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We analyze the second order QCD corrections to the fragmentation
functions FH

k
(x, Q2) (k = T, L, A) which are measured in e+ e− annihi-

lation From these fragmentation functions one can derive the integrated
transverse (σT ), longitudinal (σL) and asymmetric (σA) cross sections. The
sum σtot = σT + σL corrected up to order α2

s agrees with the well known
result in the literature. It turns out that the order α2

s corrections to the
transverse and asymmetric quantities are small in contrast to our findings
for FH

L
(x, Q2) and σL where they turn out to be large. Therefore in the

latter case one gets a better agreement between the theoretical predictions
and the data obtained from he LEP experiments.

PACS numbers: 12.38.Bx

1. Introduction

Semi inclusive hadron production in e+ e− annihilation into a vector
boson V (V = γ, Z) proceeds via the reaction (see Fig. 1)

e−(l1, σ1) + e+(l2, σ2) → V (q) → H(p, s) + “X” . (1.1)

In the process above “X” denotes any inclusive final hadronic state and
H represents either a specific charged outgoing hadron or a sum over all
charged hadron species. The unpolarized differential cross section of the
above process is given by

d2σH(x,Q2)

dx d cos θ
=

3

8
(1 + cos2 θ)

dσH
T (x,Q2)

dx
+

3

4
sin2 θ

dσH
L (x,Q2)

dx

+
3

4
cos θ

dσH
A (x,Q2)

dx
. (1.2)
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Fig. 1. Kinematics of electron positron annihilation e− + e+ → H +′ X′

The transverse, longitudinal and asymmetric cross sections are given by σH
T ,

σH
L , and σH

A respectively. The latter, which is due to parity violation, only
shows up if the intermediate vector boson is given by the Z-boson and is
absent when V = γ. The cross sections depend in addition to the CM energy
Q also on the Bjørken scaling variable x defined by

x =
2pq

Q2
, q2 = Q2 > 0, 0 < x ≤ 1 . (1.3)

In the centre of mass (CM) frame of the electron-positron pair this vari-
able can be interpreted as the fraction of the beam energy carried away by
the hadron H. The variable θ denotes the angle of emission of particle H
with respect to the electron beam direction in the CM frame. Before the ad-
vent of LEP1 the CM energies were so low (Q ≪ MZ) that σA could not be
measured and no effort was made to separate σT from σL so that only data
for σT + σL were available. After LEP1 came into operation one was able
to measure σT and σL separately [1, 2]. Moreover σA could be determined
for the first time [2, 3]. The separation of σT and σL is important because
the latter cross section enables us to extract the strong coupling constant αs

and allows us to determine the gluon fragmentation density DH
g (x, µ2) with

a much higher accuracy as could be done before. Furthermore the measure-
ment of σA provides us with information on hadronization effects since the
QCD corrections are very small. In the QCD improved parton model, which
describes the production of the parton and its subsequent fragmentation into
a hadron H, the cross sections σH

k (k = T,L,A) can be expressed as follows:

dσH
k (x,Q2)

dx
=

1
∫

x

dz

z

[

σ
(0)
tot(Q
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z
, µ2)CS

k,q(z,Q2/µ2) + DH
g (

x

z
, µ2) ·
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·CS
k,g(z,Q2/µ2)

}

+

nf
∑

f=1

σ
(0)
f (Q2)DH

NS,f

(x

z
, µ2
)

CNS
k,q (z,Q2/µ2)

]

, (1.4)

for k = T,L. In the case of the asymmetric cross section we have

dσH
A (x,Q2)

dx
=

1
∫

x

dz

z

[

nf
∑

f=1

A
(0)
f (Q2)DH

A,f (
x

z
, µ2)CNS

A,q (z,Q2/µ2)
]

. (1.5)

In the formulae above, which only hold for massless quarks, we have intro-
duced the following notations. The functions DH

l (z, µ2) (l = q, q̄, g), which
depend on the factorization/renormalization scale µ, stand for the parton
fragmentation densities. The singlet (S) and non-singlet (NS,A) combina-
tions with respect to the flavour group SU(nf ) are defined by

DH
S (z, µ2) =

1

nf

nf
∑

q=1

(

DH
q (z, µ2) + DH

q̄ (z, µ2)
)

