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cations compared to theories with simple groups.
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1. Introduction

The Standard Model (SM) of electroweak interactions has been tested to
high accuracy with the precision experiments at the Z-resonance at LEP [1].
With these experiments the SM in its perturbative formulation has been
tested also beyond the tree approximation. For this reason an extensive cal-
culation of 1-loop processes and also 2-loop processes has been carried out in
the past years (see [2] for a review and references therein) and compared to
the experimental results. A careful analysis shows that the theoretical pre-
dictions and the experiments are in excellent agreement with each other [3].
A necessary prerequisite for carrying out precision tests of the SM is the
consistent mathematical and physical formulation in the framework of its
perturbative construction. Due to the fact that parity is broken by weak
interactions, higher orders in quantum field theory cannot be treated by re-
ferring to an invariant regularization scheme. In Ref. [4] we have carried out
the renormalization of the electroweak SM to all orders by applying the alge-
braic method. It allows to prove renormalizability in a scheme-independent
way just by using general properties of renormalized perturbation theory
(see [5] for a review to the algebraic method). The algebraic method has
been first applied to gauge theories with simple or semisimple groups [6],
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later on it has been extended to gauge theories with non-semisimple groups
with several U(1)-factors [7]. The results obtained therein are only partially
applicable to the SM due to the fact, that all particles are assumed to be
massive, but it gives a complete discussion of anomalies in gauge theories
with non-semisimple groups.

In the Section 2 of the paper we outline the procedure of algebraic
renormalization and present the basic ingredients of the method, scheme
dependence of counterterms and the quantum action principle. In Section 3
we discuss the characterization of invariant counterterms to the SM Green
functions. There we direct our attention to three important results: The
construction of the abelian Ward identity, the definition of symmetry op-
erators in the on-shell schemes and consequences of rigid symmetry in the
gauge-fixing and ghost sector of the action.

2. The algebraic method of renormalization

Starting point for the construction is the BRS-symmetric classical action
of the electroweak SM. (We do not include strong interactions in the present
analysis, but assume the quarks to be color vectors of global SU(3).) It con-
sists of the SU(2)×U(1)-gauge invariant action ΓGSW and the BRS-invariant
gauge-fixing Γg.f. and ghost action Γghost.

Γcl = ΓGSW + Γg.f. + Γghost with sΓcl = 0 . (1)

Here s denotes the nilpotent BRS-transformations (s2 = 0). The Glashow–
Salam–Weinberg action ΓGSW includes the massive gauge bosons of weak
interactions, W±, Z, and the massless photon Aµ, the leptons e, νL

e , the
quarks u, d, the physical Higgs H and the unphysical scalar bosons φ± and χ.
Masses of gauge bosons, fermions and the Higgs are generated by sponta-
neous breaking of gauge symmetry to the electromagnetic subgroup. We do
not consider mixing of different fermion families and assume CP-invariance
throughout. Free parameters of the model are the masses and one coupling
constant, which in the QED-like parametrization is chosen to be the elec-
tromagnetic coupling. For ensuring renormalizability and off-shell infrared
existence by power counting we choose the restricted linear Rξ gauge in the
tree approximation. It contains two gauge parameters ξ and ζ and turns out
to be compatible with rigid symmetry:

Γg.f. =
∫

d4x( ξ
2BaĨabBb + BaĨabFb) , (2)

F± ≡ ∂µW µ
± ∓ iMW ζφ±, FZ ≡ ∂µZµ − MZζχ, FA ≡ ∂µAµ.

The gauge fixing action breaks gauge invariance. Introducing the Faddeev–
Popov ghosts ca and the corresponding antighosts c̄a, a = +,−, Z,A, the
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gauge-fixing action is complemented by the ghost action in such a way that
the complete action is BRS-invariant.

In perturbation theory the Green functions are formally defined from
the classical action by the Gell-Mann–Low formula and by Wick’s theorem
or equivalently by the Feynman diagrams and Feynman rules. (Feynman
rules of the SM are given in several publications, see e.g. [8].) The loop
corrections to Green functions are plagued with divergencies, which have to
be consistently removed in the procedure of renormalization. Then one has
to prove that the symmetries of the tree approximation can be established
in the course of renormalization and that these symmetries uniquely fix the
Green functions, if one imposes a finite number of normalization conditions.

For renormalization only the 1PI Green functions are relevant, which are
summarized in the functional of 1PI Green functions Γ . The lowest order
of Γ is the classical action, Γ = Γcl + O(~). For proceeding to higher orders
the symmetry transformations have to be rewritten into functional form.
The functional form of BRS-symmetry is the Slavnov–Taylor (ST) identity.

By introducing an external scalar doublet Φ̂ we are able to maintain rigid
SU(2)-symmetry and spontaneously broken U(1)-gauge symmetry for the
special choice of gauge parameters (2) and to establish the respective Ward
identities:

S(Γcl) = 0 , WαΓcl = 0, α = +,−, 3
( e

cos θW
w

Q
4 − sin θW

δ

δZµ
− cos θW

δ

δAµ

)

Γcl = 2(sin θW BZ + cos θW BA) .

