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THE RARE DECAY B → Xsγ
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The next-to-leading-order (NLO) analysis of the decay B → Xsγ is re-
viewed in this talk. The theoretical framework and the various ingredients
for a theoretical prediction of the branching ratio Br(B → Xsγ) are briefly
outlined. The numerical analysis focuses on an estimate of the theoretical
uncertainties. It is pointed out that the theoretical error is presently dom-
inated by parametric uncertainties that may be reduced in the future. In
view of oncoming measurements at future B factories this underlines the
importance of the decay B → Xsγ for the search for new physics.

PACS numbers: 13.90.+i

1. Introduction

The inclusive rare decay B → Xsγ plays an outstanding role in present
day phenomenology. Being forbidden at tree level in the Standard Model,
this flavour changing neutral current process may only proceed as a loop
induced transition. Such rare processes attracted much interest in the last
decade.

Due to the occurrence of the top quark as a virtual particle inside the loop
and the resulting dependence on the Cabibbo–Kobayashi–Maskawa (CKM)
matrix element |Vts|, the B → Xsγ decay provides a handle to constrain this
CKM parameter of the Standard Model that is hardly accessible by other
processes.

Moreover, the process B → Xsγ may be able to open the window to
new physics when looking beyond the Standard Model. The rare decays
B → Xsγ leave room in their loops for potential nonstandard particles of
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extended theories (like charged Higgs bosons or supersymmetric particles).
Those contributions would be of the same order in the gauge coupling as the
Standard Model contributions themselves and thus be unsuppressed. Size-
able deviation of the branching ratio Br(B → Xsγ) from the Standard Model
prediction could therefore lead to an indirect observation of new physics ef-
fects.

The above agenda is challenging both from the experimental and the-
oretical point of view as sufficient accuracy is required on both sides for a
test of the theory at the quantum level.

Experimental measurements were performed by CLEO in the energy
range of the Υ (4S) resonance, where they find a branching ratio [1]

Br(B → Xsγ) = (2.32 ± 0.57 ± 0.35) × 10−4. (1)

Here the first error is statistical and the second one is systematic. A recent
preliminary update of this result is quoted [2]

Br(B → Xsγ) = (2.50 ± 0.47 ± 0.39) × 10−4 . (2)

ALEPH has investigated the decays of b-hadrons produced at LEP on
the Z0 peak. Their finding is [3]

Br(Hb → Xsγ) = (3.11 ± 0.80 ± 0.72) × 10−4. (3)

The experimental situation will improve further with the oncoming op-
eration of an upgraded CLEO detector and the future B-factories at SLAC
and KEK. The experimental error may be expected to drop below the 10%
level.

On the theoretical side, during the last five years considerable
progress has been made for an accurate prediction of the branching ratio
Br(B → Xsγ). The combined effort of several groups to calculate the large
QCD corrections to this decay, including the next-to-leading-order (NLO)
corrections, was finally completed by 1998. This enterprise was mainly moti-
vated by large renormalization scale uncertainties of ±25% [4,5] which could
only be reduced by extending the calculations beyond the leading order.

The numerical analysis shows that a theoretical uncertainty below 10%
is already achieved at present. More important, only a part of these uncer-
tainties is due to unknown higher order corrections while the remaining ones
arise from the uncertain values of the input parameters. Once the latter are
known with better precision, a theoretical uncertainty for Br(B → Xsγ) of
5% may be within reach.

Continued work is devoted to estimate non-perturbative corrections to
the B → Xsγ decay with higher precision [6–9] as well. It appears that
these corrections amount only to a few percent and constitute a rather small
theoretical uncertainty.
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2. B → Xsγ in the next-to-leading-logarithmic approximation

The B → Xsγ decay is conveniently considered on the parton level in
the spectator model

Br(B → Xsγ)

Br(B → Xceν̄e)
≃ Br(b → sγ)

Br(b → ceν̄e)
= Rquark . (4)

Corrections to this approximation are small of order O(1/m2
b) and will be

discussed later. The normalization with the semileptonic branching ratio
is usually employed for a cancellation of the CKM factors and the overall
bottom mass dependence.

Perturbative calculations are associated with large logarithms
αn

s (µb) lnm(µW /µb) (m ≤ n), due to the large difference between the scale
µW ≃ MW,mt of the heavy virtual particles and the scale µb ≃ mb of the
hadronic decay under consideration.

