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DIAGRAMMATIC CALCULATIONS OF THE MSSM

NEUTRAL HIGGS MASSES UP TO 2-LOOP∗
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Diagrammatic two-loop results are presented for the leading QCD cor-
rections to the masses of the neutral CP-even Higgs bosons in the Minimal
Supersymmetric Standard Model (MSSM). The results are valid for arbi-
trary values of the parameters of the Higgs and scalar top sector of the
MSSM. Their impact on a precise prediction for the mass of the lightest
Higgs boson is briefly discussed.
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1. Introduction

Tests of supersymmetric extensions of the Standard Model of electroweak
and strong interactions, in particular tests of the MSSM, are a central theme
for present and future particle physics. While for the predicted superpartners
of the SM particles present-day accelerators can cover only a very limited
part of the MSSM parameter space, the Higgs sector of the model provides
the opportunity for a stringent direct test based on the prediction of a light
neutral Higgs boson. At tree level its mass mh is constrained from above
by the Z boson mass. Large one-loop corrections [1, 2], however, shift the
upper bound to about 150 GeV. Beyond one-loop order renormalization
group methods have been applied in order to include higher-order leading
and next-to-leading logarithmic contributions [3–5]. A diagrammatic calcu-
lation is available for the dominant two-loop contributions in the limiting
case of vanishing t̃-mixing and infinitely large MA and tan β [6]. These
results indicate that the two-loop corrections considerably reduce the pre-
dicted value of mh. A precise prediction for mh in terms of the relevant
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SUSY parameters is crucial in order to determine the discovery and exclu-
sion potential of LEP2 and the upgraded Tevatron, and also for physics at
future colliders where high-precision measurements of mh are feasible.

Diagrammatic calculations at the two-loop level which take into account
virtual particle effects without restrictions of their masses and mixing are
therefore very desirable. We have performed a Feynman diagrammatic cal-
culation of the leading two-loop QCD corrections to the masses of the neutral
CP-even Higgs bosons in the MSSM [7]. The results are valid for arbitrary
values of the parameters of the Higgs and scalar top sector of the MSSM.
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The tree level Higgs potential can be written as follows:
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Diagonalization of the mass matrices for the CP-even and the CP-odd scalars,
following from the potential (2), leads to three physical particles: two CP-
even Higgs bosons H0, h0 and one CP-odd Higgs boson A0. The tree-
level masses of h0,H0 follow from the coefficients m2

φ1
, m2

φ2
,m2

φ1φ2
of the

quadratic terms of (2) in the φ1,2 basis. They are determined by the val-
ues of two input parameters, conventionally chosen as tan β = v2/v1 and
M2

A = −m2
12(tan β +cot β ), where MA is the mass of the CP-odd A boson,

and by the Z boson mass MZ .
The tree-level mass predictions are affected by large corrections at one-

loop order through terms proportional to GF m4
t [1]. These dominant one-

loop contributions can be obtained by evaluating the contribution of the t-t̃-
sector to the φ1,2 self-energies at zero external momentum from the Yukawa
part of the theory (neglecting the gauge couplings). Accordingly, the one-
loop corrected Higgs masses are derived by diagonalizing the mass matrix,
given in the φ1-φ2 basis as
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Therein, the Σ̂ denote the Yukawa contributions of the t-t̃-sector to the
renormalized one-loop φ1,2 self-energies, i.e. including the counterterms
fixed by A0 mass renormalization and by tadpole renormalization for vanish-
ing renormalized tadpoles. In this approximation one obtains the compact
expressions (third reference of [1])
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These formulae contain the masses mt̃1,2
of the top squarks, the Higgs mass

parameter µ of the superpotential, and the non-diagonal entry At in the
stop mass matrix. By comparison with the full one-loop result [2] it has
been shown that these contributions indeed contain the bulk of the one-loop
corrections. Typical differences to the full one-loop result are of the order
of 5 GeV.

In order to derive the leading two-loop contributions to the masses of
the neutral CP-even Higgs bosons we have evaluated the QCD corrections
to Eq. (3), which because of the large value of the strong coupling constant
are expected to be the most sizable ones (see also Ref. [6]). This requires
the evaluation of the renormalized φ1,2 self-energies at the two-loop level.
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The renormalization is performed in the on-shell scheme. The counterterms
in the Higgs sector are derived from the Higgs potential (2), analogously
to the 1-loop calculation. The renormalization conditions for the tadpole
counterterms are chosen in such a way that they cancel the tadpole contri-
butions in one- and two-loop order. The renormalization in the t-t̃-sector is
performed in the same way as in Ref. [8]. For the present calculation the one-
loop counterterms δmt, δmt̃1

, δmt̃2
for the top-quark and scalar top-quark

masses and δθt̃ for the mixing angle contribute, which enter via the subloop
renormalization. The appearance of the t̃ mixing angle θt̃ reflects the fact
that the current eigenstates, t̃L and t̃R, mix to give the mass eigenstates
t̃1 and t̃2. Since the non-diagonal entry in the scalar quark mass matrix is
proportional to the quark mass the mixing is particularly important in the
case of the third generation scalar quarks. The mixing angle counterterm δθt̃
is chosen in such a way that there is no transition between t̃1 and t̃2 when
t̃1 is on-shell. The numerical result, however, is insensitive to the choice of
the renormalization point. Counterterms for µ and tan β do not appear in
O(αs).

