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1. Introduction

The final round of the analysis of data taken at LEP in the runs between
1990 and 1995 at energies around the Z-peak is going to be completed [1].
About 16 millions of Z-bosons have been produced and the resulting accu-
racy of, e.g., the Z-boson mass and its decay width is impressive (for the
latest experimental values of these quantities see [1]). In view of this pre-
cision there have been huge efforts in calculating higher order corrections
to these observables. This talk is supposed to be not so much a review of
theoretical and experimental results but is rather concerned with some of
the available tools to perform such calculations.

2. QCD corrections and asymptotic expansions

The decay rate of the Z-boson into quarks constitutes an illuminat-
ing example of how to use asymptotic expansions of Feynman diagrams to
simplify calculations. In what follows we will only be concerned with the
vertex corrections and it will always be assumed that they are computed via
the optical theorem by calculating the Z-boson self energy and taking the
imaginary part. If one considers, e.g., only QCD-corrections, it certainly is a
reasonable lowest order approximation to neglect all quark masses. Only one
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dimensional quantity is left, the Z-boson mass, and one arrives at massless
propagator diagrams for which the so-called integration-by-parts algorithm
is available and has been explicitly worked out [2] and implemented in a
FORM [3] package called MINCER [4] up to three loops. This immediately gives
the answer for the Z-boson decay rate into massless quarks up to O(α2

s) [5].
Making additionally use of infrared re-arrangement, it is even possible to
extend the result to O(α3

s) [6, 7].

As a second step one may want to take effects induced by the quark
masses into account. Then, however, one is faced with two-scale Feynman
integrals. Although the full O(αs)-result is known [8–10] — the vector part
even for a very long time — at O(α2

s) only certain subclasses of diagrams
have been computed analytically (e.g. [11]).

For the remaining part one is forced to consider some approximation
procedure to obtain, e.g., an expansion in m2

q/M
2
Z , with mq the mass of

the quark in the final state. The recipe for the efficient computation of
such asymptotic expansions has been worked out in a series of publications
and shall not be repeated here (for a review see [12]). The essence is to
expand the integrands of certain subgraphs of the initial diagrams, leading
to a complete factorization of “small” and “large” quantities. Two special
cases may be distinguished: When only masses appear as large quantities,
the technique is called the Hard Mass Procedure. In contrast, the Large

Momentum Procedure deals with the case of only large momenta.

Concerning the quark mass effects in the QCD-corrections to the Z-boson
decay rate, it is clear that here the appropriate procedure is the second
one. There is only one large (q2 = M2

Z) and one small (m2
q) mass scale

in this problem, so the factorization mentioned above means that products
of only single scale diagrams are produced: massless propagator diagrams
(m = 0 and q 6= 0) and massive tadpoles (m 6= 0 and q = 0). We already
mentioned the integration-by-parts algorithm to compute the former ones.
The underlying principle may also be applied to the latter ones, as has been
done in [13], again up to three loops. The implementation of this procedure
has been performed, for example, in a FORM package named MATAD [14].

There are, of course, certain limitations of this approach both from the
technical and the analytical point of view. The former one is connected with
the realization of the prescriptions provided by the asymptotic expansions.
To three-loop order it becomes a non-trivial task to find and properly expand
the contributing subdiagrams. For one particular diagram, all subgraphs
contributing to the Large Momentum Procedure are shown in Fig. 1. The
solution of this problem is to use the algorithmic nature of the prescriptions
and to pass their evaluation to a computer. As far as the Large Momentum
Procedure for two-point functions is concerned this has been performed in a
PERL program called LMP [15]. Another program, doing also the Hard Mass
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Procedure, will be mentioned in Section 4. Therefore, in this sense this
technical limitation no longer exists.

Fig. 1. Subdiagrams contributing to the Large Momentum Procedure of a particular

diagram.

The second limitation of asymptotic expansions is more severe. It is
clear that a cut series in general contains less information than the full
result. In our case of the Z-boson decay, let us, for example, consider the
hypothetical case 2mq < MZ < 4mq. The production of four fermions is then
kinematically forbidden. A small mq-expansion, however, is uncapable of
discriminating among any of the cases MZ > mq, MZ > 2mq or MZ > 4mq,
which is why at first sight one cannot expect to obtain reasonable results
below the four-quark threshold. However, the situation is not so bad as it
seems. The reason is that in general the four-particle channel has a very
smooth threshold behaviour due to phase space suppression. In a small-mq

expansion this smoothness is carried over to energies below the four-particle
threshold preserving its validity in this region [16].

