
Vol. 29 (1998) ACTA PHYSICA POLONICA B No 10

osp(1, 2)–COVARIANT LAGRANGIAN QUANTIZATION
OF GENERAL GAUGE THEORIES∗

Bodo Geyer, Petr M. Lavrov†

Universität Leipzig, Naturwissenschaftlich-Theoretisches Zentrum
Augustusplatz 10/11, D–04109 Leipzig, Germany

e-mail: geyer@rz.uni-leipzig.de

and Dietmar Mülsch

Wissenschaftszentrum Leipzig e.V.

D–04103 Leipzig, Germany

(Received July 17, 1998)

An osp(1, 2)–covariant Lagrangian quantization of general gauge the-
ories is introduced which also applies to massive fields. It generalizes the
Batalin-Vilkovisky and the Sp(2)–covariant field–antifield approach and
guarantees symplectic invariance of the quantized action. Massive gauge
theories with closed algebra are considered as an example.
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1. Introduction

Recently, a general method for quantizing general gauge theories in the
Lagrangian formalism has been proposed [1] which is based on simultane-
ous invariance under both, BRST and antiBRST transformations, as well as
symplectic transformations of (anti)ghost fields and antifields. It is charac-
terized by a quantum action functional S = S(φA, φ∗

Aa, φ̄A, ηA) depending,
besides on the dynamical fields φA = (Ai, Bα, Cαa), where Ai, Bα and Cαa

are the gauge, the auxiliary and the (anti)ghost fields, respectively, also on
related external antifields or sources φ∗

Aa, φ̄A and ηA. Here a indicates the
members of Sp(2)–doublets. To guarantee their (anti)BRST symmetry and
symplectic invariance the action S (and the gauge fixed extended action Sext)
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is required to satisfy a set of quantum master equations being generated by
second order differential operators, ∆̄a(a = 1, 2) and ∆̄k (k = 0,±). The
algebra of these generating operators may be chosen such as to obey the or-
thosymplectic superalgebra osp(1, 2). Moreover, if also massive fields should
be considered – as is the case in the BPHZL renormalization scheme to cir-
cumvent possible infrared singularities occuring in the process of subtracting
ultraviolet divergences — without breaking the extended BRST symmetry,
then this algebra appears necessarily. The method applies to irreducible as
well as reducible, complete gauge theories with either open or closed gauge
algebra. However, for the sake of simplicity in this review we restrict to the
case of irreducible (or zero-stage) complete gauge theories.

We use the condensed notation introduced by DeWitt [2] and conventions
adopted in Ref. [3]. If not otherwise specified, derivatives with respect to
the antifields are the (usual) left ones and that with respect to the fields are
right ones (left derivatives with respect to the fields are labeled by L).

2. General gauge theories

In general gauge theories the classical action Scl(A), depending on gauge
and matter fields Ai with Grassmann parity ε(Ai) = εi, is invariant under
the gauge transformations Ai → Ai

ξ = exp(iξαΓα)ijA
j where ξα are the

parameters of gauge transformations and Γα(A) = −iRi
α(A)δ/δAi are the

gauge generators having Grassmann parities ε(ξα) = εα and ε(Ri
α) = εi+εα,

respectively. The Noether identities, being the first class constraints of the
classical action, are given by

Scl,i Ri(A) = 0 with Ri = Ri
αξα + T i, (1)

where the trivial generators T i = M ij(A)Scl,j contain arbitrary, graded
antisymmetric matrices M ij = −(−1)εiεjM ji. Herewith, we also introduced
the convention X,j = δX/δAj . Restricting to irreducible theories, we assume

the set of generators Ri
α(A) to be linearly independent and complete. The

(open) algebra of gauge generators has the general form [3,4]:

Ri
α,j Rj

β − (−1)εαεβRi
β ,j Rj

α = −Ri
γF γ

αβ − M ij
αβScl,j , (2)

where F γ
αβ and M ij

αβ , in general, are field-dependent structure functions being

graded antisymmetric with respect to (αβ) and (ij). The algebra is (off-

shell) closed if M ij
αβ = 0 and, in that case, it defines a Lie algebra if the

structure functions F γ
αβ are independent on A. In general, higher order

structure functions occure by taking into account also the Jacobi identity.
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In order to quantize these theories having orbits of gauge equivalent
configurations Ai

ξ an appropriate gauge condition Gα(A) = 0 is introduced.

