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SOME PROBLEMS IN HIGH LOOP CALCULATIONS∗
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We discuss some of the problems that may occur in the calculation
of complicated Feynman diagrams. These include the group independent
evaluation of color factors, and the summation techniques that are needed
for the expansion of diagrams into their Mellin moments.
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1. Introduction

The ever increasing accuracy of the high energy experiments forces the-
orists to calculate perturbative quantities to higher and higher order. For
high order graphs there are however not only the integrals to worry about.
One of the problems is the organization of calculations with astronomical
numbers of diagrams. This we will not discuss here. Another problem con-
cerns the color factors. Traditionally they have been evaluated for QCD
with an algorithm that was specific for the SU(N) groups [1] [2]. These
results could then be rewritten in terms of Casimir invariants and applied to
other groups as well. This procedure works well as long as the only relevant
invariants are CF and CA. Recent calculations (e.g. Ref. [3]) however went
beyond this and needed additional invariants. Hence new algorithms were
needed. We will discuss them here.

Another problem that arises concerns the hadron structure functions in
deep inelastic scattering. Here the structure functions can be computed to
two loops but for a complete NNLO analysis one will also need the three loop
anomalous dimensions. Of these anomalous dimensions only some Mellin
moments are known thus far. This raises several points simultaneously.
The first is the computation of the Mellin moments, once the exact result
in x-space is known. The second problem is that one would like to use
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these moments for at least a partial analysis. And thirdly one may wonder
whether it could be possible to evaluate all moments simultaneously. Or
in other words: can one compute these diagrams in Mellin space? This
technique has been used in the past for several calculations [5–7], but each
time the calculations were done mainly by hand, in which case one can use
many tricks to come to an answer. Additionally these techniques have never
been used to the level of complexity one needs for the anomalous dimensions
in NNLO. In the case of large numbers of diagrams one will have to solve
the problem rather thoroughly. We will discuss some of this and show some
progress in at least the first point.

2. Color factors

The evaluation of color factors is a purely mathematical problem. Yet
most of the literature about it has been written by physicists. The most
widely used paper is the one by Cvitanovic [1]. In this paper explicit prop-
erties of the fundamental and adjoint representations of various groups are
used to break the traces down and obtain expressions for the traces in terms
of N (for SU(N), SO(N) and Sp(N)) or just numbers (for G2, F4, E6 and
E7). The algorithms for the exceptional groups are difficult to implement
and for E8 no algorithms are given. But if one constructs a program for
SU(N) it can be rather fast, and for ‘simple’ QCD calculations this is all
one needs, because the quarks are in the fundamental representation and the
gluons are in the adjoint representation. Such programs can be quite short
in any symbolic manipulation language (see for instance Ref. [2]). For most
calculations thus far this is all one needs because for QED and SU(2)× U(1)
the group theory is completely trivial. Nowadays however there is much
activity concerning what lies beyond the standard model, and a much larger
variety of groups can occur. Hence it would be wise to present perturbative
calculations in such a way that the group and the representation(s) have not
been fixed yet. Yet one would like to have a compact result. The essence of
such an endeavor is or course to utilize no group or representation specific
information, and to express the result in terms of as few invariants as possi-
ble. These invariants then can be either tabulated for different groups and
representations, or there should be easy algorithms to evaluated them. What
we are going to show here is a very short version of a recent paper [4] on
this subject. For more details the reader should consult the original paper.

First we take
[T a

R, T b
R] = i fabcT c

R . (1)

Of special interest are two quadratic Casimir operators:

(T a
RT a

R)ij = CRδij , (2)
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facdf bcd = CAδab . (3)

The index R in TR and CR labels the representation. The next set of invari-
ants we consider are symmetrized traces.

Str T a1 . . . T an
≡

1

n!

∑

π

Tr T aπ(1) . . . T aπ(n) . (4)

For each representation one may define a symmetric invariant tensor dR with

da1...an

R ≡ Str T a1
R . . . T an

R . (5)

This does overparametrize the problem, but if we manage to express all color
factors in terms of contractions of such objects we have made an enormous
simplification.

For a reduction into invariants we first deal with all generators that are
not in the adjoint representation. If there are still open indices we multiply
with appropriate projection operators. This gives complete traces and we
have to find an expression for them in terms of symmetrized traces. Of course
one can eliminate contracted indices inside the same trace as one does with
traces over gamma matrices. Here this is more complicated though. Writing
the expression in terms of symmetrized traces can either be done by recursion
or with a closed formula which is a bit messy to write here. The formula
gives much faster results, but in both cases the expressions become rather
long when there are many generators in the trace.