The resummation of these logarithms to all orders in leading (n = m) or
next-to-leading (n = m + 1) approximation is achieved in the framework of
a low energy effective theory where all heavy particles like the W boson and
the top quark are integrated out. The relevant effective Hamiltonian reads

Heff = −GF√
2

V ∗

tsVtb

8
∑

i=1

Ci(µ)Qi . (5)

Here Q1, Q2 denote the commonly used current-current operators and Q3,
. . . , Q6 the QCD penguin operators. For the explicit formulae that we choose
not to display in this paper, the reader is referred to the reviews [11–13].

Although the matrix elements 〈Heff〉 are renormalization scale invari-
ant, the Wilson coefficients Ci(µ) and the matrix elements 〈Qi(µ)〉 show
a separate µ-dependence, reflecting the factorization of short-distance and
long-distance physics. The scale dependence of the coefficient functions is
governed by the renormalization group equation

µ
d

dµ
Ci(µ) =

∑

j

γ̂ji(αs)Cj(µ) , (6)

where γ̂(αs) is the 8 × 8 anomalous dimension matrix. The solution of (6)
is given by

Ci(µb) =
∑

j

Ûij(µb, µW )Cj(µW ) (7)

with the evolution matrix Û(µb, µW ) and the initial conditions Ci(µW ).
The complete analysis at NLO therefore consists of the following steps

and requires several ingredients.
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First, the effective theory is defined by fixing the coefficient functions
Ci(µW ) through matching of the full and the effective theory at a matching
scale µW = O(MW). The NLO O(αs) corrections for C7(µW ) and C8(µW )
amount to a two-loop calculation which was first performed by Adel and
Yao [10] and confirmed by [14–16].

Second, the coefficient functions Ci evolve from their initial values at the
high energy scale µW to the low energy scale µb via the evolution matrix Û
which itself is determined by the anomalous dimension. The NLO anomalous
dimension matrix has been calculated in [17]– [22] of which [17]– [21] are
two-loop calculations and [22] is even a three-loop calculation.

Third, the one loop matrix elements 〈sγ|Q7,8|b〉 and the gluon brems-
strahlung 〈sγg|Qi|b〉 were calculated in [23,24] whereas the two-loop correc-
tions to 〈sγ|Qi|b〉 were presented in [25].

The complete NLO result for the b → sγ decay can be cast into the form

Rquark =
|V ∗

tsVtb|2
|Vcb|2

6α

πf(z)

1

κ(z, µ̄b)

(

m̄b(mb)

mb,pole

)2
(

|D|2 + A
)

, (8)

where

D = C
(0)eff
7 (µb)+

αs(µb)

4π

{

C
(1)eff
7 (µb) +

8
∑

i=1

C
(0)eff
i (µb)

[

ri +
γ

(0)eff
i7

2
ln

m2
b

µ2
b

]}

.

(9)
We do not display all quantities in Eqs. (8), (9) in their full form, but refer
the reader in our discussion to various places in the literature.

Due to the normalization with the semileptonic decay a phase space
factor f(z) with z = m2

c,pole/m
2
b,pole and QCD corrections [26] κ(z, µ̄b) are

introduced. An approximation formula for κ can be found in [27] and an
exact analytic formula in [28]. The scale µ̄b of the semileptonic decay is in
general different from the low energy scale µb of the b → sγ decay as was
pointed out in [29].

The amplitude D is composed of the Wilson coefficient of Q7

Ceff
7 (µb) = C

(0)eff
7 (µb) +

αs(µb)

4π
C

(1)eff
7 (µb) (10)

containing the information of the three-loop anomalous dimension [22]. The
index “eff” indicates that a regularization scheme independent combination
of coefficient functions as introduced in [5] is considered. Because of their top
dependence the coefficient functions also depend on the scale µt = O(mt) at
which the top mass mt(µ

2
t ) is defined. As was discussed in [29], the scales µt

and µW do not have to be equal. Furthermore D contains the contributions
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of the virtual corrections [25] to the matrix elements 〈sγ|Qi|b〉 represented
by the last two terms in Eq. (9).