Using the definition Gα,i R
i
β = Gαβ the theory is characterized by an effec-

tive action, depending also on the auxiliary field Bα, the ghost and antighost
field Cα and C̄α (later on unified as Cαa),

Seff(φ) = Scl(A) + BαGα(A) − C̄αGαβ(A)Cβ = Scl(A) + sΨ(φ), (3)

with the gauge fixing fermion Ψ(φ) = C̄αGα(A) and the nilpotent BRST–
operator s defined through the following BRST–transformations

sAi = Ri
α(A)Cα, sCα = −1

2Fα
βγ(A)CβCγ, (4)

sC̄α = Bα, sBα = 0. (5)

The first doublet contains the minimal set of fields, transforming nonlinear,
and the second one is its trivial extension. In addition, an antiBRST opera-
tor s̄ can be defined by exchanging Cα and C̄α. However, then the equations
corresponding to (5) are more complicated. The nilpotence of the BRST–
operator, s

2 = 0, completely encodes the gauge algebra and, together with
the first of Eqs. (4), it ensures the BRST–invariance of Seff(φ).

3. Batalin-Vilkovisky field–antifield approach

Let us now shortly review the Batalin-Vilkovisky(BV) field–antifield ap-
proach [4] of quantizing general gauge theories. There, the total configu-
ration space of fields φA = (Ai, Bα, Cαa), ε(φA) ≡ εA = (εi, εα, εα + 1) is
extended to the field–antifield “phase space” by introducing the antifields
φ∗

A = (A∗
i , B

∗
α, C∗

αa), ε(φ∗
A) = εA + 1, which are the sources of the BRST-

transforms sφA and behave trivially under BRST, i.e. sφ∗
A = 0. In terms of

the extended action, Sext(φ, φ∗) = Seff(φ) + φ∗
A(sφA), the BRST–symmetry

is expressed as sSext(φ, φ∗) ≡ (δSext/δφ
A)(δSext/δφ

∗
A) = 0.

This formalism allows for a more general setting. First, for any function-
als of φ, φ∗ the antibracket, a graded symplectic structure, is introduced:

(F,G) :=
δF

δφA

δG

δφ∗
A

− (−1)(ε(F )+1)(ε(G)+1) δG

δφA

δF

δφ∗
A

. (6)

It is graded antisymmetric and fulfills the graded Jacobi identity. Obviously,
the antibrackets with only either φA or φ∗

B vanish, but (φA, φ∗
B) = δA

B .
Now, the set of all classical actions S(φ, φ∗) is considered which satisfy

the following requirements: They are bosonic functionals having ghost num-
ber zero and fulfil the classical master equation (S, S) = 0 with the boundary
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condition S|φ∗=0 = Sinv(A). Also the antibracket encodes the whole alge-
braic structure of the theory because, for any functional X(φ, φ∗), it holds
sX := (X,S) with s

2X = ((X,S), S) = 0.
Then the following nilpotent second order operator (read off from (6))

∆ := (−1)εA
δL

δφA

δ

δφ∗
A

with ∆2 = 0 (7)

is introduced. The quantum actions, being given as power series in Planck’s
constant, are required to fulfil the following quantum master equation

∆ exp{ i
~
S} = 0 ⇐⇒ 1

2 (S, S) = i~∆S (8)

with the boundary condition S|φ∗=~=0 = Sinv(A). The set of quantum ac-
tions, being solutions of the (equivalent) equations (8), suffers from gauge
degeneracy. This degeneracy is resolved by choosing an admissible gauge fix-
ing fermionic functional Ψ(φ) and defining the gauge fixed, effective action
according to Seff(φ) = S(φ, φ∗ = δΨ/δφ), which also fulfills Eqs. (8).

