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The status of the calculation of the O(α) 1-loop radiative corrections
to e+e− → 4f and some technical progresses are presented.
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1. Introduction

The phase 2 of LEP, running above the W pair production threshold, is
providing a very important piece of information concerning the gauge struc-
ture of the Standard Model (SM). It is possible that in the future a new e+e−

collider with a center of mass energy of about 1 TeV will improve further our
knowledge of this sector of elementary particle physics. The measurement of
the mass of the W boson, the nature of the tri- and quadrilinear gauge boson
vertices, the investigation of the mechanism of symmetry breaking and the
study of the properties of the top quark are some of the main issues under
investigation. Thanks to the clean environment characteristics of e+e− col-
lisions, it should be possible to perform precision-studies of all these topics.
In order to obtain a sensible comparison between experiments and theory, it
is mandatory that the theoretical predictions include in the most complete
and accurate way the effects of the SM 1-loop radiative corrections, which
are known to be potentially sizeable.

The full electroweak 1-loop corrections to on-shell W pair production
have been calculated in the past [1], but this is not sufficient to analyze
in detail the processes at energies above the production threshold, because
of the instability of the W ’s. We can distinguish, in the process e+e− →
W+W− → 4f , two kinds of radiative corrections: those affecting either
the W pair production or the W ’s decay, and those that connect these
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subprocesses by means of the exchange of a virtual particle. The former
are usually called factorizable, while the latter are non-factorizable. At the
moment only some classes of universal leading QED and QCD corrections are
available for the process e+e− → W+W− → 4f . Recently a first estimate
of non-factorizable QED corrections has been presented, in the double-pole
approximation [2]. It is well known that the non-factorizable corrections
yield terms which are potentially large, growing like log s

m2

W

and thus will

be important at the energies of a Next-Linear-Collider. An estimate [1,3] of
the effect of the missing 1-loop corrections in e+e− → 4f shows that they
could modify the presently used approximations by 1.5% at LEP2 energies,
up to 22% at

√
s = 2 TeV. It is therefore mandatory to take into account

also these non-factorizable corrections.

2. Layout of the calculation

The reaction indicated with e+e− → 4f includes a large set of different
processes which have been classified in [4]. We have chosen to investigate in
detail the channel e+e− → µ−ν̄µud̄, because of its particular experimental
interest.

We are calculating the exact O(α) 1-loop electroweak radiative correc-
tions to this process. We distinguish virtual and real corrections; the latter
contain diagrams where a photon is emitted from each charged lines and
from the tri-linear gauge boson vertex. We neglect the masses of all the
fermions and therefore all the diagrams in which a scalar particle couples to
a fermion vanish. In the virtual sector loops with up to six internal lines ap-
pear. We generate all the relevant diagrams using the program FeynArts [5].
We classify the diagrams upon the number of points of the loop integrals.
We find 30 diagrams with a 6-point function, 85 with a 5-point function,
200 with a 4-point function, 435 with a 3-point function, 90 diagrams with
a full self-energy insertion, and finally 71 real bremsstrahlung diagrams.

The large number of Feynman diagrams which contribute to the ampli-
tude, about nine hundred, is one of the main problems to perform the com-
plete calculation. For this reason the so called “pole expansion” has been
introduced in the past, in order to identify some simpler gauge-invariant
subsets of contributions. This expansion is done about the on-shell W pair
production threshold: the leading terms (double-pole) contain two resonant
W propagators; the next-to-leading ones (single-pole) are those with only
one resonant W propagator, while all the others are considered to be sub-
leading. It is useful to stress that double-pole, single-pole and sub-leading
terms are not distinguishable from an experimental point of view, i.e. they
do not have a direct physical interpretation. The double-pole term allows
to estimate the size of these corrections at LEP2 energies [2], but should
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become inaccurate when higher energies are considered. Essentially only
QED-like corrections, in the so called “extended soft photon approxima-
tion”, contribute to this first term. An exact calculation is needed, in order
to check the range of validity of the double-pole approximation and to eval-
uate the radiative corrections at higher energies, where also the purely weak
corrections become relevant. It is well known [4] that in the exact calculation
there is no recipe to separate QED from non-QED corrections in a SU(2)
gauge-invariant way, because of the mixing between the photon and the Z

boson. We are therefore forced to consider sets of diagrams that are quite
larger than those necessary in the double-pole approximation.

