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The decoupling relations for the strong coupling constant, αs, and the
light quark masses are considered in the framework of perturbative QCD.
A low-energy theorem is derived which connects the decoupling constants
to the coefficient functions of the effective Lagrangian responsible for the
decay of a Higgs boson in the intermediate-mass range. The evaluation of
the imaginary part of the correlators formed by the corresponding operators
completes the calculation of the decay of the Higgs boson into hadrons.

PACS numbers: 12.38.Bx

1. Introduction

The Higgs boson is the only not yet detected particle of the Standard
model. From the direct search at LEP up to now only a lower limit of
MH ∼> 90 GeV could be determined. Precision measurements in combination

with higher order calculations could set indirect limits of MH = 66+74
−39 GeV

with an upper bound of 215 GeV at 95% C.L. [1]. In this paper we will
restrict ourselves to a Higgs boson in the intermediate-mass range which
means that MH ∼< 2MW .

It is well known that the Appelquist-Carazzone decoupling theorem [2]
does not in general apply to quantities that do not represent physical ob-
servables. This means that, i.e., heavy quarks with mass mh do not au-
tomatically decouple even if we have m2

h ≫ µ2 where µ is the energy scale
under consideration. The standard way out is to use the language of effective
theory and do the decoupling “by hand”. In Sec. 2 this will be demonstrated
in the case of QCD. Afterwards, in Sec. 3, an effective Lagrangian for the
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interaction of an intermediate-mass Higgs boson to quarks and gluons is con-
sidered and the connection to the decoupling relation is established. Finally
we present numerical values for the decay of the Higgs boson into quarks up
to order α3

s and into gluons up to order α4
s.

2. Decoupling constants

In this section the decoupling constants are computed. They relate the
strong coupling αs and, respectively, the light quark masses in the full theory
to the corresponding quantities in the effective theory where the heavy quark
with mass mh is integrated out. To set up the notation let us introduce the
renormalization constants and write down the relations between the bare
and the renormalized quantities:

g0
s = µεZggs , m0

q = Zmmq , ξ0 − 1 = Z3(ξ − 1) ,

ψ0
q =

√

Z2ψq , G
0,a
µ =

√
Z3G

a
µ , c0,a =

√

Z̃3c
a , (1)

where gs =
√

4παs is the QCD gauge coupling, µ is the renormalization
scale, D = 4 − 2ε is the dimensionality of space time, ψq is a quark field
with mass mq, G

a
µ is the gluon field, and ca is the Faddeev-Popov-ghost field.

For simplicity, we do not display the colour indices of the quark fields. The
gauge parameter, ξ, is defined through the gluon propagator in lowest order,

i

q2 + iǫ

(

−gµν + ξ
qµqν

q2

)

.

The index ‘0’ marks bare quantities.
The bare decoupling constants are defined as follows:

g0 ′

s = ζ0
gg

0
s , m0 ′

q = ζ0
mm

0
q , ξ0 ′ − 1 = ζ0

3(ξ0 − 1) ,

ψ0 ′

q =
√

ζ0
2ψ

0
q , G0 ′,a

µ =
√

ζ0
3G

0,a
µ , c0 ′,a =

√

ζ̃0
3c

0,a , (2)

where the prime refers to the effective theory.
In a first step formulae for the bare decoupling constants are derived.

With the help of Eqs (1) they are then transformed into renormalized and
thus finite ones. As an example let us consider ζ0

2 which can be derived from
the propagator of a massless quark:

− 1

6p
[

1 +Σ0
V (p2)

] = i

∫

dxeip·x
〈

Tψ0
q(x)ψ̄

0
q (0)

〉

=
i

ζ0
2

∫

dxeip·x
〈

Tψ0 ′
q (x)ψ̄0 ′

q (0)
〉

= − 1

ζ0
2

1

6p
[

1 +Σ0 ′
V (p2)

] . (3)
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Note that Σ0 ′
V (p2) only depends on the light degrees of freedom and ζ0

2
itself is independent of the external momentum p. As we are interested
in mh → ∞ we may nullify p [3]. Within dimensional regularization the
quantity Σ0 ′

V (0) vanishes and thus we end up with tadpole integrals where
the scale is determined by the mass of the heavy quark. The formula for ζ0

2
finally reads:

ζ0
2 = 1 +Σ0h

V (0). (4)