The generating functional of Green’s functions is introduced by

Z(J, φ∗) =

∫

Dφ exp
{

i
~

(

S(φ, φ∗ + δΨ/δφ) + JAφA
)}

and the generating functional of 1PI–vertex functions Γ (φ, φ∗) is obtained
through the Legendre transformation Γ (φ, φ∗) = ~

i
ln Z(J, φ∗)−JAφA. Then,

through the first Eq. (8), the Slavnov-Taylor identities are obtained as

JAδZ/δφ∗ = 0 ⇐⇒ (Γ, Γ ) = 0. (9)

As is well known Eq. (9) is the starting point to prove renormalizabil-
ity, existence of solutions of the quantum master equation, gauge indepen-
dence of observables, unitarity of S–matrix etc. However, this formalism
appears to be in some sense incomplete as long as not also the antiBRST–
transformations, generated by s̄, are considered.

4. Osp(1,2)–covariant quantization

The BV–approach has been generalized by introducing additional anti-
fields as sources of s̄φA and ss̄φA thus leading to a Sp(2)–symmetric exten-
sion [3]: φ∗

Aa = (A∗
ia, B

∗
αa, C

∗
αab), ε(φ∗

Aa) = εA + 1 and φ̄A = (Āi, B̄α, C̄αa),
ε(φ̄A) = εA. a labels the fundamental doublets of (anti)BRST operators,
s = s

1, s̄ = s
2, as well as of ghost/antighost fields. Raising and low-

ering of Sp(2)–indices is obtained by the invariant antisymmetric tensor
εab, ε12 = 1, εacεcb = δa

b .
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In the Sp(2)–approach a doublet of graded symplectic structures (F,G)a

is introduced by replacing the antifields φ∗
A in Eq. (6) by φ∗

Aa, and a doublet
of (relative) nilpotent generating operators is defined through

∆̄a = ∆a+ i
~
V a with ∆a = (−1)εA

δL

δφA

δ

δφ∗
Aa

and V a = εabφ∗
Ab

δ

δφ̄A

. (10)

The relative nilpotency of the (anti)BRST–operators, {sa, sb} = 0, repeats
itself in the important relations {∆̄a, ∆̄b} = 0.

Now, the quantum actions are required to satisfy the master equations:

∆̄a exp{ i
~
S} = 0 ⇐⇒ 1

2 (S, S)a + V aS = i~∆aS, (11)

with the boundary condition S|φ∗
a=φ̄=~=0 = Sinv(A). The degeneracy of the

action S is removed by the help of a gauge-fixing bosonic functional F (φA),
and defining the extended action Sext according to

exp{ i
~
Sext} = exp{~

i
T̂ (F )} exp{ i

~
S} with T̂ (F ) = 1

2εab{∆̄
b, [∆̄a, F ]}.

This formalism, however, despite appearing manifest Sp(2)–symmetric
leads to solutions of the quantum master equations which also may be Sp(2)–
nonsymmetric. The reason for this can be traced back to the fact that the
general transformation properties of the solutions of (11) do not restrict F
to be a Sp(2)–scalar. Therefore, to ensure Sp(2)–symmetry the extended
quantum action has to be subjected to additional requirements. In addition,
the formalism may be generalized to contain also massive gauge (and ghost)
fields, which are necessary at least intermediatly in the BPHZL renormaliza-
tion procedure to avoid unwanted infrared singularities. Of course, then the
(anti)BRST transformations, and the operators ∆̄a, must be generalized to
include also mass terms, thus leading to an osp(1, 2)-symmetric formalism.

Let us now state the essential modifications of the Sp(2)–formalism to
obtain the osp(1, 2)–covariant quantization of irreducible complete gauge
theories with massive fields whose action Sm also depends on the mass m.
In addition to the m–extended quantum master equations (12) which ensure
(anti)BRST invariance, the action Sm is required to satisfy the generating
equations (13) of Sp(2)–invariance, too:

∆̄a
m exp{ i

~
Sm} = 0 with ∆̄a

m = ∆a + i
~
V a

m, (12)

∆̄k exp{ i
~
Sm} = 0 with ∆̄k = ∆k + i

~
Vk. (13)

∆̄a
m and ∆̄k are odd and even (second–order) differential operators, respec-

tively, whose linear parts V a
m and Vk depend and act only on the antifields.
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As long as m 6= 0 the operators ∆̄a
m are neither nilpotent nor do they

anticommute among themselves; instead, together with the operators ∆̄k

they generate a superalgebra isomorphic to osp(1, 2) [5]:

[∆̄k, ∆̄l] = i
~
ε j
kl ∆̄j, [∆̄k, ∆̄

a
m] = i

~
∆̄b

m(σk)
a

b , {∆̄a
m, ∆̄b

m} = − i
~
m2(σk)ab∆̄k.