Next one has an expression with invariants dR and ‘structure constants’
f which can be considered as proportional to generators of the adjoint rep-
resentation. These do not necessarily occur in loops. If they do, they can
be written also in terms of invariants dA. After this step we are left with
combinations of invariants and structure constants in which the structure
constants cannot be arranged in terms of loops. At this point we start us-
ing Jacobi identities. For a computer this is not easy, but the program we
constructed can do this for color traces that contain (at the beginning) up
to 14 generators without any problem and for 16 it works almost always.
This manages to reduce all such traces to contractions between invariants d
with the exception of one combination of three tensors dR and two structure
constants f when we started with 14 generators, and three similar objects at
the 16 generator level. In some cases these objects can be reduced (like if at
least two of the three invariants d belong to the adjoint representation, or for
groups for which some identities hold which includes almost, but unfortu-
nately not all groups). The resulting objects are considered as fundamental
by the program. It is possible to express them in terms of an even smaller set
of independent objects, but unfortunately this will not make the expressions
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shorter, because the constants in such a reduction are not simple. Hence
the program gives its answers in these objects and one can evaluate these
contractions afterwards for any given group. The paper presents also the for-
malism on how to do this for each group and for any given representation.
Here we just give some examples of some rather complicated color traces.
All examples use an experimental version of the program FORM which will
be released later this year.

We first look at the following trace:

Rnn = Tr[T i1
R · · ·T in

R T i1
R · · ·T in

R ]

which gives some type of maximal complexity. For n = 7 we obtain:

R77 = 112/3 dabcdef
R dabcg

A ddefg
A − 328/9 dabcdef

A dabcg
R ddefg

A

+dabcdef
R dabcdef

A (−56 CR + 296/3 CA)

+dabcd
R dabef

A dcdef
A (42 CR − 749/10 CA) + 67/15 I2(R)dabcd

A dabef
A dcdef

A

+dabcd
R dabcd

A (35 C3

R − 357/2C2

RCA + 868/3 CRC2

A − 2695/18 C3

A)

+I2(R)dabcd
A dabcd

A (7 C2

R − 1603/60CRCA + 497/20 C2

A)

+NAI2(R)(+C6

R − 21/2 C5

RCA + 175/4 C4

RC2

A − 280/3 C3

RC3

A

+5215/48 C2

RC4

A − 19075/288 CRC5

A + 43357/2592 C6

A) (6)

in which NA is the dimension of the adjoint representation and I2(R) is
the second index of the representation R and it can also be written as
I2(R) = (NRCR)/NA with NR the dimension of the representation R. This
computation took less than 35 sec on a PP200 running NeXTstep.

If the representation R in the above example is taken to be the adjoint
representation things are much simpler and much quicker:

A77 = −

8

9
dabcdef

A dabcg
A ddefg

A +
53

30
CA dabcd

A dabef
A dcdef

A −

5

648
NAC7

A (7)

and the computer time needed is less than 1 sec. Finally a topologically
complicated example: It is called the Coxeter graph. It contains 14 vertices
and the smallest loop in it has 6 vertices.

G6(n = 14) =
16

9
dabcdef

A dabcg
A ddefg

A −

8

15
CA dabcd

A dabef
A dcdef

A +
1

648
NAC7

A . (8)

This took 1.6 sec.
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3. Sums

The method of evaluating structure functions in Mellin space dates back
to the origins of QCD [5] It has been used [6] to obtain the anomalous
dimensions of the deep inelastic structure functions at the two loop level.
Kazakov and Kotikov [7] used it for obtaining the ratio R = σL/σT of deep
inelastic structure functions at the two loop level. A complete program for
all two loop calculations has however not been constructed thus far. Hence
there is a challenge here. The main prize would of course be a program that
can compute the three loop anomalous dimensions. We will address here
a project in which first a program is constructed to evaluate all relevant
two loop coefficient functions in Mellin space. Then one has to look at the
inverse Mellin transform to obtain results in x-space. Next would be the
study of three loop anomalous dimensions. Thus far we cannot say much of
this.

Let us have a look at a typical two loop diagram.