,

DH
NS,q(z, µ2) = DH

q (z, µ2) + DH
q̄ (z, µ2) − DH

S (z, µ2) ,

DH
A,q(z, µ2) = DH

q (z, µ2) − DH
q̄ (z, µ2) . (1.6)

The index q stands for the quark species and nf denotes the number of light

flavours. The pointlike cross section σ
(0)
q and the asymmetry factor A

(0)
q of

the process e+ + e− → q + q̄ can be found in [4, 5]. The total cross section,

summed over all flavours is given by σ
(0)
tot(Q

2) =
∑nf

q=1 σ
(0)
q (Q2). The QCD

corrections in Eqs. (1.4), (1.5) are described by the coefficient functions Cr
k,l

(k = T,L,A; l = q, g). Like the fragmentation densities they depend on the
scale µ and they can be split into a singlet (r = S) and a non-singlet part
(r = NS). From (1.2) we can derive the total hadronic cross section

σtot(Q
2) =

1

2

∑

H

1
∫

0

dx

1
∫

−1

d cos θ

(

x
d2σH(x,Q2)

dx d cos θ

)

= σT (Q2) + σL(Q2) , (1.7)

with

σk(Q
2) =

1

2

∑

H

1
∫

0

dxx
dσH

k (x,Q2)

dx
, k = T,L , (1.8)
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where one has summed over all types of outgoing hadrons H. From the
momentum conservation sum rule given by

∑

H

1
∫

0

dxxDH
l (x, µ2) = 1 , l = q, q̄, g , (1.9)

and Eqs. (1.4), (1.8) one can derive

σk(Q
2) = σ

(0)
tot(Q

2)

1
∫

0

dxx
[

CS
k,q(x,Q2/µ2) +

1

2
CS

k,g(x,Q2/µ2)
]

. (1.10)

Finally we also define the transverse, longitudinal and asymmetric fragmen-
tation functions FH

k (x,Q2)

FH
k (x,Q2) =

1

σ
(0)
tot(Q

2)

dσH
k (x,Q2)

dx
, k = (T,L,A) . (1.11)

One observes that the above fragmentation functions1 are just the timelike
analogues of the structure functions measured in deep inelastic electron-
proton scattering.

2. Order α
2

s
corrected coefficient functions

The coefficient functions Cr
k,l corrected up to order α2

s receive contribu-
tions from the following parton subprocesses. In zeroth order we have the
Born reaction

V → “q” + q̄ , (2.1)

where “l” (l = q, q̄, g) denotes the detected parton which subsequently frag-
ments into the hadron of species H. In next-to-leading order (NLO) one has
to compute the one-loop virtual corrections to reaction (2.1) and the parton
subprocesses

V → “q” + q̄ + g , (2.2)

V → “g” + q + q̄ . (2.3)

1 Notice that we make a distinction in nomenclature between the fragmentation den-
sities D

H
q ,DH

g and the fragmentation functions F
H
k .
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After mass factorization of the collinear divergences which arise in the above
processes one obtains the coefficient functions which are presented in [4]. The
determination of the order α2

s contributions involves the computation of the
two-loop corrections to (2.1) and the one-loop corrections to Eqs. (2.2), (2.3).
Furthermore one has to calculate the following subprocesses

V → “q” + q̄ + g + g , (2.4)

V → “g” + q + q̄ + g , (2.5)

V → “q” + q̄ + q + q̄ . (2.6)

In reaction (2.6) the two anti-quarks, which are inclusive, can be identical
as well as non-identical. Notice that in the above reactions the detected
quark can be replaced by the detected anti-quark so that in reaction (2.6)
one can also distinguish between the final states containing identical quarks
and non-identical quarks. After mass factorization and renormalization for
which we have chosen the MS-scheme one obtains the order α2

s contributions
to the coefficient functions which are presented in [5].

3. Review of the most important results

The most important results of our calculations can be summarized as
follows. From Eq. (1.10) and the coefficient functions originating from the
processes above we can obtain σL and σT corrected up to order α2

s

σT (Q2) = σ
(0)
tot(Q

2)
[

1 +
(αs(µ

2)

4π

)2(

C2
F

{

6
}

+CACF

{

−
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5
ζ(3) −
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30

}

+ nfCF Tf

{

16ζ(3) +
8

3

})]

, (3.1)

σL(Q2) = σ
(0)
tot(Q

2)
[αs(µ

2)

4π
CF

{

3
}

+
(αs(µ

2)

4π

)2(

C2
F

{

−
15

2

}

+CACF

{

− 11 ln
Q2

µ2
−

24

5
ζ(3) +

2023

30

}

+ nfCF Tf

{

4 ln
Q2

µ2
−

74

3

})]

.