(14)
the matrices σk (k = 0,+,−) generate the algebra sl(2, R), the even part
of osp(1, 2), being isomorphic to sp(2, R): σkσl = gkl + 1

2εkljσ
j, with the

metric g00 = 2g+− = 1, and εklj being the antisymmetric tensor, ε0+− = 1.

Raising and lowering of indices is obtained by εab and gkl, respectively.
From (14) it follows that, if and only if the action Sm is Sp(2)–invariant,

it can be (anti)BRST–invariant as well. Furthermore, in order to express
the algebra (14) by operator identities and to get nontrivial solutions of
the generating equations (12) and (13) one is enforced to enlarge the set of
antifields by additional sources, ηA = (Di ≡ 0, Eα, Fαa) with ε(ηA) = εA.
In a componentwise notation the operators V a

m, Vk and ∆a, ∆k are given by
(Eq. (10))

V a
m = εabA∗

ib

δ

δĀi

+ m2Āi
δ

δA∗
ia

+ εabB∗
αb

δ

δB̄α

+ (m2B̄α − Eα)
δ

δB∗
αa

+εabC∗
αbc

δ

δC̄αc

+ 2m2C̄αb
δ

δC∗
α{ab}

− Fαb
δ

δC∗
αab

+ m2εabC∗
α[bc]

δ

δFαc
,

Vk = A∗
ia(σk)

a
b

δ

δA∗
ib

+ B∗
αa(σk)

a
b

δ

δB∗
αb

+ C̄αa(σk)
a
b

δ

δC̄αb

+(C∗
αac(σk)

a
b + C∗

αba(σk)
a
c)

δ

δC∗
αbc

+ Fαa(σk)
a
b

δ

δFαb

and

∆a = (−1)εi
δL

δAi

δ

δA∗
ia

+ (−1)εα
δL

δBα

δ

δB∗
αa

+ (−1)εα+1 δL

δCαb

δ

δC∗
αab

,

∆k = (−1)εα+1(σk)
b

a

δL

δCαb

δ

δFαa
.

In order to set up the gauge fixing the m–extended gauge fixed quantum
action, Sm,ext = Sm,ext(φ

A, φ∗
Aa, φ̄A, ηA), will be introduced according to

exp{ i
~
Sm,ext} = exp{−i~T̂m(F )} exp{ i

~
Sm}, (15)

T̂m(F ) = 1
2εab{∆̄

b
m, [∆̄a

m, F ]} + (i/~)2m2F.

The gauge fixed action Sm,ext satisfies Eqs. (12) and (13) as well, and the
Ward identities related to osp(1, 2)–symmetry are given by

1
2(Γm, Γm)a + V a

mΓm = 0, 1
2{Γm, Γm}k + VkΓm = 0. (16)



osp(1, 2)–Covariant Lagrangian Quantization of... 2643

Here, a new even graded bracket is defined through {F,G}k := ∆k(FG) −
(∆kF )G − F (∆kG). It corresponds to the algebraic definition of the an-
tibracket (F,G)a := (−1)ε(F )(∆a(FG) − (∆aF )G) − F (∆aG). For Yang-
Mills theories Eqs. (16) are the Slavnov-Taylor identities of (anti)BRST–
symmetry and, for k = ±, the Delduc-Sorella identities of Sp(2)-symmetry
[6]. For k = 0 the ghost number conservation is obtained.