A B

cd

e
a b

=

∫

dDp1 dDp2

(p2
1
)a((P +p1)2)A(p2

2
)b((P +p2)2)B(p2

3
)c(p2

4
)d(p2

5
)e

. (9)

We can attack this diagram in a variety of ways. The method one might
prefer is the ‘brute force’ method. One decides to compute the N -th moment
in which we keep N symbolic. Therefore the two denominators are expanded,
which results in a single symbolic sum. The resulting integral can be attacked
with the standard techniques, but one has to introduce 4 more sums. The
only good news is that no individual term has more than 4 nested sums.
Amazingly enough these sums can be solved, although one has to do quite
some work teaching the computer summation. The summation packages
of the big computer algebra programs are almost useless here. One runs
however immediately into trouble when trying to solve a similar topology

. Thus far the brute force method has failed on this diagram.

Hence one has to be a bit smarter. If one looks in the Kazakov and Kotikov
paper one can see a number of reduction schemes by which relations between
the various topologies are derived. Two of them can then be marked as the
simplest ones. These are then evaluated. They need only a single sum if
enough preparatory work is done. Then a next level of topologies can be
done which gives sums that involve these simpler topologies. But because
the whole scheme is properly built up, the sums do not mix in such a way
that we run into very complicated sums. Still one may need a number of
sums that are not readily available and hence quite some attention has to



2604 J.A.M. Vermaseren

go into the construction of a program that can handle all available sums.
Because the complete program is still under construction I cannot show too
many details here but yet, some may be interesting.

The class of functions that we run into is called ‘harmonic series’. What
is shown here about them can be found in a more complete version in Ref. [8].
There exists a variety of notations for them. Because the more conventional
notation is not very useful for computer programs we use a slight modifica-
tion of this notation. The basic function is

Sm(n) =

n
∑

i=1

1

im
m > 0 , (10)

=

n
∑

i=1

(−1)i

im
m < 0 , (11)

and higher functions are defined by recursion:

Sm1,...,mk
(n) =

n
∑

i=1

1

im1
Sm2,...,mk

(i) m1 > 0 , (12)

=
n

∑

i=1

(−1)i

im1
Sm2,...,mk

(i) m1 < 0 . (13)

These functions appear, among others, when Γ-functions are expanded in
terms of ǫ. But they also pop up in sums of the type

n
∑

i=1

(−1)i
(

n
i

)

1

n3
= −S1,1,1(n) (14)

which are rather common in these calculations. Certain classes of sums can
be evaluated to any complexity of the participating harmonic series. An
example is combinations of S

···
(n−i), S

···
(i) and powers of 1/i as in

n−1
∑

i=1

1

i2
S2(n−i)S

−2,−1(i) = −3S2,−4,−1(n) − 4S2,−3,−2(n) + 4S2,−3,−1,1(n)

−3S2,−2,−3(n) + 2S2,−2,−2,1(n) + S2,−2,−1,2(n)

+2S2,2,−2,−1(n) + 2S2,3,−1,−1(n) − 4S3,−3,−1(n)

−4S3,−2,−2(n) + 4S3,−2,−1,1(n) + 4S3,1,−2,−1(n)

+2S3,2,−1,−1(n) − 3S4,−2,−1(n) (15)

and so on. There are also complicated sums that have thus far resisted
generalization. This means that we cannot put in arbitrary harmonic series.
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An example is

n
∑

j=0

(

n
j

)(

n+j
2+j

)

(−1)j

(j+2)2
S1(n+j) =

1

(n+1)(n+2)

(

2S1(n)S1(n−2)

−S2(n−2) − S
−2(n+2) + (−1)n(n2+n+3)

(n−2)!

(n+2)!

−S1(n−2) ×

(

1+
1

n−1
+

1

n
−

1

n+1
−

1

n+2

))

. (16)

The sums become also much more difficult when only a ‘partial range’ is
considered as in

m
∑

i=1

(−1)i
(

n
i

)

1

n3
= ??? (17)

One solution would be the introduction of a new type of functions with two
variables. One would then construct the proper relations for these func-
tions and hopefully, at the end of the complete calculation most or all would
cancel. This approach may be necessary for the three loop anomalous di-
mension. At the two loop level it is not needed.