Finally the term A in Eq. (8) originates from the bremsstrahlung cor-
rections and the necessary virtual corrections needed for the cancellation of
the infrared divergences. These have been calculated in [23,24] and are also
considered in [22, 25] (see also [30]) in the context of the full analysis. As
in [22] we have chosen in the numerical analysis a lower cut on the photon
energy of (1 − Eγ/Emax

γ ) < δ = 0.99.
In order to pass from the partonic picture to the hadronic decay rates

and to obtain the final result for the B-meson decay rate, non-perturbative
contributions should be taken into account as well. According to Heavy
Quark Effective Theory calculations they are included as power corrections
[22] in the numerical analysis

Br(B → Xsγ) = Br(B → Xceν̄e) · Rquark

(

1 − δNP
sl

m2
b

+
δNP
rad

m2
b

)

, (11)

where δNP
sl and δNP

rad parametrize non-perturbative corrections to the semilep-
tonic and radiative B-meson decay rates respectively. However, due to par-
tial cancellations [6] the modifications turn out to be small and sum up to
around 1%.

In addition we have included in our numerical analysis a 3% enhancement
[9] from 1/m2

c corrections [8].

3. Numerical analysis

Adding the NLO corrections to the LO result an explicit cancellation of
large logarithms can be observed [13, 29] leading to the considerable reduc-
tion of the renormalization scale dependence. To be precise, the following
scales are present in this process.

• The low energy scale µb = O(mb) at which the hadronic decay takes
place. At this scale the Wilson coefficients and the matrix elements
of the operators for the B → Xsγ decay are evaluated. Notice that
the semileptonic normalization process B → Xceν̄e is also associated
with a low energy scale µ̄b = O(mb). Since both scales are completely
independent one has in general µb 6= µ̄b [29].

• The high energy scale µW = O(MW) at which the full theory is
matched with the effective theory.

• The scale µt = O(mt) at which the running top quark mass is defined.
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To estimate the remaining sensitivity of the branching ratio on the scales,
we have varied them in the ranges

2.5 GeV ≤ µb, µ̄b ≤ 10 GeV

40 GeV ≤ µW ≤ 160 GeV 80 GeV ≤ µt ≤ 320GeV (12)

and find

LO NLO

∆Br(B → Xsγ) =







±13%
± 3%
±22%

±1.1% (µW )
±0.4% (µt)
±4.3% (µb) .

(13)

The huge reduction of the scale uncertainties in the NLO result compared
to the LO is striking. Combined with the uncertainty due to the variation
of the semileptonic scale µ̄b of ∆Br(B → Xsγ) = ±1.7% one arrives at the
total scale uncertainty

∆Br(B→Xsγ) = ±4.8% (scale). (14)

This number is a genuine theoretical uncertainty that is due to the trun-
cated perturbation series. It estimates the magnitude of unknown higher
order corrections and can only be reduced by going beyond the NLO ap-
proximation. It should be distinguished from the parametric uncertainties
that are introduced through the errors of the various input parameters. In
Table I the relative importance of various uncertainties are compared.

TABLE I
Uncertainties in Br(B → Xsγ) due to various sources

Scales αs(MZ) mt,pole mc,pole/mb,pole

±4.8% ±2.9% ±1.7% ±5.4%

mb,pole αem CKM angles B → Xceν̄e

±0.7% ±1.8% ±2.0% ±3.8%

One finds that at present the parametric uncertainties dominate the the-
oretical error. This is reflected in the final result

BrQCD(B→Xsγ) = (3.60 ± 0.17 (scale) ± 0.28 (par)) × 10−4

= (3.60 ± 0.33) × 10−4.
(15)

In a very recent study [31] also dominant electroweak corrections to the
B → Xsγ decay rate were investigated. The authors considered contribu-
tions from fermion loops to the gauge boson propagators as well as photonic
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loop corrections to b → sγ and b → ceν̄e. They also advocated the elec-
tromagnetic coupling αem to be renormalized at q2 = 0 and arrive at a
branching ratio

BrQCD+EW(B→Xsγ) = (3.28 ± 0.30) × 10−4 . (16)

Within their errors the theoretical prediction and the experimental results
are compatible. Further improvements of the values on both sides may pave
the way to new physics. Recent calculations of contributions of extended
theories [16, 32–34] have shown that already at present the B → Xsγ decay
plays a keyrole in restricting the parameter space of theories beyond the
Standard Model. Future developments will be exciting to watch.

I would like to thank A.J. Buras and N. Pott for their collaboration on
the results presented in this talk.
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