As an example the contribution to the hadronic R-ratio proportional to
the color factor CACF as a function of x = 2mq/

√
s, where s is the cms-

energy, is shown in Fig. 2. The first threshold is at
√
s = 2mq (x = 1), the

second one at
√
s = 4mq (x = 1/2). Convergence, however, seems to be

warranted at least up to x = 0.8.
Anyway, for the Z-boson decay one is above any possible four-quark

threshold such that convergence of the expansion to the correct answer is
guaranteed. Not only this: The quadratic and quartic mass corrections,
which already provide a very good approximation in this case, can also
be obtained without really using asymptotic expansions, even up to O(α3

s)
[15, 18]. As far as the Large Momentum Procedure is concerned, there
certainly are more important fields of application for it (see, e.g., [16, 19, 20]).
On the other hand, for the Hard Mass Procedure, important contributions
to Z-decay have recently been computed where it really proves to be a very
useful tool, as we will see in Section 4.
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Fig. 2. Non-abelian contribution to Rhad as an example for the application of

the Large Momentum Procedure [16], plotted over x = 2m/
√
s. Narrow dots:

semi-analytical result from [17], other lines: power corrections up to (m2/s)n,

n = 0, . . . , 6.

3. Electroweak and mixed QED/QCD-corrections

Let us turn to the electroweak radiative corrections to the Z-boson decay.
As far as one only considers QED, the similarity to QCD allows not only to
evaluate all pure QED-corrections, but also QED/QCD-corrections of order
ααs, α

2αs and αα2
s [21] from the knowledge of the diagram-wise results to

O(α2
s) resp. O(α3

s) by altering the color factors.

The situation is different when allowing also for Z- and W -boson ex-
change between the produced quarks, because of their non-negligible masses.
As far as the W -boson is concerned, another phenomenon occurs, namely
the appearance of the isospin partners of the produced quarks as virtual
particles in the loops. In contrast to the decay into u-, d-, s- or c-quarks,
where this does not really produce a difference in comparison to virtual
Z-exchange because all of them may be considered as massless, the decay
into b-quarks is somewhat exceptional because the b-quark is the isospin
partner of the t-quark. Neglecting the t-quark mass certainly is not a good
approximation, nor can it be set infinite as one knows, for example, from the
radiative corrections to the ρ-parameter that appear to be proportional to
m2

t [22]. Nevertheless, a full result for Γ (Z → qq̄) to O(α) for the decay into
q = u, d, s, c [23–25] as well as for the one into b [23, 25] is available. The
leading mt-behavior for the latter is quadratic like for the ρ-parameter. To
O(α2) the t-quark enters also the calculation for the decay into u, d, s, c. The
leading m4

t - and the subleading m2
t -terms to this order are known [26, 27].

For the decay into b-quarks only the leading m4
t -terms are available [26].
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4. Mixed electroweak/QCD-corrections

A part of the mixed ααs-corrections, namely those induced by virtual
gluon and photon exchange, has already been mentioned in Section 3. The
present section will be concerned with the case of W - or Z-, accompanied by
an additional gluon-exchange, i.e., in a sense, QCD-corrections to the O(α)-
results described in Section 3. Again it is natural to distinguish between the
decay into u, d, s, c and into b. The former case was evaluated in [28], and
it is instructive to dwell a bit on the technique which was used in this work.

Again the rate was determined by computing the Z-boson self energy up
to the order considered and taking the imaginary part of the result. In the
case of virtual Z-boson exchange, one arrives at three-loop on-shell integrals,
for W -exchange one gets two-scale diagrams. The idea in [28] was to use
the Hard Mass Procedure described in Section 2 to expand the diagrams
in M2

Z/M
2, where M is the mass of the virtual gauge boson, and take the

limit M → MZ resp. M → MW in the final result. Since convergence at
these points turned out to be quite slow, a part of the diagrams was also
expanded in M2/M2

Z . In this way it was possible to obtain a reasonable
approximation to the full result.