5. Massive theories with a closed algebra

To illustrate the formalism of the osp(1, 2)-quantization we consider irre-
ducible massive gauge theories where, for the sake of simplicity, we assume
that Ai are bosonic fields. The closed gauge algebra is characterized by
Eq. (2) with M ij = 0. Furthermore, for field-dependent structure constants,
the Jacobi identity looks F δ

ηαF η
βγ − Ri

αF δ
βγ ,i +cyclic(α, β, γ) = 0. Addition-

ally, we restrict ourselves to consider only solutions of Eqs. (12), (13) being
linear in the antifields; they uniquely may be cast into the form

Sm = Scl(A) + (1
2εabs

b
ms

a
m + m2)φ̄AφA. (17)

The (linear) realization of the (anti)BRST– and the Sp(2)–operators s
a
m

and dk must satisfy the following osp(1, 2)–algebra, derived from Eqs. (14):

[dk,dl] = ε j
kl dj , [dk, s

a
m] = s

b
m(σk)

a
b , {sa

m, sb
m} = −m2(σk)ab

dk. (18)

The (anti)BRST–transformations in Eq. (17) for this setting are realized by

s
a
mAi = Ri

αCαa, s
a
mCαb = εabBα − 1

2Fα
βγCβaCγb (19)

s
a
mBα = −m2Cαa + 1

2Fα
βγBβCγa + 1

12εcd(F
α
ηβF η

γδ + 2Ri
βFα

γδ ,i )C
γaCδcCβd,

s
a
mĀi = εabA∗

ib, s
a
mA∗

ib = m2δa
b Āi, s

a
mB̄α = εabB∗

αb, s
a
mB∗

αb = m2δa
b B̄α,

s
a
mC̄αc = εabC∗

αbc, s
a
mC∗

αbc = m2C̄α{bδ
a
c} − δa

b Fαc, s
a
mFαc = m2εabC∗

α[bc].

For the particular case m = 0 these transformations were already obtained
earlier [7]. The action of the operators dα is obtained through the anti-
commutation relations of Eqs. (18). Let us stress that satisfying the algebra
(18) as operator identities is a stronger restriction than solving it only weakly
by means of symmetry transformations as (19). The latter can be realized
without the introduction of Fαc, namely by choosing C∗

αab = C∗
αba. This has

been assumed in [8], where the Curci-Ferrari model in the Delbourgo-Jarvis
gauge has been considered.

Substituting the expressions (19) and those following for 1
2εabs

b
ms

a
m into

Sm = Scl + A∗
ia(s

a
mAi) + B∗

αa(s
a
mBα) − C∗

αac(s
a
mCαc) + (Fαc −

m2

2 C̄αc)C
αc

+Āi(
1
2εabs

b
ms

a
mAi) + B̄α(1

2εabs
b
ms

a
mBα) + C̄αc(

1
2εabs

b
ms

a
mCαc) (20)



2644 B. Geyer, P.M. Lavrov, D. Mülsch

specifies the theory completely. Thereby, Fαc is the only nonvanishing com-
ponent of ηA (irreducible theories allow the choice Eα = 0). A direct verifi-
cation shows that the resulting action Sm satisfies Eqs. (12), (13) identically.

However, we must emphasize that, we ignored the important question
whether the action (17) is the most general solution of Eqs. (12), (13), being
especially stable against small perturbations. Here, unfortunately this is
not the case, because the fields φA and the antifields φ̄A have the same
quantum numbers and hence mix under renormalization. Therefore, in order
to ensure the required stability the action (17) must be enlarged to depend
also nonlinearly on the antifields. However, the corresponding altered action
cannot be expressed in such a simple form as Eq. (17) (see Ref. [8, 9]).

6. Concluding remarks

We introduced a generalization of the Sp(2)–covariant approach to the
osp(1, 2)–covariant quantization for the case of irreducible general gauge
theories. It has been extended also to the case of reducible theories (see
[1]). The BPHZL renormalization of infrared singularities can be carried
out without breaking the extended master equations (12). Unfortunately,
the mass–dependence of the gauge and (anti)ghost fields leads to a soft
breaking of gauge–independence and possibly also to non-unitarity of the
S–matrix. Of course, in the limit m → 0 gauge–independence and unitarity
of S–matrix is restored. An open problem is the general proof, analogous
to [3], of existence theorems, i.e. absence of anomalies of the theory. An
extension of that formalism to include also background fields is possible.
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