The evaluation of a matrix element with such a large number of terms
represents a challenge from the computational point of view: the expressions
are very lengthy, the CPU time needed to evaluate them is long and the
propagation of the errors due to the numerical inaccuracy of the routines
becomes an important element in the analysis of the results.

In the virtual sector our strategy can be summarized in the following
way:

(i) a simplification procedure is applied to each diagram; this procedure is
optimized to reduce as much as possible the rank of the tensor integral
and to minimize the number of generated terms. For each Feynman
diagram the output is a combination of tensor integrals, simpler than
the initial one; we still find rank-1 6-point functions and up to rank-2
4- and 5-point functions. This simplification is done using a Mathe-
matica package and the result is afterwards automatically translated
in a Fortran 90 subroutine.

(ii) Even if this is possible, we do not try to generate analytical expres-
sions for each diagram, because we want to keep the result as much
as possible in a compact form. We perform the reduction from tensor
to scalar integrals and the evaluation of the latter in a completely nu-
merical way. We rely upon the FF package [6] to evaluate the basic
scalar integrals, while we have written new routines to reduce 5- and
6-point functions to a combination of 4-point functions and to perform
the covariant decomposition of the tensor integrals. The problem of
the stability and of the accuracy of the results must be discussed in
detail.

Since we take the fermions to be massless, we write the amplitudes using
the helicity states formalism. For each state the amplitude is evaluated
numerically, its modulus squared is taken and finally the sum over all the
helicity states is performed. The integration over the final state phase space
will be done using a Monte Carlo technique.



2850 A. Vicini

3. Simplification procedure

The expressions of the virtual corrections involve tensor loop integrals
with up to rank-3 4-, 5- and 6-point functions. Through a covariant de-
composition we can write each integral as a combination of all the possible
tensorial structures which can be formed using the metric tensor and the
momenta which appear in the integral. The number of possible tensorial
structures increases with the rank and with number of points of the func-
tion, while at the same time the accuracy in the determination of the corre-
sponding scalar coefficients decreases. It is therefore quite obvious that the
reduction of the rank and of the number of points of the integrals can be
very convenient to evaluate the diagram in a faster and more precise way.

To reach this goal we have implemented an observation by Pittau [7],
concerning some elementary properties of the Dirac algebra. Each diagram
is characterized by the presence of three external fermion lines, connected
by the exchange of a gauge boson. In most of the cases each line contains
one power of the integration momentum, which can not be simplified by
any means because of the Dirac structure. Our goal is to rearrange the
expression in order to factor out the integration momenta of the Dirac lines,
in the form of scalar products. The scalar products can be re-expressed in
terms of the propagators present in the integral and therefore simplified.

If this method is applied blindly, it is possible to generate a large number
of terms starting from one single expression, simply using a not adequate
rule of the Dirac algebra. We have implemented the procedure [7] in a
Mathematica package optimized to keep the final number of terms as small
as possible and to reduce the maximal rank of the tensorial structures as
much as possible.

Despite of the fact that this procedure still generates several terms from
one single initial Feynman diagram, we have obtained two results:

(i) the number of scalar coefficients which are calculated in the covariant
decomposition is anyway smaller by a factor 12 in average with respect
to the number of coefficients of the decomposition of the initial rank-3
integral;

(ii) the absence of rank-3 tensor integrals allows to reach a higher numerical
accuracy, as it will be clarified later.