The calculations, strongly supported by computer-algebra tools [9], are
performed in the dimensional reduction scheme [10], which preserves the
relevant SUSY relations. They result in analytical expressions for the two-
loop φ1,2 self-energies in terms of the SUSY parameters tan β , MA, µ, mt̃1

,
mt̃2

, θt̃, and the gluino mass mg̃. Inserting the one-loop and two-loop φ1,2

self-energies into Eq. (3), the predictions for the masses of the neutral h0, H0

bosons follow from the diagonalization of the two-loop mass matrix.

3. Results and discussion

For the numerical illustration we choose two typical values for tan β
which are favored by SUSY-GUT scenarios [11]: tan β = 1.6 for the SU(5)
and tan β = 40 for the SO(10) scenario. The scalar top masses and the
mixing angle follow from the parameters Mt̃L

, Mt̃R
and MLR

t of the t̃ mass

matrix, where MLR
t = At − µ cot β (same conventions as in Ref. [8]). In the

figures below, mq̃ ≡ Mt̃L
= Mt̃R

is assumed.

Fig. 1 shows mh as a function of MLR
t /mq̃, where mq̃ is fixed to 500 GeV.

A minimum is reached for MLR
t = 0 GeV which we refer to as ‘no mixing’.

A maximum in the two-loop result for mh is reached for about MLR
t /mq̃ ≈ 2

in both the low and high tan β scenario. This case we refer to as ‘maximal
mixing’. Note that the maximum position is shifted compared to its one-loop
value of about MLR

t /mq̃ ≈ 2.4.
In Fig. 2 the two scenarios with tan β = 1.6 and tan β = 40 are dis-

played. The tree-level, the one-loop and the two-loop results for mh are
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Fig. 1. One- and two-loop results for mh as a function of MLR
t /mq̃ for two values

of tanβ .
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Fig. 2. The mass of the lightest Higgs boson for the two scenarios with tan β = 1.6

and tanβ = 40. The tree-, the one- and the two-loop results for mh are shown as

a function of mq̃ for the no-mixing and the maximal-mixing case.
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shown as a function of mq̃ for no mixing and maximal mixing (the curves
for the maximal-mixing case start at higher values of mq̃ than those for the
no-mixing case, since below these values of mq̃ the resulting t̃-masses are
unphysical or experimentally excluded). The plots show that the one-loop
on-shell result for mh is in general considerably reduced by the inclusion
of the two-loop corrections. For the low-tan β scenario the difference be-
tween the one-loop and two-loop result amounts to up to about 18 GeV for
mq̃ = 1 TeV in the no-mixing case, and up to about 25 GeV for mq̃ = 1 TeV
in the maximal-mixing case. For the high-tan β scenario the reduction of
the one-loop result is slightly smaller than for tan β = 1.6. The variation
with mg̃ is of the order of few GeV.

Supplementing our results for the leading O(ααs) corrections with the
leading higher-order Yukawa term of O(α2m6

t ) given in Ref. [4] leads to an
increase in the prediction of mh, up to about 3 GeV. A similar shift towards
higher values of mh emerges if at the two-loop level the running top-quark
mass mt(mt) = 166.5 GeV is used instead of the pole mass mt = 175 GeV,
thus taking into account leading higher-order effects beyond the two-loop
level. We have compared our results with the results of a renormalization
group improvement of the leading one-loop contributions given in Ref. [5].
Good agreement is found for the case of vanishing t̃-mixing, while for larger
t̃-mixing sizable deviations exceeding 5 GeV occur. In particular, the value of
MLR

t /mq̃ for which mh becomes maximal is shifted from MLR
t /mq̃ ≈ 2.4 in

the one-loop case to MLR
t /mq̃ ≈ 2 when our diagrammatic two-loop results

are included (see Fig. 1). In the results based on renormalization group
methods [3, 5], on the other hand, the maximal value of mh is obtained for
MLR

t /mq̃ ≈ 2.4, i.e. at the one-loop value.
In summary, we have diagrammatically calculated the leading O(ααs)

corrections to the masses of the neutral CP-even Higgs bosons in the MSSM,
in an on-shell renormalization scheme. No restrictions on the parameters of
the Higgs and scalar top sector of the model are imposed. The two-loop
correction leads to a considerable reduction of the prediction for the mass
of the lightest Higgs boson compared to the one-loop value. The reduction
turns out to be particularly important for low values of tan β . Compared to
the results obtained via renormalization group methods sizable deviations
are observed for large mixing in the t̃-sector.
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