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We review some aspects of our calculation of two-loop QCD corrections
to b → c decay, which confirmed the results of Czarnecki and Melnikov.
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1.

Amplitudes for weak decays of mesons containing a b quark, such as e.g.

B0 = d̄b, into charmed mesons such as D∗+ = d̄c, are proportional to the
Kobayashi-Maskawa matrix element Vcb. The decay rate is also affected by
strong interactions. One strategy for determining |Vcb| involves measuring
exclusive semileptonic decays B → D∗lν at the special kinematical point
where the B and D∗ mesons have equal velocities. The reason for choosing
this zero recoil point is that non-perturbative effects, which cannot be cal-
culated from first principles, are at least suppressed by a factor of Λ2

QCD/m2
c

at this point. The zero recoil condition also entails some technical simpli-
fications which make a complete analytical calculation of the perturbative
QCD corrections to the underlying hard process b → clν possible up to two
loops. That is the subject of this paper. Our complete results have already
been presented in [1] and will not be repeated here. Instead, we will focus
on some aspects of the calculation itself.
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Fig. 1. Irreducible Feynman diagrams contributing to b → cW at order α2

s
. The

dotted line in diagram e represents a Faddeev-Popov ghost. The fermion in the

loop in diagram f can be either a light quark, a b or a c quark. Note the symmetry

when the b and c quarks are interchanged: a1 ↔ a2, b1 ↔ b3, b2 ↔ b2, etc.

For a general review on semileptonic B decays, see [2]. Experimental
results can be found in [3,4], and theoretical issues connected with the heavy
quark expansion are discussed in [5]. The one-loop corrections to b → c decay
at zero recoil were calculated in [6]. The two-loop corrections were first
obtained as a Taylor series expansion in (mb−mc)/mb [7], and subsequently
in a closed analytical form [8].
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2.

At zero recoil, the amplitude for b → c is given by ū(c)γµ (ηV − ηAγ5)u(b),
with form factors ηV,A that are normalized to 1 at tree level. The relevant
two-loop Feynman diagrams are shown in figure 1. Their contributions to
ηV,A are combinations of integrals that can all be written as

∫ ∫

ddk ddl
1

P ν1

1 P ν2

2 . . . P ν9

9

, (1)

where d = 4 − 2ε regularizes both ultraviolet and infrared divergences, the
νi are integer powers, and the propagator denominators Pi are defined by

P1 = (l + k)(2p1 + l + k) , P3 = l(2p1 + l) , P5 = k(2p1 + k) ,
P2 = (l + k)(2p2 + l + k) , P4 = l(2p2 + l) , P6 = k(2p2 + k) ,
P7 = k2 , P8 = l2 , P9 = (l + k)2 .

(2)

The four-momenta of the external b and c quarks, p1 and p2, are proportional
to each other and satisfy p2

1 = m2
1, p2

2 = m2
2 and p1p2 = m1m2. Therefore,

the integrals (1) only depend on the two variables m1 and m2. Sometimes
(whenever ν2 = ν4 = ν6 = 0 or ν1 = ν3 = ν5 = 0), they only depend on
one of the masses. In such one-scale cases, the result is a power of the mass,
which follows from dimensional arguments, times a coefficient that can be
calculated recursively using integration by parts [10].

The recurrence relations for the two-scale cases are more complicated.
In our calculation, we used them as checks, and also to reduce the number
of scalar integrals (1) needed, without solving the full system of equations.
A solution to the recurrence relations for the special case where m1 = 2m2

was applied in [9]. In any case, a few scalar integrals have to be calculated
by other means in order to start off the recursion. The results (expanded
in ε) can be expressed in terms of polylogarithms. One can almost predict
which polylogarithms appear by considering where the scalar integrals (1)
have singularities. In this respect, there is a difference between graphs that
have a cut going across three massive quark lines, like the graphs denoted
by N in [10], and those that do not, like the M-graphs in [10]. We find the
following solutions to the Landau equations:

m1 = m2 m1 = 0 m2 = 0 m1 + m2 = 0

M-like graphs x x x

N-like graphs x x x x

At m1 = m2, poles in the integrand of (1) coincide without trapping the
integration contour. Therefore, there is no singularity at this point on the
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physical sheet, but we do find singularities at m1 = m2 when we consider the
analytical continuation to other Riemann sheets. Similarly, the singularity
at m1 + m2 = 0 can only be reached by analytic continuation and is not
relevant for physical, positive masses m1 and m2.