4. Reduction of scalar 5- and 6-point functions

The reduction of a 5-point function to a combination of five 4-point
functions has already been described in detail in [8]. We implement this
formula for the general case of four independent external momenta, but we
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notice that there are some kinematic configurations where the result might
become unstable and inaccurate. This instability is related to the presence
of several Gram determinants in the reduction formula. The evaluation of
a Gram determinant (or of a determinant in general) becomes difficult from
the numerical point of view, when the difference of two large numbers occurs,
which might lead to a sensible precision loss. The problem can be rephrased
saying that the Gram determinant is given by the product of the eigenvalues
of the matrix; when one of them becomes very small with respect to the
others and very close to zero, still the product of the eigenvalues can be non-
vanishing. If the value of the vanishing eigenvalue goes below the precision of
the machine, then the result can be non-vanishing but completely arbitrarily
wrong. A good way to prevent the appearance of numerical instabilities is
to evaluate the eigenvalues of the Gram matrix and check whether some of
them are below the precision of the machine. If this is the case, a solution
alternative to the one proposed in [8] is used.

The presence of null eigenvalues indicates that the rank of the matrix is
lower than the maximal one, i.e. in the case of the Gram determinant that
some of the external momenta are linearly dependent. If this is the case an
observation is in order for the 5-point function. We define the scalar 5-point
function

E ≡
∫

d4k

5∏
l=1

[(k + ql)
2 − m2

l + iε]−1 , (1)

where k+ql and ml are the momentum and the mass of the particle running
in the lth propagator, and ε > 0. From the 5-point function it is possi-
ble to obtain five different 4-point functions dropping each time one of the
propagators:

D(j) ≡
∫

d4k

5∏
l=1,l 6=j

[(k + ql)
2 − m2

l + iε]−1 . (2)

We want to write the 5-point function E as a combination of these five
4-point functions D(j):

E =

5∑
i=1

ciD(i) . (3)

This is a linear system of six equations with five incognitae:

5∑
i=1

ci = 0 ,

5∑
i=1

ciq
µ
i = 0 , (µ = 0, 1, 2, 3)

5∑
i=1

ci(q
2
i − m2

i ) = 1 . (4)
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When all the q
µ
i are linearly independent, this system has in general no

solution. Instead when the q
µ
i are linearly dependent we have a linear system

of five equations with five incognitae, which in general has a solution. The
evaluation of the ci can be done very precisely using standard numerical
techniques. We have two complementary methods to evaluate the 5-point
function and cover the whole phase space: in the “regular” region the general
formula [8], while close to the singular points the expression (3). The switch
from one to the other is controlled by a threshold value which is chosen
to be 10−p+1, where p is the number of significant digits of the machine.
Depending on this value the eigenvalues of the Gram matrix are considered
to be or not to be vanishing.

Similar arguments apply to the scalar 6-point function, defined as

F ≡
∫

d4k

6∏
l=1

[(k + ql)
2 − m2

l + iε]−1 . (5)

From the 6-point function it is possible to obtain six different 5-point func-
tions dropping each time one of the propagators.

E(j) ≡
∫

d4k

6∏
l=1,l 6=j

[(k + ql)
2 − m2

l + iε]−1 . (6)

We want to write the 6-point function F as a combination of these six 5-point
functions

F =

6∑
i=1

siE(i) . (7)

A system of equations identical to (3) can be written:

6∑
i=1

si = 0 ,

6∑
i=1

siq
µ
i = 0 , (µ = 0, 1, 2, 3)

6∑
i=1

si(q
2
i − m2

i ) = 1 . (8)

We have now six equations and six incognitae and in general it is always
possible to find a solution to this problem.

It is important to notice that the decomposition (7) applies both to
the scalar and to the tensor 6-point integrals. The fictitious problem of
an always vanishing Gram determinant for the tensorial decomposition of
a 6-point tensor integral does not exist, because it is always possible to
reformulate the problem in terms of 5-point functions.
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5. Covariant decomposition of the tensor integrals

The technique to perform a covariant decomposition of a 1-loop tensor
integral is well known since a long time [9]. The problem of the numerical
stability of the results is also well known, and is related to the presence of
Gram determinants in the denominator of the coefficients of each tensorial
structure (cf. [6]). The zeroes of these determinants can lead to instabilities
of the result. The corresponding singularities are in most of the cases spu-
rious, i.e. without a physical meaning, and cancel in the final result. From
the numerical point of view this cancellation is far from trivial.

