.

Although one can obtain agreement in this way with the measured 2νββ
data multiplying the particle–particle matrix elements with a factor gpp in a
range of 0.8 ≤ gpp ≤ 1.2, the strong dependence on gpp (which renormalizes
the Brueckner reaction matrix element of the Bonn potential) does not allow
a reliable prediction of the 2νββ decay probability.

The reason for this cancellation is that for the second leg the backgoing
amplitudes and thus groundstate correlations cancel the leading forward
going terms.

The quasi-particle Random Phase Approximation (QRPA) is derived by
using the Quasi-Boson Approximation (QBA), where one requests for the
quasi-particle Fermion pairs boson commutation relations.

[

{alak}JM; {a+

k′a
+
l′ }JM

]

= n(k, l)n(k
′

, l
′

)
[

δk,k
′δl,l′ − δl,k′δk,l

′ (−)jk+jl−J
]

×
{

1 − 1

ĵl
〈0+

RPA | {a+
l al}00 | 0+

RPA〉 −
1

ĵk
〈0+

RPA | {a+
k ak}00 | 0+

RPA〉
}

(3)

with:

n(k, l) = (1 + (−)Jδk,l)/(1 + δk,l)
3/2

ĵ =
√

2j + 1 .

In the QBA one puts

Dk,l;Jπ = 1 − 1

ĵl
〈0+

RPA | {a+
l al}00 | 0+

RPA〉 −
1

ĵk
〈0+

RPA | {a+
k ak}00 | 0+

RPA〉 ,

equal to unity. Here we include the Fermion character of the quasi-particles
a+

k (which include proton–neutron mixing and therefore also proton–neutron
T = 1 pairing [17,18]) in an approximation determined by the QRPA ground
state expectation value [19,20]. Using the commutation relations (3), which
include the Fermion nature of the quasi-particles in the nucleon pair opera-
tors, one obtains the renormalized QRPA (RQRPA) equations [19].

Figures 3 and 4 show the second order GT matrix element as function of
the particle–particle strength parameter gpp for the 2νββ decay calculated
in QRPA (and RQRPA, see below) for 76Ge and 82Se, including pn-pairing.
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Fig. 3. The Gamow–Teller transition matrix element M2ν
GT of the 2ν betaβ decay

of 76Ge is plotted as function of particle–particle coupling constant gpp. The solid
line corresponds to full-RQRPA (with p–n pairing), the dashed line to full QRPA
(with p–n pairing)
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(

Ā B̄
B̄ Ā

)

( X̄ Ȳ ) = Ω

(

1 0
0 −1

)

( X̄ Ȳ ) ,

Ā = D−1/2AD−1/2 ,

B̄ = D−1/2BD−1/2 ,

X̄ = D1/2X; Ȳ = D1/2Y . (4)

Here D is the renormalization matrix given in Eq. (3) and A,B and
X, Y are the usual QRPA matrices and amplitudes, respectively. Explicit
expressions are given in Ref. [19]

3. Calculation and discussion of the results for the 2νββ decay

We applied the full-RQRPA method to the 2νββ-decay of 76Ge, 82Se,
128Te and 130Te. We assumed the single particle model space both for pro-
tons and neutrons as follows.
(i) For 76Ge →76Se and 82Se →82Kr the model space comprises 13 levels:
1s

1/2
, 0d

5/2
, 0d

3/2
, 1p

3/2
, 1p

1/2
, 0f

7/2
, 0f

5/2
, 2s

1/2
, 1d

5/2
, 1d

3/2
, 0g

9/2
, 0g

7/2
,

0h
11/2

.

(ii) For 128Te →128Xe and 130Te →130Xe we used 16 levels:
1p

3/2
, 1p

1/2
, 0f

7/2
, 0f

5/2
, 2s

1/2
, 1d

5/2
, 1d

3/2
, 0g

9/2
, 0g

7/2
,

0h
11/2

, 0h
9/2
, 1f

7/2
, 1f

5/2
, 2p

3/2
, 2p

1/2
, 0i

13/2
.

The single particle energies have been calculated with a Coulomb-corrected
Wood–Saxon potential. For the two body interaction we used the nuclear
G-matrix calculated from Bonn one-boson exchange potential. The single
quasiparticle energies and occupation amplitudes have been found by solving
the HFB equation with p–n pairing for both the parent and the daughter
nuclei in the above mentioned space. The renormalization of the proton–
proton, neutron–neutron and proton-neutron pairing interaction has been
determined according to Ref. [17].

In the calculation of the full-RQRPA equation we renormalized particle–
particle and particle–hole channels of the G-matrix interaction by introduc-
ing parameters gpp and gph, which in principle should be equal to unity.

It is worthwhile mentioning that the calculation of M2ν
GT within full-

RQRPA needs a great computational effort. The RQRPA self-consistent
scheme requires the solution of the RQRPA equation (9) for all multipolar-
ities Jπ in each iteration for the initial and the final nuclei. In comparison
with the RQRPA, the QRPA calculation of MGT requires to solve the QRPA
equation only for the multipolarity 1+ once for the initial and once for the
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final nucleus. The iterative procedure of the RQRPA have been found to
converge rapidly.

Our results for 2νββ-decay of 76Ge and 82Se are presented in Fig. 3 and
Fig. 4, respectively.

