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REDUCTION OF FEYNMAN GRAPH AMPLITUDES

TO A MINIMAL SET OF BASIC INTEGRALS∗
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An algorithm for the reduction of Feynman integrals with any number
of loops and external momenta to a minimal set of basic integrals is pro-
posed. The method is based on the new algorithms for evaluating tensor
integrals, representation of generalized recurrence relations for a given kind
of integrals as a linear system of PDEs and the reduction of this system
to a standard form. Basic integrals reveal as parametric derivatives of the
system in the standard form and the number of basic integrals in the mini-
mal set is determined by the dimension of the solution space of the system
of PDEs.

PACS numbers: 11.10.Gh, 11.10.Ef

1. Introduction

Mass effects play an important role in confronting experimental data
obtained at the high-energy colliders, like LEP and SLC, with theoreti-
cal predictions. Precise determinations of many physical parameters in the
Standard Model (SM) require the evaluation of mass dependent radiative
corrections.

In the SM, due to the complicated structure of integrals and the large
number of diagrams (typically thousands), no complete calculation even two-
loop self-energy has been carried out. Many different species of particles with
different masses have to be taken into account and this makes the evaluation
of multi-loop integrals a rather difficult problem. Existing numerical meth-
ods for evaluating Feynman diagrams cannot guarantee required accuracy
for the sum of thousands of diagrams and therefore of the development of
analytical or semi-analytical methods are of great importance.
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In calculating Feynman diagrams mainly three difficulties arise: tensor
decomposition of integrals, reduction of scalar integrals to several basic in-
tegrals and the evaluation of scalar basic integrals.

For the reduction of scalar integrals to a minimal set of integrals recur-
rence relations are the most suitable tool. Up to now all attempts to extend
the standard method of integration by parts [4] to multi-loop diagrams with
arbitrary external momenta in the case when all the masses are different
were unsuccessful. The first successful algorithm for the reduction of two-
loop massive propagator integrals to a minimal set of integrals [5] was based
on generalized recurrence relations proposed in Ref. [1].

Using the method described in [1] it is easy to write an enormous number
of generalized recurrence relations for any kind of integrals. Not all recur-
rence relations are independent and therefore a prescription for determining
an optimal set of recurrence relations is highly desirable. Another closely
related and important problem is the determination of the minimal set of
basic integrals.

In the present paper we propose an approach which in principle solves
the problems mentioned before completely. We formulate an algorithm for
transforming tensor integrals into a combination of scalar ones. We show
how to reduce systems of generalized recurrence relations to a linear system
of PDEs. The algebraic analysis of linear systems of PDEs is an intensely
developing branch of contempory mathematics and many existing algorithms
in this field can be used for our purposes. The reduction of linear systems
of PDEs to an involutive or standard form solves the problem of finding the
optimal set of recurrence relations and a minimal set of basic integrals.

The paper is organized as follows. In Section 2 a method for the rep-
resentation of tensor integrals and integrals with irreducible numerators in
terms of scalar ones with shifted space-time dimension d is shortly described.
In Section 3 we describe the method of generalized recurrence relations. In
Section 4 we show how to transform the system of generalized recurrence re-
lations into a linear system of PDEs. In Section 5 we describe main features
of the Standard Form algorithm by G. Reid and explain the correspondence
between the standard form of the linear system of PDEs and our recurrence
relations.

2. Evaluation of multi-loop tensor integrals

For the evaluation of L loop Feynman graph amplitudes one needs to
calculate the integrals

G(d)({qiqk}, {m
2
s}) =

L
∏
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∫

ddki

N
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P
νj
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. . . kLλs , (1)
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where

P
j
k,m =

1

(k2 − m2 + iǫ)j
, k

µ
j =

L
∑

n=1

ωjnkµ
n +

E
∑

m=1

ηjmqµ
m, (2)

qm are external momenta, N is the number of lines, E is the number of
external legs, ω and η are matrices of incidences of the graph with the
matrix elements being ±1 or 0.

