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I give an overview of recent calculations of the renormalization group
β-function and the quark mass anomalous dimension at the 4-loop order
of perturbative Quantum Chromodynamics. In addition I discuss the or-
der α3

s contribution to the Ellis-Jaffe sum rule for the structure function
g1 of polarized deep inelastic lepton-nucleon scattering. The calculations
discussed in this talk were performed in collaborations with S.A Larin and
J.A.M. Vermaseren.
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1. The four loop β-function in QCD

The renormalization group β-function in Quantum Chromodynamics
(QCD) has a history of more than 20 years. The calculation of the one-
loop β-function in QCD has lead to the discovery of asymptotic freedom in
this model and to the establishment of QCD as the theory of strong interac-
tions [1]. The two-loop QCD β-function was derived in [2]. The three-loop
QCD β-function was calculated in Ref. [3] within the minimal subtraction
(MS) scheme [4]. The MS-scheme belongs to the class of massless schemes
where the β-function does not depend on masses of the theory and (only) the
first two coefficients of the β-function are scheme-independent. In spite of its
scheme dependence at higher orders the β-function is an important object
since it governs (within a given scheme) the scale dependence of the strong
coupling constant which is the basic expansion parameter in perturbative
calculations.

In this section we discuss the recent analytical four-loop calculation [5] of
the QCD β-function in the MS-scheme. The definition of the 4-dimensional
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β-function is

∂as

∂ ln µ2
= β(as) = −β0a

2
s − β1a

3
s − β2a

4
s − β3a

5
s + O(a6

s) (1)

in which as = αs/4π = g2/16π2, g = g(µ2) is the renormalized strong
coupling constant of the standard QCD Lagrangian. (We should note at
this point that various other normalizations of the beta function coefficients
βi are often used.) µ is the ’t Hooft unit of mass, the renormalization point
in the MS-scheme.

To calculate the β-function we need to calculate the renormalization
constant Zas

of the coupling constant

aB = Zas
as , (2)

where aB is the bare (unrenormalized) charge. We obtain this renormaliza-
tion constant in the 4-loop order by calculating the following three renormal-
ization constants of the Lagrangian: Zhhg for the ghost-ghost-gluon vertex,
Zh for the inverted ghost propagator and Zg for the inverted gluon propa-
gator. Then by virtue of the Ward identities one has Zas

= Z2
hhg/(Z

2
hZg).

This is from a calculational point of view one of the simplest ways to obtain
Zas

at higher orders but several other choices are possible as well.
The actual calculation of the renormalization constants Zhhg, Zh and Zg

in the 4-loop order is done using a technique based on the direct calculation
of 4-loop massive vacuum (bubble) integrals (i.e. massive integrals with no
external momenta). This technique which is described in more detail in Ref.
[5] involves the introduction of an auxiliary mass parameter and provides a
procedure that is well suited for the automatic evaluation of huge numbers of
Feynman diagrams. This is of vital importance since there are approximately
50000 4-loop diagams contributing to the ghost-ghost-gluon vertex, ghost
propagator and gluon propagator combined. The obtained MS β-function
for QCD reads
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where nf is the number of (active) quark flavours and ζ is the Riemann
zeta-function (ζ3 = 1.2020569 · · ·) . In Ref. [5] the β-function was obtained
for an arbitrary compact semi-simple Lie group, but we quoted here only
the result for QCD (i.e. the group SU(3)). Algorithms for the reduction
of group theory factors in a group invariant way are worked out in [6], see
also [7].

Another prominent renormalization group quantity governs the scale de-
pendence of the renormalized quark mass. This quantity, the quark mass
anomalous dimension, has recently been calculated at the 4-loop order of
QCD [8,9]. The quark mass anomalous dimension and β-function are both
needed to express the renormalized quark masses through the renormal-
ization group invariant mass. The perturbative coefficients of the relation
between the renormalized mass and the invariant mass are found to be small
up to the 4-loop level which explicitly shows that the invariant mass is good
reference mass for the scale evolution of quark masses.

In [8] the 4-loop quark mass anomalous dimension was used together with
the 4-loop β-function and the order α3

s correction to the hadronic Higgs
decay rate [10] to study the infrared fixed point for the hadronic dacay
rate in the fourth order of QCD. The third order of QCD indicated [11] a
(spurious) fixed point that hardly depends on the number of quark flavours
for nf = 3, 4, 5, 6. In [8] this fixed point was found to disappear at the fourth
order of QCD, see Fig. 1.
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Fig. 1. Analysis of the infrared fixed point for the hadronic Higgs decay rate ΓH .