The sums that occur in the evaluation of diagrams in Mellin space are
of course closely related to the sums that one runs into when making Mellin
transforms of complete results in x-space. However, in the case of the trans-
forms there is an extra class of sums: sums to infinity. These are in principle
easier, but we need to derive some extra relations for them if we would like
to be able to do them to a sufficient depth. Additionally one needs to know
the values of the harmonic series at infinity. These values give us a number
of constants that do not enter the problem if we calculate the diagrams di-
rectly in Mellin space. Hence their cancellation serves as a good check. For
instance, the Mellin transform of c2 in Ref. [9] results in a formula with 154
terms. Because this is a new result it is shown in the appendix. It does take
the program however only a few seconds to evaluate it. There is however an
interesting spin-off. From the calculations in Mellin space, we know which
classes of functions can occur in the Mellin transform. We can construct a
basis in the space of these functions. If we have an equal number of func-
tions in x-space of which the Mellin transforms span the space formed by
this basis, we can do the inverse Mellin transform by just solving a linear
set of equations. Additionally it tells us that there cannot be any relations
between the functions in x-space that we used. Let us have a look at this
basis. First we define the ‘level’ of a term that involves an harmonic series.
This level is the sum of the absolute value of its indices and to that we add
the number of powers of denominators in the term. Hence the level of the
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argument of the sum in Eq. (15) is 2 + 2 + 3 = 7. This is also the level of
the terms on the right hand side of the equation. For two loop calculations
we will need only functions of a level up to four. At level one there are
only two functions: S1(n) and S

−1(n). The function 1/n can be written as
S1(n)− S1(n−1). The two terms in this expression correspond to the same
function in x-space except for an overall factor 1/x for the second term.
Hence we will not consider 1/n as an independent function. Additionally
we do not have to worry about products of harmonic series with identical
arguments. These can always be expressed in terms of sums of terms that
have only single harmonic series as is shown in an example:

S1,2(n) S
−1,1(n) = −S

−2,1,2(n) − S
−2,2,1(n) + S

−2,3(n) + 2 S
−1,1,1,2(n)

+S
−1,1,2,1(n) − S

−1,1,3(n) − S
−1,2,2(n) − S1,−3,1(n)

+S1,−1,1,2(n) + S1,−1,2,1(n) − S1,−1,3(n) + S1,2,−1,1(n) .

(18)

At any given level k greater than 1 there are three times as many functions
than at the previous level. For each function at level k−1 one can construct
a function at level k by adding at the left an index 1, an index -1, or by
raising the leftmost index by one (in absolute value). Hence at level 4 there
are 54 independent functions. Because we also need the lower functions one
has to consider 80 functions in x-space before one can make a full inverse
Mellin transform. An example is:

S
−1,1,2(n−1) →

Li3(1−x)

1+x
−

ln(1−x)

1+x
ζ2 −

1

1+x
ζ3

+δ(1−x)(−1

8
ζ4 + 1

8
ζ3 ln(2) − 1

24
(ln(2))4 − Li4(

1

2
) ) .

(19)

There is one case in which the basis of single higher harmonic series is
not practical. This is when one has to evaluate these series at infinity.
In that case some of these objects can be infinite and one would like to
cancel the infinities between the various terms. In principle all divergent
objects can be expressed in terms of powers of just a single divergence S1(∞)
times finite terms. This is a rather soft divergence which can be regularized
rather easily by replacing the infinity temporarily by a large integer N . In
some case one has to worry then about whether objects go to infinity like
N or like 2N in which case one gets additional finite contributions as in
S1(2N) → S1(N) + ln 2. These things are rather straightforward though.
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Appendix

Two loop moments

The Mellin transform of the coefficient functions c2 from Zijlstra and van
Neerven [9]

c2 = +θ(N−3) S1,−2(N−3) (8/5CF CA − 16/5C2

F )

+θ(N−3) S1,−2(N−2) (−8/5CF CA + 16/5C2

F )

+δ(N−2) ζ3 (12/5CF CA − 24/5C2

F )

+θ(N−2) (+S1(N−2) (8/5CF CA − 16/5C2

F )

+S2(N−2) (8/5CF CA − 16/5C2

F )

+S
−4(N−1) (12CF CA − 24C2

F ) + S
−3,1(N−1) (−8CF CA + 16C2

F )

+S
−2(N−1) (8CF CA − 16C2

F ) + S
−2,−2(N−1) (−24CF CA + 48C2

F )