The traditional way to evaluate tensor integral consists of the following
steps:

• write for the integral the most general tensor as a polynomial made of
monomials in external momenta and metric tensor gµν

• multiply this tensor by appropriate tensor monomials and obtain a
linear system of equations

• solve the system of algebraic equations

One-loop tensor integrals can always be reduced to a combination of scalar
integrals without scalar products in the numerator. Evaluating multi-loop
integrals one encounters so-called irreducible numerators, i.e. scalar products
which cannot be expressed in terms of scalar factors in the denominator.
The solution of this problem for multi-loop integrals as well as evaluation
of multi-loop tensor integrals was proposed in [1]. The main idea of this
method consists in the representation of tensor integrals in terms of scalar
ones with shifted space-time dimension d. For tensor integral with any
number of loops, internal lines and external momenta the following formula
was proposed:

L
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= Tµ1...λL
({qi}, {∂j},d

+)
L
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N
∏

j=1

P
νj

kj ,mj
, (3)

where Tµ1...λL
is a polynomial type tensor operator and

∂j ≡
∂

∂m2
j

, d
+G(d) = G(d+2) . (4)

The main ingredients of the derivation of the operator T are independent
auxiliary vectors ai(i = 1, . . . , L) and the use of the α- parametric represen-
tation. The tensor structure of the integrand on the left-hand side of (3)
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can be written as

k1µ1 . . . kLλs =
1

in1+...+nL

∂

∂a1µ1

. . .
∂

∂aLλs

exp [i(a1k1 + . . . + aLkL)]

∣

∣

∣

∣

ai=0

.

(5)
To convert the integral

G(d) =

L
∏

i=1

∫

ddki

N
∏

j=1

P
νj

kj ,mj
exp i[a1k1 + . . . + aLkL], (6)

into the α-representation we first transform all propagators into a parametric
form

1

(k2 − m2 + iǫ)ν
=

i−ν

Γ (ν)

∞
∫

0

dα αν−1 exp
[

iα(k2 − m2 + iǫ)
]

. (7)

Using the d-dimensional Gaussian integration formula

∫

ddk exp
[
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]

= i
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d
2
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, (8)

we evaluate integrals over loop momenta and obtain

G(d) = iL
(π
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)Ld/2
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, (9)

where D and Q are polynomials in α, a and qiqj . Differentiating (9) with
respect to aj we get by simple identifications the operator T :

T ({q}, {∂},d+) =
e−iQ({{q},α,{0})ρ

in1+...+nN
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∣

∣

∣
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π )Ld

+

. (10)

For any particular tensor integral operator T can be constructed by using
computer algebra languages. To generate T for 2-3 loop tensor integrals of
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rank 3-4 with the help of a short package written in FORM several minutes
on a PC Pentium 90 are needed. To our opinion the evaluation of tensor
integrals by the proposed method has several advantages in comparison with
the traditional method. Firstly, in order to obtain tensor decomposition of
the integral no contractions with external momenta and the metric tensor
and no solution of a linear system of equations are needed. Secondly, it is
easy to select the scalar coefficient of the particular tensor structure. Thirdly,
a representation in terms of integrals with shifted d is very compact and may
be useful for numerical calculations.

To obtain the final result scalar integrals with different indices and dif-
ferent shifts in d are to be evaluated. This problem can be solved using the
method of generalized recurrence relations as proposed in [1].

3. Generalized recurrence relations

In order to obtain recurrence relation for integrals we use an identity:

L
∏

i=1

∫

ddki
∂

∂krµ







R{µ} ({k}, {q})

N
∏

j=1

P
νj

kj ,mj







≡ 0, (11)

where R is an arbitrary tensor polynomial. After performing the differenti-
ation two different representation for scalar products can be used:

(a) kiqj =
1

2
(k2

i + q2
j − (ki − qj)

2) ,

(b) qjµ

∫
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P
νj
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∫

ddki

N
∏

j=1

P
νj

kj ,mj
.

(12)

By using all possible combinations of these representations we produce
many relations connecting integrals with changed exponents of scalar propa-
gators and changed values of the space-time dimension. For the same scalar
product both (a) and b) can be used. Combining the different relations one
can try to find the most optimal set of relations for the reduction of the
concrete class of integrals to the minimal set of basic integrals.