The (spurious) fixed point at 3-loops R ≈ 0.15 hardly depends on the number of

flavours. At 4-loops it is found to disappear, see Ref. [8]. The curves are for nf = 4.
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2. The α3

S
approximation of QCD to the Ellis–Jaffe sum rule

Polarized deep inelastic electron-nucleon scattering is described by the
hadronic tensor

Wµν =
1

4π

∫

d4zeiqz〈p, s|Jµ(z)Jν(0)|p, s〉 = W spin average
µν (x,Q2)

+iǫµνρσqρ

(

sσ

p · q g1(x,Q2) +
sσp · q − pσq · s

(p · q)2 g2(x,Q2)

)

.(4)

Here Jµ is the electromagnetic quark current, x = Q2/(2p · q) is the Bjorken
scaling variable and Q2 = −q2 is the square of the transferred momentum.
|p, s〉 is the nucleon state. The polarization vector of the nucleon is expressed
as sσ = U(p, s)γσγ5U(p, s) where U(p, s) is the nucleon spinor.

In the present section we will focus on the first Mellin moment of the
structure function g1, the Ellis-Jaffe sum-rule. Moments of deep inelastic
structure functions can be expressed [12] in terms of quantities that appear in
the operator product expansion (OPE) of the two currents Jµ. In particular
the Ellis–Jaffe sum-rule is expressed as

1
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dxg
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1 (x,Q2) = Cns(1, as(Q

2))(± 1
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
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1

9
a0(µ

2) , (5)

where the plus (minus) sign before |gA| corresponds to the proton (neutron)
target. Cs and Cns are the flavour singlet and non-singlet coefficient func-
tions that appear in the relevant Operator Product Expansion. γs(as) is
the anomalous dimension of the axial singlet current (see further below).
αs = 4πas is the strong coupling constant. The proton matrix elements of
the axial currents are defined as

|gA|sσ = 2〈p, s|J5,3
σ |p, s〉 = (∆u − ∆d)sσ ,

a8sσ = 2
√

3〈p, s|J5,8
σ |p, s〉 = (∆u + ∆d − 2∆s)sσ,

a0(µ
2)sσ = 〈p, s|J5

σ |p, s〉 = (∆u+∆d+∆s)sσ =∆Σ(µ2)sσ.
(6)

Here |gA| is the absolute value of the constant of the neutron beta-decay ,
gA/gV = −1.2601 ± 0.0025 [13]. a8 = 0.579 ± 0.025 [13, 14] is the constant
of hyperon decays. We use the notation ∆q(µ2)sσ = 〈p, s|qγσγ5q|p, s〉, q =
u, d, s, for the polarized quark distributions. We omit the contributions of
the nucleon matrix elements for quarks heavier than the s-quark but it is
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straightforward to include them. The matrix element of the singlet axial
current a0(µ

2) can be redefined in a proper invariant way as a constant â0

â0 = exp






−

as(µ2)
∫

da′s
γs(a′s)

β(a′s)






a0(µ

2) ≡ ∆Σinv . (7)

The singlet anomalous dimension γs(as) determines the renormalization
scale dependence of the axial singlet current i.e. d[J5

σ ]R/(d ln µ2) = γs[J5
σ ]R

where subscript R means that a current is renormalized. Since â0 is renor-
malization group invariant it should be considered as a physical constant on
the same ground as the constants gA and a8.

The flavour non-singlet contribution to the Ellis-Jaffe sum rule is known

in the order a3
s from [15] where the polarized Bjorken sum rule

1
∫

0

dx(gp
1 −gn

1 )

was calculated in this order. To obtain the singlet contribution to the Ellis–
Jaffe sum rule in the a3

s order one needs to calculate Cs in the order a3
s and

γs(as) in the order a4
s. The most difficult part of this calculation is to obtain

γs(as) in the a4
s order (since it is a 4-loop calculation) and this can be done

with the same method that was used to obtain the β-function in the 4-loop
order.

Further details on the calculations can be found in Ref. [16] where the
following result for the Ellis-Jaffe sum rule was obtained
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where αs = αs(Q
2), β0 = 11−2/3nf is the 1-loop coefficient of the β-function

and â0 = ∆Σinv is the invariant matrix element of the singlet axial current
defined in Eq. (7). One can see that the obtained perturbative coefficients
of the Ellis-Jaffe sum rule grow rather moderately. If one assumes that the
error of the truncated asymptotic series is determined by the last calculated
term, then the obtained α3

s approximation for this sum rule provides a good
theoretical framework for the extraction of the fundamental constant â0 =
∆Σinv, the invariant axial proton charge, from experiment.
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