4. 0νββ Decay and the Renormalized Quasi-Particle
Random Phase Approximation (RQRPA)

After we established in chapter three that the Renormalized Quasi-
Particle Random Phase Approximation (RQRPA) gives a reliable description
for the 2νββ decay and removes the collapse discussed since 1986 in the lit-
erature, we are applying this approach to the 0νββ decay [21] which gives
information as discussed in the introduction about Grand Unified theories.
The 0νββ decay is only possible if the neutrino is a Majorana particle and
by that has automatically a mass. The favored left-right symmetric theories
allow also for a right-handed weak interaction and have a heavy vector boson
which is mediating this interaction.

The 0νββ decay can be calculated with Fermi’s golden rule.

w0νββ =
2π

~

∣

∣

∣

∣

Mm〈mν〉 + MJ〈tan ζ〉 + MW

〈

M2
1

M2
2

〉∣

∣

∣

∣

2

×ρfinal ≤ wexp
0νββ (upper limit) . (5)

Since one has not yet seen the 0νββ decay experimentally, the data only
allow to give an upper limit for the 0νββ decay probability. The three
terms in equation (10) turn out to be all of the same sign and thus the
upper experimental limit measured for the 0νββ decay probability allows to
give upper limits for an averaged electron neutrino mass 〈mν〉 an averaged
mixing angle of the vector bosons responsible for the left- and the right-
handed weak interaction 〈tan ζ〉 and the ratio of the masses squared for the
light over the heavy vector boson 〈M2

1 /M
2
2 〉.

For the 2νββ decay a single particle basis of 9 levels for the protons and
9 levels for the neutrons turned out to be enough. For the 0νββ decay the
transition operator depends on the distance between the two vertices and
one needs a larger basis of at least 12 levels [21]. In addition the pn pairing
turns out to be essential [21].

Table I shows the upper limits obtained for the averaged electron neu-
trino mass [21]. Here one should stress, that the quantities derived are
averaged in a special way over the six neutrinos in a left-right symmetric
Grand Unified theory. If the weak and the mass eigenstates of this six neu-
trinos are identical, the averaged electron neutrino mass is equal to the bare
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electron neutrino mass but the mixing angle and the mass ratio are aver-
aged to zero. To derive from the averaged quantities, the bare quantities,
one needs the six dimensional unitary transformation from the weak eigen-
states to the mass eigenstates of the six neutrinos. This is naturally highly
model dependent and thus the bare quantities can only be derived if one
specializes to a specific Grand Unified model.

TABLE I
Matrix elements of the RQRPA with proton-neutron pairing (M0ν

mass), lower exper-
imental limit of the halflives, derived upper limit for the averaged electron neutrino
mass.

Nucleus M0ν
mass T 0ν−exp

1/2
[years] | 〈mν〉 | [eV]

76Ge 1.86 ≥ 7.4 × 1024 (90 % C. L.) [38] ≤ 1.1
100Mo 4.22 ≥ 4.4 × 1022 (68 % C. L.) [47] ≤ 2.4
116Cd 2.47 ≥ 2.9 × 1022 (90 % C. L.) [48] ≤ 4.9
128Te 3.28 ≥ 7.3 × 1024 (68 % C. L.) [49] ≤ 1.2
136Xe 0.96 ≥ 6.4 × 1023 (90 % C. L.) [50] ≤ 3.7

The upper limit for the averaged mixing angle 〈tan ζ〉 and the mass
ratio squared of the vector bosons 〈M2

1 /M
2
2 〉 are about 10−8 and 10−6, re-

spectively.

5. Summary

In this contribution we studied the effect of the Pauli principle on the
two neutrino and the zero neutrino double beta decay. In the Quasi Parti-
cle Random Phase Approximation (QRPA) one is using the Quasi-Boson-
Approximation (QBA). This means one requests for a Fermion pair boson
commutation relations. We discussed that this neglect of the Pauli prin-
ciple is drastically overestimating the ground state correlations in nuclei.
Due to this effect, the νββ decay probability is collapsing for the realistic
particle-particle Gamow–Teller-Matrix element of forces which reproduce
the two-body data like the Bonn potential. We included here [19] the Pauli
principle for the nucleon pairs at least as the ground state expectation value.
In this approximation one can derive again a RPA type equation which we
call renormalized QRPA (RQRPA). Using this approach, the collapse of the
2νββ decay probability is removed from the physical region (gpp = 1). Apart
of the Xe isotopes we obtain a very good description of the experimental data
for the 2νββ probability. This gives us the conviction that also the 0νββ
decay probability calculation is reliable at least for the nuclei apart of Xe.
This allows now to deduce reliable upper limits for the averaged electron
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neutrino mass, the averaged mixing angle ζ and the mass ratio of the vector
bosons squared as given in table one.

The inclusion of the Pauli principle for the Fermion pairs of nucleons in
the RPA is violating the Ikeda sum rule. One obtains a value for the Ikeda
sum rule which is about 15 % different from 3(N −Z). This is probably due
to the fact, that in the commutation relation we include terms which contain
a quasi-particle creation and a quasi-particle annihilation operator. To be
consistent, one should also include such terms in the excitation operator
which excites the states in the intermediate nucleus from the initial nucleus
and from final nucleus. We expect that this will give agreement with the
Ikeda sum rule. We are working on this problem.

The work which I presented here has been obtained in collaboration with
J. Schwieger, Prof. F. Simkovic, Prof. J. Vergados and Prof. G. Pantis.
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