As we have already noticed above, the Gram determinant vanishes when
the external momenta are linearly dependent. As a consequence, in that par-
ticular configuration the basis of tensorial structures for the decomposition
becomes smaller than the most general one. The strategy of the calculation
is: i) evaluate the eigenvalues of the Gram matrix and check whether at least
one is vanishing; if this is not the case then the most general basis is used,
otherwise the elements of the smaller basis must be determined; ii) once the
restricted basis has been calculated, the standard technique can be applied
safely, because by construction the Gram determinant does not vanish and
there cannot be spurious singularities. If we consider for example a rank-1
3-point function Cµ and the kinematic configuration where

q
µ
3

= a q
µ
1

+ b q
µ
2

, (9)

we find that the coefficients Ci (i = 1, 2, 3) individually contain singularities,
while the C ′

i(i = 1, 2) do not:

Cµ =

∫
d4kkµ

3∏
i=1

[(k + qi)
2 − m2

i ]
−1 = C1q

µ
1

+ C2q
µ
2

+ C3q
µ
3

,

= [C1 + aC3]q
µ
1

+ [C2 + bC3]q
µ
2

,

≡ C ′
1q

µ
1

+ C ′
2q

µ
2

. (10)

The direct evaluation of the C ′
is turns out to be more stable and accurate.

The switch from the general to the restricted basis of tensorial structures
is controlled by a value which depends on the precision of the machine and on
the highest rank of the tensor integrals present in the calculation. Depending
on this value, the eigenvalues of the Gram matrix are considered to be or
not to be vanishing. In general one would choose for this threshold the
smallest possible value compatible with the precision of the machine, but
the presence of higher rank tensor integrals requires some caution.

In our calculation we have at most rank-2 tensors, but the following
discussion can be easily generalized. At some intermediate step of the de-
composition of a rank-2 integral, one has to evaluate also the corresponding
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rank-1 integral. If the Gram determinant of the rank-2 integral has one (or
more) vanishing eigenvalue, one would like to find, for consistency, that the
same thing occurs also for the rank-1 integral. In a different language one
would like to verify in both integrals that the external momenta have some
linear dependence and that the set of independent momenta is the same in
both cases. We have found that the two routines provide consistent results
if we use a value x̄2 for the rank-2 integral and a value x̄1 =

√
x̄2 for the

rank-1 one. This choice can be easily understood, if one reads the explicit
expressions of the two Gram matrices. In the configuration in which one of
the eigenvalues of the rank-1 matrix goes to zero like λ, the corresponding
one in the rank-2 matrix goes to zero like λ2.

With this procedure we make an error every time that two momenta
which are not exactly linearly dependent are considered to be in such re-
lation among themselves. In this case we neglect a contribution which is
proportional to the threshold value x̄1,2 that we use. It is therefore impor-
tant to keep x̄1,2 as small as possible.

From the previous argument it should be also clear why it is very impor-
tant to avoid the presence of rank-3 tensor integrals: for the above-mentioned
consistency reasons one should choose three different values of the thresh-
old parameter x̄1,2,3 to evaluate rank-1,-2,-3 integrals, with the relations

x̄1 ≃ (x̄3)
1/3 and x̄2 ≃ (x̄3)

2/3. If we would work in double precision, we
should choose x̄1 ≃ 10−2 − 10−3 and therefore we would introduce rather
large numerical errors.

I want to thank F. Jegerlehner, K. Kolodziej and S. Herrlich, with whom
I am collaborating to complete this calculation, and the organizers for the
very nice and stimulating atmosphere of the workshop.
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