+S1(N−1) (1585/54CF CA − 89/27CF nf + 5/2C2

F )

+S1(N−1) ζ3 (−36CF CA + 48C2

F )

+S1,−3(N−1) (−24CF CA + 48C2

F )

+S1,−2(N−1) (36CF CA − 72C2

F ) + S1,−2,1(N−1) (8CF CA − 16C2

F )

+S1,1(N−1) (311/9CF CA − 26/9CF nf − 43C2

F )

+S1,1,1(N−1) (22/3CF CA − 4/3CF nf + 8C2

F )

+S1,1,−2(N−1) (24CF CA − 48C2

F ) + S1,1,1,1(N−1) (24C2

F )

+S1,2(N−1) (−22/3CF CA + 4/3CF nf − 4C2

F )

+S1,1,2(N−1) (4CF CA − 32C2

F ) + S1,2,1(N−1) (−4CF CA − 24C2

F )

+S2(N−1) (−212/5CF CA + 4CF nf + 189/5C2

F )

+S1,3(N−1) (12CF CA + 4C2

F ) + S2,−2(N−1) (−8CF CA + 16C2

F )

+S2,1(N−1) (−44/3CF CA + 8/3CF nf + 8C2

F )

+S2,1,1(N−1) (−24C2

F ) + S2,2(N−1) (20C2

F )

+S3(N−1) (55/3CF CA − 10/3CF nf − 18C2

F )

+S3,1(N−1) (8CF CA + 8C2

F ) + S4(N−1) (−12CF CA + 14C2

F )

+S1(N) (−4639/45CF CA + 110/9CF nf + 337/5C2

F )

+S1(N) ζ3 (72CF CA − 144C2

F ) + S1,−3(N) (24CF CA − 48C2

F )

+S1,−2(N) (−56CF CA + 112C2

F ) + S1,1,−2(N) (−48CF CA + 96C2

F )

+S1,1(N) (−68CF CA + 4CF nf + 84C2

F ) + S1,1,1(N) (−8C2

F )

+S1,3(N) (−24CF CA + 48C2

F ) + S2,−2(N) (−16CF CA + 32C2

F )

+S2(N) (74CF CA − 4CF nf − 74C2

F ) + S2,1(N) (16C2

F )
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+S3(N) (−20CF CA + 28C2

F ) + S3,1(N) (−8CF CA + 16C2

F )

+S4(N) (12CF CA − 24C2

F )

+S1(N+1) (3914/27CF CA − 488/27CF nf − 121C2

F )

+S1(N+1) ζ3 (−84CF CA + 144C2

F )

+S1,−3(N+1) (−40CF CA + 80C2

F )

+S1,−2(N+1) (20CF CA − 40C2

F ) + S1,−2,1(N+1) (8CF CA − 16C2

F )

+S1,1(N+1) (668/9CF CA − 68/9CF nf − 68C2

F )

+S1,1,1(N+1) (22/3CF CA − 4/3CF nf + 36C2

F )

+S1,1,−2(N+1) (56CF CA − 112C2

F ) + S1,1,1,1(N+1) (24C2

F )

+S1,2(N+1) (−22/3CF CA + 4/3CF nf − 32C2

F )

+S1,1,2(N+1) (4CF CA − 32C2

F ) + S1,2,1(N+1) (−4CF CA − 24C2

F )

+S1,3(N+1) (28CF CA − 28C2

F )

+S2(N+1) (−1909/15CF CA + 38/3CF nf + 646/5C2

F )

+S2,1(N+1) (−44/3CF CA + 8/3CF nf − 48C2

F )

+S2,1,1(N+1) (−32C2

F ) + S2,2(N+1) (28C2

F )

+S3(N+1) (115/3CF CA − 10/3CF nf − 4C2

F )

+S3,1(N+1) (8CF CA + 24C2

F ) + S4(N+1) (−12CF CA − 6C2

F )

+(−S1(N+2) + S1,−2(N+2)) (72/5CF CA − 144/5C2

F )

+(S2(N+2) + S3(N+2)) (72/5CF CA − 144/5C2

F )

+S1,−2(N+3) (−72/5CF CA + 144/5C2

F )

+S3(N+3) (−72/5CF CA + 144/5C2

F )

−5465/72CF CA + 457/36CF nf + 331/8C2

F

+ζ3 (54CF CA − 72C2

F )) .
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