(3.2)

Addition of σL and σT yields the well known answer for σtot (1.7) which
is in agreement with the literature [6]. Hence this quantity provides us
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with a check on our calculation of the longitudinal and transverse coefficient
functions. Notice that in lowest order σtot only receives a contribution from
the transverse cross section whereas the order αs contribution can be only
attributed to the longitudinal part. In order α2

s both σL and σT contribute
to σtot.

Because of the high sensitivity of expression (3.2) to the value of αs,
the longitudinal cross section provides us with an excellent tool to measure
the running coupling constant. To illustrate the importance of the order α2

s

contribution to σL we have computed the ratio

RL(Q2) =
σL(Q2)

σtot(Q2)
, (3.3)

for µ = Q = MZ and αs(5,MZ) = 0.126. The result is

RL = 0.040 + 0.014 = 0.054 , (0.057 ± 0.005) , (3.4)

where the first and the second number represent the order αs and order α2
s

contribution respectively. Between the brackets we have quoted the result
from OPAL [2]. Here one observes a considerable improvement when the
order α2

s contributions are included. Recently DELPHI [3] used Eq. (3.2) to
determine the strong coupling constant. Their measurement of RL yields

RL = 0.051 ± 0.01 (stat.) ± 0.007 (syst.) , (3.5)

from which the strong coupling constant can be extracted. The result is

αNLO
s (5,MZ) = 0.120 ± 0.002 (stat.) ± 0.013 (syst.) . (3.6)

If one includes power corrections to σL which are due to higher twist con-
tributions of the order Λ/Q (see [7]) then one obtains

αNLO+POW
s (5,MZ) = 0.101 ± 0.002 (stat.) ± 0.013 (syst.) ± 0.007 (scale) ,

(3.7)

where the scale uncertainty comes from varying the renormalization scale in
he range 0.5 Q < µ < 2 Q. The result above shows that the power correc-
tions enhance σL so that the strong coupling constant decreases. A similar
analysis (see [5]) shows that also the longitudinal fragmentation function
FL receives large order α2

s contributions. However the corrections to the
transverse and asymmetric fragmentation functions are small.

Finally we discuss the order α2
s corrections to the asymmetric cross sec-

tion. The latter is given by

σA(Q2) =
∑

H

1
∫

0

dx
dσH

A(x,Q2)

dx
= QA

1
∫

0

dx CNS
A,q(x,Q2/µ2) , (3.8)
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Up to NNLO the above expression yields the following result

σA = QA

[

1 +
(αs(µ

2)

4π

)2{

− 12β0CF ζ(3)
}]

, β0 =
11

3
CA −

4

3
Tfnf .

(3.9)

Notice that σA is independent of the factorization scale. However it depends
like σL and σA on the renormalization scale via αs. From Eq. (3.9) we infer
that the NLO correction is zero but the NNLO contribution is nonvanishing
although numerically it is very small for µ = Q = MZ . Finally in [5] we have
evaluated the first and second moment of the asymmetric structure function
and compared it with the data. The NNLO result for the first moment is

1
∫

0.1

dxFA(x,M2
Z) = −0.016 , −0.0229 ± 0.0044 (OPAL) ,

−0.028 ± 0.006 (DELPHI) .

(3.10)

The second moment becomes

1
∫

0.1

dx
x

2
FA(x,M2

Z) = −0.0020 , −0.00369 ± 0.00046 (OPAL) ,

−0.0036 ± 0.0008 (DELPHI) .

(3.11)

We also computed the above sum rules up to NLO. However there is hardly
any difference between NLO and NNLO which could already be expected
from the comments made below Eq. (3.9). The numbers presented above
reveal that the experimental values are far below the theoretical predic-
tions. Furthermore it turns out that the LO results are much closer to the
ones obtained from experiment. In the case of Eq. (3.10) we obtain −0.023
whereas for Eq. (3.11) we get −0.0027. Probably higher twist corrections
might become very important as we saw in the case of σL below (3.6).
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