In fact, in the traditional method of integration by parts only represen-
tation (a) for scalar products is used. Our derivation is more general and
it includes integration by parts method [4] as a particular case. Recurrence
relations connecting integrals with shifted d cannot be obtained from the
traditional method of integration by parts.
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To illustrate the difference we consider the one-loop propagator type
integral with massive particles:

I(d)
ν1ν2

=

∫

ddk1

[iπd/2]
P ν1

k1,0P
ν2
k1−q,m. (13)

From the traditional method of integration by parts two relations can be
derived:

2ν2m
2I
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(d)
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(14)

The integral I
(d)
ν1ν2(q

2, 0,m2) is proportional to the Gauss hypergeometric
function [6]:

I(d)
ν1ν2

(q2, 0,m2) = (−1)ν1+ν2
Γ (ν1 + ν2 −

d
2)Γ (d

2 − ν1)

(m2)ν1+ν2−
d
2 Γ (d

2)Γ (ν2)

× 2F1

[

ν1, ν1 + ν2 −
d
2 ;

d
2 ;

q2

m2

]

. (15)

As is well known there are fifteen relations of Gauss between contiguous
functions 2F1. Substituting (15) into (14) one can find correspondence be-
tween the recurrence relations (14) and only six relations of Gauss. The
reason is obvious — in the (14) relations the third parameter of 2F1 in
(15) does not change and therefore all corresponding relations for contigu-
ous functions cannot be reproduced. If we include into consideration also
generalized recurrence relations we cover all fifteen relations.

Usually the number of generalized recurrence relations for a given kind
of integrals is quite substantial. For their effective applications we must find
answers to the following questions:

• How can one use the generalized recurrence relations?

• How to find the minimal set of recurrence relations?

• How to find the minimal set of basic integrals or how to determine the
number of basic integrals?

We propose to solve these problems by transforming the system of general-
ized recurrence relations into an (in general overdetermined) system of linear
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partial differential equations (PDE) and we apply algebraic methods being
developed by mathematicians for their analysis. Several algorithms and dif-
ferent computer algebra packages for the analysis of linear systems of PDE
exist. In our opinion the most adequate will be the algorithm “Standard
Form” by Reid [2, 3, 7].

4. Transformation of generalized recurrence relations into a

system of l inear PDEs

The system of generalized recurrence relations can be transformed into
a linear system of PDEs by several methods. Two procedures turns out to
be most convenient.

In the first approach recurrence relations for integrals with arbitrary
powers of propagator indices- νj are considered. If a term with νi −1 occurs
in the recurrence relation then one should make the substitution

νi → νi + 1.

Propagators with ’shifted’ indices are represented as:

1

[(ki − qs)2 − m2
l ]

νl+r
=

Γ (νl)

Γ (νl + r)

∂r

∂m2r
l

1

[(ki − qs)2 − m2
l ]

νl
. (16)

Integrals Id with different shifts of the parameter of the space-time dimension
d must be considered as different functions, i.e.:

Id = V 1, Id+2 = V 2, Id+4 = V 3, . . . (17)

These substitutions allow one to transform the system of recurrence relations
into a linear system of PDEs for the vector function V ≡ {V 1, V 2, . . .}.

In the second approach one considers a system of recurrence relations
for integrals with particular integer values of νi > 0. First, one should

derive recurrence relations for the given integral I
(d)
ν1...νN with arbitrary ν’s.

From relations obtained, one needs to derive recurrence relations for the
particular sets of integer values of νi > 0 by increasing the sum of indices
S = N,N + 1, N + 2, ... (S =

∑N
i=1 νi). In this case the system of linear

PDEs will include integrals corresponding to graphs with a different number
of lines. These integrals are to be considered as different functions. As in
the previous case scalar propagators with νi > 1 must be represented as

1

[(ki − qs)2 − m2
l ]

r+1
=

1

Γ (r + 1)

∂r

∂m2r
l

1

[(ki − qs)2 − m2
l ]

, (18)

and integrals with shifts in d must be considered as different functions.
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As was mentioned before the system of linear PDEs for a given integral
will include the original as well as simpler integrals obtained by contracting
lines in the original one. For integrals with contracted lines one should
also write the system of equations. For all these integrals one can consider
different sets of ν’s which can be classified according to the value of S.

The analysis with help of Standard Form should be started with the sys-
tem for the simplest non-zero integrals obtained from the original integral by
contracting as much lines as possible. Applying Standard Form algorithms
the minimal set of recurrence relations (leading derivatives) and minimal
set of basic integrals (parametric derivatives) for the simplest integral will
be found. This information will be used to investigate more complicated
integrals having more lines. Using the terminology of [7] integrals with con-
tracted lines can be treated as classification functions.

The second approach to our opinion is more suitable for considering
integrals occurring in calculating Feynman diagrams. In the first approach
with arbitrary non-integer indices one can expect more integrals in the basic
set.