The table below shows all the (poly)logarithms (up to the level of trilog-
arithms) of m1 and m2 that do not have any singularities except at points
corresponding to the solutions of the Landau equations shown above. The
ones in the lower part of the table are singular at m1 +m2 = 0 and therefore
we only expect them to appear in N-like graphs:

log
(

m1

m2

)

Li2

(

m1−m2

m1

)

Li3

(

m1−m2

m1

)

Li3

(

m2−m1

m2

)

log
(

2m1

m1+m2

)

Li2

(

m1−m2

m1+m2

)

Li2

(

m2−m1

m1+m2

)

Li3

(

m1−m2

m1+m2

)

Li3

(

m2−m1

m1+m2

)

Li3

(

m2
1
−m2

2

m2
1

)

Li3

(

m2
2
−m2

1

m2
2

)

Li3

(

m1−m2

2m1

)

Li3

(

m2−m1

2m2

)

This table is complete in the sense that any other such function one
might consider (say, e.g., an S1,2) can be written as a linear combination of
functions and products of functions in the table. So we expect that all the
scalar integrals we need can be expressed in terms of these functions, and
this turns out to be true.1

Often, a convenient way of calculating the scalar integrals is by using
differential equations in m1 and m2. This has two advantages. Firstly, it
enables us to avoid having to deal with polylogarithms of horrible, unnec-
essarily complicated arguments in the intermediate steps of the calculation.
Secondly, it provides a nice way of extracting infrared divergences. Things
can be arranged in such a way that all infrared divergences are expressed
in terms of one-scale integrals. An example of how this works for a six-
propagator, N-like integral is explained in detail in [1].

Here, we will sketch the procedure for the M-like integral

I1(m1,m2) =

∫ ∫

ddk ddl
1

P1P2P3P4P7P8

(3)

shown in figure 2. It has infrared divergences coming from two regions,
l → 0, and k, l → 0, which manifest themselves as a 1/ε2 pole in dimensional
regularization. First, using the identity m1P4 − m2P3 = (m1 − m2)P8 (this
follows from the fact that p1 and p2 are proportional to each other), I1 is

1 In fact, Li3

“

m1−m2

m1+m2

”

and Li3

“

m2−m1

m1+m2

”

do not appear, though it does not follow

from the simple arguments we have given here.
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Fig. 2. The scalar integrals I1 . . . I3. The momentum p1 enters from the left, p2−p1

enters at the vertex marked ⊗, p2 leaves at the right. The thin (thick) lines

symbolize quark propagators with mass m1 (m2). The dotted lines are massless

propagators. The heavy dots mean the corresponding propagator is squared (or

cubed).

split into two partial fractions. One is the integral I2 shown in figure 2 and
the other its mirror image. Then, differentiating three times, we get

∂

∂m2

m2
2

∂

∂m2

m2

∂

∂m1

(m1 − m2)I2 = 2m2I3 . (4)

I3 is a very simple, convergent integral:

I3 =
π4

2m1m
2
2(m1 − m2)2

{

m1 − m2 − m1 log

(

m1

m2

)}

. (5)

In order to find I2, we must integrate the right hand side of (5) three times
from some suitable initial point with respect to the masses. These integra-
tions are easy to program because they all have a similar structure. If the
equal mass point m1 = m2 is taken as the initial point, then the two infrared
divergent integration constants required are one-scale integrals.

3.

Many cancellations occur when the diagrams of fig. 1 are combined. Af-
ter renormalization, the infrared divergences that are present in individual
diagrams all disappear. This is related to that fact that the cross section for
gluon Bremsstrahlung vanishes at zero recoil, so that there cannot be any
cancellations of infrared divergences between real and virtual graphs. Other
cancellations can be understood from the symmetry of the process: pro-
vided the renormalization is performed in a symmetric way, ηV,A(m1,m2) =

ηV,A(m2,m1). The trilogarithms Li3

(

m1−m2

2m1

)

and Li3

(

m2−m1

2m2

)

, which are

present in the contributions of diagrams c1, c2 and c3, cancel out in the sum
c1 + c2 + c3. As a consequence of all this, the final expressions for ηV,A are
relatively short, involving only the following functions,

ℓ = log

(

1 + u

1 − u

)

, (6)
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L1 = Li2 (u) − Li2 (−u) , (7)

L2 = Li2

(

2u

u + 1

)

+
1

4
ℓ2 , (8)

L3 = Li3

(

2u

u + 1

)

+ Li3

(

2u

u − 1

)

+
2

3
ℓ L2 , (9)

L4 = Li3

(

4u

(u + 1)2

)

+ Li3

(

−4u

(u − 1)2

)

+
16

3
ℓ L2

−2ζ(2) (log(1 + u) + log(1 − u)) −
8

3
ℓ L1 , (10)

with coefficients that are rational functions of u = (m1 − m2)/(m1 + m2).
Note that ℓ, L1 and L2 are odd functions of u, while L3 and L4 are even.
Clearly, it is possible to expand ηV,A in a Taylor series in u2 to any order.
The series converges for |u2| < 1. If one substitutes the actual numerical
values of mb and mc, u2 ≈ 0.29, the convergence is quite good, and only a
few terms are needed to get a reasonable precision. Another option is to use
ℓ2/π2 as the expansion parameter.

We have checked that our results are equivalent to the formulae presented
in [8], and we agree with their numerical conclusions.
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