(3)
The local Ward identity is crucial for the unique construction of higher
orders. The symmetry operators depend explicitly on the free parameters of
the theory. With the gauge choice (2) they depend on the mass ratio MW

MZ
in

the tree approximation [4]. We now assume that we have already calculated
the 1-loop order in a specific scheme of renormalization and denote the finite
Green functions by ΓR. Regardless of special properties of the scheme we can
apply the action principle in its quantized version to the Green functions [9],
in order to get information of the possible breakings at 1-loop order. Applied
to the symmetries of the tree approximation it tells that in the 1-loop order
the symmetries are at most broken by local field polynomials with a definite
UV and IR degree of power counting. Taking the most important example,
the ST identity, it reads

S(ΓR)(≤1) = ∆
(1)
brs; dimUV∆

(1)
brs ≤ 4, dimIR∆

(1)
brs ≥ 3. (4)

The breakings include in a first step all local field polynomials compati-
ble with the UV and IR dimension. They are restricted if one takes into
account that the renormalization schemes do not break global symmetries
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such as charge conservation, and discrete symmetries such as CP-invariance.

For example ∆
(1)
brs has Faddeev–Popov charge 1, is neutral with respect to

electromagnetic charge and is even with respect to CP-transformations.
In the next step we have to prove that the breakings of the ST identity

can be absorbed into counterterms to the classical action: For doing this
one has to note that Green functions, when they are computed in a specific
scheme, are only defined up to local counterterms. These counterterms are
restricted by the global symmetries and the discrete symmetries of the SM.
In order to maintain the properties of power counting renormalizability their
UV and IR degree has to agree with the one of the classical action

Γ (≤1) = ΓR(≤1)
+ Γ

(1)
ct with dimUV Γ

(1)
ct ≤ 4, dimIR Γ

(1)
ct ≥ 4 . (5)

Combining both the quantum action principle (4) and the scheme de-
pendence of counterterms (5) we get

S(Γ ) = S(ΓR + Γ
(1)
ct ) + O(~2) = ∆

(1)
brs + sΓcl

Γ
(1)
ct + O(~2) , (6)

and a similar expression for rigid Ward identities. Eventually we have to
prove that breakings of the ST identity can be written as sΓcl

-variations of
counterterms to the classical action, i.e.

∆
(1)
brs

!
= −sΓcl

Γ
(1)
ct . (7)

Up to this point we did only use properties of renormalized perturbation
theory. Finally one has to characterize both the counterterms and the break-
ings in terms of the symmetries: First, counterterms have to be decomposed
into invariant and non-invariant counterterms

Γct = Γinv + Γbreak with sΓcl
Γinv = 0 . (8)

The coefficients of invariants are not determined by the symmetries but have
to be fixed by normalization conditions. Second, one restricts the breakings
by using algebraic properties of the symmetry operators, as e.g. nilpotency
of the ST operator:

sΓ S(Γ ) = 0 and sΓ sΓ = 0 if S(Γ ) = 0 . (9)

Applying the sΓcl
-operator to Eq. (6) one obtains from (9) that ∆

(1)
brs is sΓcl

-
invariant

sΓcl
∆

(1)
brs = 0 . (10)

∆
(1)
brs is invariant under the sΓcl

-transformation whenever it is a variation
of the counterterms, i.e. if Eq. (7) is fulfilled. If there is only one field
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polynomial which is sΓcl
-invariant, but not a variation of counterterms, one

has an anomaly, and symmetries cannot be established by adjusting counter-
terms. In this way one has achieved an algebraic characterization of scheme
dependent breakings and anomalies. The proof to all orders proceeds by
induction, passing through the same steps as above from order n to n + 1.

In the SM the algebraic characterization of breakings can be proven to
be the same as in the symmetric SU(2)×U(1) theory and does not depend
on the specific form of spontaneous symmetry breaking. In [7] it has been
shown that there are only the well-known Adler–Bardeen anomalies. Their
coefficients vanish in the SM, if we include lepton and colored quark dou-
blets. The difficult and indeed specific part is the classification of invariant
counterterms and of appropriate normalization conditions. Here mixing ef-
fects between neutral massless/massive fields have to be carefully analysed
from the point of view of off-shell infrared existence. In the next section we
present three important results of this analysis.