5. Algorithm Standard Form

As we already mentioned the algorithm Standard Form (SF) was pro-
posed by Reid in [2, 3] and was implemented as Maple package in [7]. In
this section a short review of the SF algorithm will be given. More detailed
information can be found in [2, 3, 7].

In order to compare different differential equations and different terms
in a differential equation one should introduce total ordering which will be
denoted as >s. The concept of total ordering is very important.

Let us introduce several sandstorm:

a = (a1, . . . , am),

DaV
p =

∂a1+...+am

∂xa1
1 . . . ∂xam

m

ord(a) = a1 + . . . am ≥ 0, order of the derivative (19)

We say that DaV
p >s DbV

q if

(i) ord(a) > ord(b)
or(ii) ord(a) = ord(b), and p < q,

or(iii) ord(a) = ord(b), p = q and a >lex b,

where the lexicographical ordering >lex is defined by a >lex b iff the first
nonzero ak − bk > 0. This is Tresse ordering [8]. Other orderings can be
used in the SF package.
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For the reduction of Feynman diagrams to the minimal set of basis inte-
grals we will use the ordering:

(i) p > q

or(ii) p = q and ord(a) > ord(b),
or(iii) ord(a) = ord(b), p=q and a >lex b.

This ordering allows one to exclude all functions with shifts in d from
the minimal set of differential equations.

Input for the SF algorithm may be any linear system of PDEs for the
vector function V = {V 1, ..., V p} depending on m independent variables
x1, ..., xm. In our case V q will be scalar integral, the same integral with
different shifts in d and integrals obtainable from the given integral by con-
tracting lines. As independent variables x1, ..., xm one can take masses or
their ratios. We assume that all lines of the diagram have different masses.

The main result of the application of the SF algorithm will be a set of
leading derivatives

DbV
p = f

p
b , (20)

where f
p
b are explicitly given functions of xi and derivatives of V q such that

(i) the derivative on the l.h.s. of (20) is strictly higher in ordering >s than
any derivative on the r.h.s. of (20)

(ii) no derivative appears on both the l.h.s. and r.h.s. of (20)

(iii) the derivatives on the l.h.s. and r.h.s. of (20) are all distinct

(iv) no derivative in (20) is a nontrivial derivative of any derivative in the
l.h.s. of (20).

(v) the integrability conditions of (20) are identically satisfied modulo all
lexicographic substitutions which follow from (20).

To clarify the last statement we remind the reader the definition of in-
tegrability (consistency) conditions. For any distinct pair of equations

DaV
p = fp

a , DbV
p = f

p
b , (21)

and for any c = (ck) ∈ Nm, ck ≥ max{ak, bk} the consistency conditions
are:

DcV
p − DcV

p = Dc−af
p
a − Dc−bf

p
b = 0. (22)

The standard form of a linear system of PDEs is achieved by repeating
the following process until all conditions of the standard form are satisfied:

(i) isolate, and solve for, the highest order (leading) derivatives of each
equation
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(ii) substitute back from (i) throughout the rest of the system

(iii) append new equations resulting from the integrability conditions.

The output of the Standard Form algorithm (20) can be identified with
our recurrence relations as follows:

• the set of equations for leading derivatives corresponds to a minimal
set of recurrence relations

• parametric derivatives are our basic integrals

• the dimension of the solution space of a system is equal to the number
of different parametric derivatives in the r.h.s. of (20).

Higher order derivatives (integrals corresponding to scalar diagrams with
dots on lines and/or shifts in d) can be obtained by differentiating the set
of leading derivatives (20). In the Standard Form package [7]) there is a
special subroutine for reducing higher derivatives to parametric ones. Thus,
in principle, after tensor reduction this subroutine can be directly applied
to the evaluation of Feynman diagrams.

Using the Standard Form package we performed classification of the gen-
eralized recurrence relations for the one-loop propagator type integrals and
for the simplest two-loop vertex integral with four lines.

Unfortunately the Standard Form package [7] (written in Maple) is not
powerful enough and cannot be used for the calculation of real diagrams in
gauge theories.

We believe that the implementation of the Standard Form algorithm in
other computer languages will give better performance and can be used in
practical calculations.

In the present paper we gave only a short description of the general
scheme for evaluating arbitrary Feynman diagrams. Details and develop-
ments of the algorithms presented will be published elsewhere.
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