In the case of Z → bb̄ one faces the problem of an additional mass scale,
the t-quark mass. Using the Hard Mass Procedure for m2

t ≫ M2
Z ,M

2
W , one

may factor out the mt-dependence. However, for a part of the diagrams one
still is left with two-scale and even three-scale integrals involving M2

Z and
M2

W and ξWM2
W , where ξW is the electroweak gauge parameter which we

want to keep. Although they appear to be only one-loop integrals, their ex-
act evaluation up to O(ǫ) produces inconvenient results. Instead, the results
of [29] were obtained by applying the Hard Mass Procedure to these kinds
of diagrams once more, this time using ξWM2

W ,M2
W ≫ M2

Z . This seemingly
unrealistic choice of scales becomes justified by recalling the discussion of
Section 2: It is not possible for an expansion to distinguish the inequality
M2

W ≫ M2
Z from 4M2

W ≫ M2
Z or (mt +MW )2 ≫ M2

Z , the latter ones being
perfectly alright. The only matter is to perform the expansion on the ap-
propriate side of all thresholds, and here one is concerned with thresholds
at 2MW and at mt+MW . Therefore, the choice M2

W ≫ M2
Z is to be under-

stood purely in this technical sense. Graphically this continued expansion
looks as follows:

m2

t
→∞−→ ⋆ + · · ·

ξM2

W
→∞

−→
(

⋆

)

⋆ + · · · ,
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where only those terms are displayed which are relevant in the discussion
above and all others contributing to the Hard Mass Procedure are merged
into the ellipse. The thick plain line is the top quark, the thick wavy one
a Goldstone boson with mass squared ξWM2

W , for example. The thin plain
lines are b-quarks, the inner thin wavy lines are W -bosons, the outer ones
Z-bosons. The spring-line is a gluon. The mass hierarchy is assumed to be
m2

t ≫ ξWM2
W ≫ M2

W ≫ M2
Z . The freedom in choosing the magnitude of

ξW provides a welcome check of the routines and the results.
The outcome of this procedure is a nested series: The coefficients of the

MW/mt-expansion are in turn series in MZ/MW . Note that in contrast
to the decay into u, d, s, c there is no threshold at MW which makes an
additional expansion in MW /MZ unnecessary.

In view of this calculation the procedure of successive application of the
Hard Mass Procedure resp. the Large Momentum Procedure has been imple-
mented in a Fortran 90 program named EXP [30]. Therefore, the computation
of a three-loop two-point function can now be done fully automatically given
some arbitrary hierarchy of mass scales. Even more, the link to the Feynman
diagram generator QGRAF [31] in a common environment called GEFICOM [32]
allows to obtain the result of a whole physical process without any human
interference except for specification of the process and final renormalization.

Finally, let us present the result for the W -induced corrections to the
Z-decay rate δΓW (Z → bb̄) in the form of the renormalization scheme inde-
pendent difference to the decay rate into dd̄. Inserting the on-shell top mass
mt = 175 GeV, the Z-mass MZ = 91.91 GeV and sin2 θW = 0.223 gives

δΓW (Z → bb̄)− δΓW (Z → dd̄) = Γ 0 1

sin2 θW

α

π

{

− 0.50

+(0.71 − 0.48) + (0.08 − 0.29) + (−0.01 − 0.07) + (−0.007 − 0.006)

+
αs

π

[

1.16 + (1.21 − 0.49) + (0.30 − 0.65) + (0.02 − 0.21 + 0.01)

+(−0.01 − 0.04 + 0.004)

]}

= Γ 0 1

sin2 θW

α

π

{

− 0.50 − 0.07 +
αs

π

[

1.16 + 0.13

]}

, (1)

where the factor Γ 0α/(π sin2 θW ) with Γ 0 = MZα/(4 sin
2 θW cos2 θW ) has

been pulled out for convenience. The numbers after the first equality sign
correspond to successively increasing orders in 1/m2

t , where the brackets
collect the corresponding constant, logmt and, if present, log2 mt-terms.
The numbers after the second equality sign represent the leading m2

t -term
and the sum of the subleading ones. The O(α) and O(ααs)-results are
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displayed separately. Comparison of this expansion of the one-loop terms
to the exact result of [25] shows agreement up to 0.01% which gives quite
some confidence in the ααs-contribution. One can see that although the
m2

t -, m
0
t - and m0

t logmt-terms are of the same order of magnitude, the final
result is surprisingly well represented by the m2

t -term, since the subleading
terms largely cancel among each other.
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