3. Invariant counterterms and normalization conditions

Invariant counterterms are determined if one solves the ST identity and
the Ward identities for the most general action compatible with power count-
ing renormalizability:

S(Γ gen
cl ) = 0 WαΓ gen

cl = 0 dimUV Γ gen
cl ≤ 4. (11)

In the SM one finds as solution an action, which contains in addition to
the free parameters of the tree approximation two further undetermined
couplings in each fermion family. They are couplings of abelian currents
to the abelian component of vector fields and are not determined by the
ST identity, but have to be fixed by a local gauge Ward identity. (In [10]
these couplings are fixed by an antighost equation. From there the local
Ward identity is defined by using the consistency with the ST identity.) In
the SM classically we have three types of abelian currents, the currents of
lepton and quark family number conservation, jµ

l and jµ
q , and the sum of

the electromagnetic and neutral current of weak interactions. Being more
specific we find as a special solution of Eq. (11)

Γ ′
cl = Γcl +

∫

d4x(glj
µ
l + gqj

µ
q )(sin θW Zµ + cos θW Aµ) , (12)

where Γcl is the classical action (1). In order to identify the action (1)
as solution of symmetry identities, one has to impose the local U(1)-Ward
identity as given in (3). The abelian local Ward operator is to all orders
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fixed to be the sum of the non-integrated neutral SU(2) Ward operator and
of the electromagnetic charge operator

w
Q
4 ≡ wem − w3 with

[

w
Q
4 ,Wα

]

= 0 (13)

In fact the local abelian Ward identity (3) with the abelian operator (13) is
the functional generalization of the classical Gell-Mann–Nishijima relation.
We want to point out that the abelian Ward identity has to be characterized
to be abelian by its commutation relations with Ward operators of rigid
SU(2)-symmetry. For this reason it is crucial to establish rigid symmetry in
addition to the ST identity.

We did already mention that the symmetry operators depend explicitly
on the mass ratio MW /MZ in the tree approximation. Solving Eq. (11) by
inserting the tree operators we are not able to fix all mass parameters by
normalization conditions and especially we are not able to diagonalize the
mass matrix of neutral vector bosons on-shell at the same time:

Re ΓW+W−

∣

∣

∣

p2=M2
W

= 0, Re ΓZZ

∣

∣

∣

p2=M2
Z

= 0, ΓAA

∣

∣

∣

p2=0
= 0,

Re ΓZA

∣

∣

∣

p2=M2
Z

= 0, ΓZA

∣

∣

∣

p2=0
= 0. (14)

Mass diagonalization at p2 = 0 is crucial for obtaining infrared finite expres-
sion for off-shell Green functions and are implemented in the BPHZL scheme
by the IR power counting. In order to fulfill the normalization conditions
(14) one has to introduce a non-diagonal wave-function renormalization for
the neutral vector bosons. If we carry out such field redefinitions also in
the symmetry operators, the symmetry operators are renormalized and get
higher order corrections,

S(Γ ) → (S + δS)(Γ ) , WαΓ → (Wα + δWα)Γ . (15)

These corrections are in agreement with the algebra. For this reason one
cannot fix the symmetry operators to their tree form but one has to take
the most general ones compatible with the algebraic properties of the tree
approximation (see (9)), when one solves eqs. (11). Then one has indeed
the same number of free parameters as normalization conditions even in the
complete on-shell scheme.

Requiring rigid symmetry has important restrictions on the gauge fix-
ing. As we have already mentioned the choice (2) is covariant under rigid
SU(2)×U(1)-transformations and can be constructed as being invariant un-

der rigid transformation by introducing the external scalar field Φ̂. In this
special gauge the ghost mass ratio is equivalent to the vector mass ratio,

Mghost
W /Mghost

Z = MW /MZ + O(~), (16)
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but it turns out to be differently renormalized from the vector mass ratio
in higher orders. For this reason we have to introduce the ghost mass ratio
as an independent parameter of the model. However, if one takes arbitrary
gauge parameters ζW and ζZ in the in the gauge-fixing functions F± and
FZ without changing FA (2), one breaks rigid symmetry by the gauge fixing
and cannot derive Ward identities of rigid and local U(1) symmetry. Con-
sequently we loose the control about the gauged abelian currents in higher
orders, namely we are not able to identify the electromagnetic current by
means of a local Ward identity. Taking for the gauge fixing

F± ≡ ∂µW µ
± ∓ iMW ζW φ±, FZ ≡ ∂µZµ − MZζZχ,

FA ≡ ∂µAµ − ζZMZ
cos θW

sin θW
(1 −

ζW

ζZ
)χ , (17)

the gauge fixing is compatible with rigid symmetry and allows at the same
time to treat the ghost mass ratio as an independent parameter of the theory.
In order to avoid non-diagonal ghost mass terms BRS-transformations have
to be generalized to sc̄a = ĝabBb and ĝ differs from the unit matrix by

ĝZZ = cos(θG − θW )
ĝAZ = sin(θG − θW )

cos θW = MW

MZ

cos θG

cos(θW −θG) = ζW MW

ζZMZ
.

(18)

With this modification the ghost mass matrix is diagonal, and can be achieved
to be diagonal on-shell in higher orders by adjusting the free parameters in
the matrix ĝab. Then also the Faddeev–Popov part is free from off-shell
infrared divergencies. Contrary to simple gauge groups we have introduced
not only independent wave function renormalizations for ghosts and vectors,
but have also an independent wave function renormalization for antighosts.
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