In complete analogy similar formulae can be derived for the other decoupling
relations:

ζ0
m =

1 −Σ0h
S (0)

1 +Σ0h
V (0)

, ζ0
3 = 1 +Π0h

G (0), ζ̃0
3 = 1 +Π0h

c (0),

ζ0
g =

ζ̃0
1

ζ̃0
3

√

ζ0
3

, ζ̃0
1 = 1 + Γ 0h

Gc̄c(0, 0). (5)

where ΣV (p2) and ΣS(p2) are the vector and scalar components of the light-
quark self-energy, defined through Σ(p) = 6pΣV (p2) + mqΣS(p2), ΠG(p2)
and Πc(p

2) are the gluon and ghost vacuum polarizations, respectively, and
Γ 0h

Gc̄c(p, k) is determined through the one-particle-irreducible part of the am-
putated Gc̄c Green function.

In Fig. 1 some sample diagrams contributing to the two-, respectively,
three-point functions are pictured. At this point we refrain form listing the
results explicitly. They can be found in [4, 5]. Instead, we want to discuss
an application of the newly available three-loop terms for ζg and ζm. One of

the numerous experimental values for α
(5)
s (MZ) results from the measure-

ment of the hadronic τ decay. Once it is possible to extract α
(3)
s (Mτ ) at the

O(α4
s) precision it is necessary to use the four-loop β function [6] in order to

run the coupling constant from
√
s = Mτ to some other scale. It is further-

more necessary to use the three-loop matching relations every time a quark

Fig. 1. Typical three-loop diagrams contributing to Σ0h

V
(0), Σ0h

S
(0), Π0h

G
(0),

Π0h
c (0), and Γ 0h

Gc̄c
(0, 0). Solid, bold-faced, loopy, and dashed lines represent mass-

less quarks q, heavy quarks h, gluons G, and ghosts c, respectively.
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threshold is crossed. Let us illustrate the procedure by means of the fol-

lowing example: For a given value of α
(4)
s (Mτ ) we use the N -loop evolution

with four active flavours in order to get α
(4)
s (µ(5)). N -loop running must

be accompanied with N − 1-loop matching which fixes α
(5)
s (µ(5)). Finally

again the N -loop β function is used for the computation of α
(5)
s (MZ). In

Fig. 2, α
(5)
s (MZ) is shown for N = 1, 2, 3 and 4 as a function of µ(5) normal-

ized to Mb which constitutes somehow the natural scale for the matching
procedure as then the logarithms in the decoupling constants vanish. In a

µ(5)/Mb
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Fig. 2. µ(5) dependence of α
(5)
s (MZ) and m

(5)
c (MZ) calculated from α

(4)
s (Mτ ) =

0.36, respectively, µc = m
(4)
c (µc) = 1.2 GeV. Mb = 4.7 GeV and for the plot on

the r.h.s. α
(5)
s (MZ) = 0.118 has been chosen. The dotted, dashed, dot-dashed and

solid curves correspond to one-, two-, three- and four-loop running, respectively.

similar way also the charm quark mass m
(5)
c (MZ) can be computed from

m
(4)
c (µc) where µc = m

(4)
c (µc). The result is also shown in Fig. 2. By gen-

eral grounds α
(5)
s (MZ) and m

(5)
c (MZ) should be independent of µ(5) which

is varied rather extremely by almost two orders of magnitude. The analysis
in getting gradually more stable and the four-loop curves are almost flat for
µ(5)

∼> 1 GeV.

3. Low-energy theorems for an intermediate-mass Higgs boson

The interaction of the Standard Model Higgs boson with light quarks
and gluons is affected by the virtual presence of the top quark. As we are
interested in a Higgs boson in the intermediate-mass range it is very promis-
ing to construct an effective Lagrangian where the top quark is integrated
out. The starting point is the Yukawa Lagrangian of the full theory which
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generates in the limit Mt → ∞ the effective interactions:

L = −H
0

v0

nf
∑

i=1

m0
qi
ψ̄0

qi
ψ0

qi

Mt→∞−→ Leff = −H
0

v0

5
∑

i=1

C0
i O′

i. (6)

Here, v is the Higgs vacuum expectation value. The operators O′

i are con-
structed from the light degrees of freedom. It turns out that only two of
them contribute to the physical process [7, 8]:

O′

1 =
(

G0′,a
µν

)2
, O′

2 =

nl
∑

i=1

m0 ′
qi
ψ̄0 ′

qi
ψ0 ′

qi
, (7)

where Ga
µν is the colour field strength. The residual dependence on the top

quark is contained in the coefficient function C0
i . For the physical applica-

tions the renormalized Lagrangian is needed. It reads:

Lphys
eff = −H

v

(

C1

[

O′

1

]

+C2

[

O′

2

])

, (8)

with

[

O′

1

]

=

[

1 + 2

(

α′

s∂

∂α′

s

lnZ ′

g

)]

O′

1 − 4

(

α′

s∂

∂α′

s

lnZ ′

m

)

O′

2,
[

O′

2

]

= O′

2,

C1 =
1

1 + 2(α′

s∂/∂α
′

s) lnZ ′

g

C0
1 , C2 =

4(α′

s∂/∂α
′

s) lnZ ′

m

1 + 2(α′

s∂/∂α
′

s) lnZ ′

g

C0
1 +C0

2 .

In Eq. (8) the factor H0/v0 has been replaced by the renormalized one as it
doesn’t receive QCD corrections.

The derivation of formulae to compute the coefficient functions is very
similar to the case of the decoupling relations: One considers a one-particle-
irreducible Green function involving next to the Higgs boson a certain num-
ber of gluons and light quarks. After performing the limit mh → ∞ the
contributions form the individual operators can be identified. For the com-
putation of the coefficient functions it is again possible to nullify the external
momenta which reduces the calculation again to the evaluation of tadpole
integrals. Finally one can exploit the fact that the Yukawa coupling of the
Higgs boson is proportional to m0

h which leads to the following set of equa-
tions:

ζ0
3 (−4C0

1 + 2C0
4 ) = −1

2
∂0

hΠ
0h
G (0), ζ0

2C
0
3 = −1

2
∂0

hΣ
0h
V (0),

ζ0
mζ

0
2(C0

2 − C0
3 ) = 1 −Σ0h

S (0) − 1

2
∂0

hΣ
0h
S (0), ζ̃0

3 (C0
4 + C0

5 ) =
1

2
∂0

hΠ
0h
c (0),

ζ̃0
1C

0
5 =

1

2
∂0

hΓ
0h
Gc̄c(0, 0), (9)
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where ∂0
h =

[

(m0
h)2∂/∂(m0

h)2
]

. On the r.h.s. of Eqs. (9) the same functions
appear as in Eqs. (5). Therefore it is tempting to express the coefficient
functions directly in terms of the decoupling relations. We were able to find
the following two equations for C1 and C2:

C1 = −1

2
∂h ln ζ2

g , C2 = 1 + 2∂h ln ζm. (10)

These equations have the nice feature that according to the logarithmic
derivative even the O(α4

s) contributions to C1 and C2 can be computed
as it is possible to reconstruct the lnmh terms of the four-loop decoupling
relations using common renormalization group techniques. It is also pos-
sible to relate C1 and C2 directly to the β [6] and γm [9] functions. The
corresponding relations can be found in [5].

4. Higher order QCD corrections to the hadronic Higgs decay

The missing pieces for the computation of the hadronic decay rate are
the imaginary parts of the correlators 〈[O′

i][O′

j ]〉. Typical Feynman diagrams
which have to be considered are pictured in Fig. 3. It turns out that at three-
loop level it is more convenient to compute in a first step the real part and
extract the imaginary part afterwards [10, 12].

Fig. 3. Typical Feynman diagrams contributing to the correlators 〈O′

1O′

1〉, 〈O′

1O′

2〉
and 〈O′

2O′

2〉. In the latter case also the imaginary part of the four-loop correlator

is available. Looped, solid, and dashed lines represent gluons, light quarks, and H

bosons, respectively. Solid circles represent insertions of O′

1, respectively, O′

2.

Note, that C1 starts at order αs. Hence the combination C2
1 Im〈O′

1O′

1〉
governing the gluonic decay rate of the Higgs boson is available up to O(α4

s).
Normalized to the Born rate it reads in numerical form (µ = MH):

Γ (H → gg)

ΓBorn(H → gg)
≈ 1 + 17.917

α
(5)
s (MH)

π

+

(

α
(5)
s (MH)

π

)2
(

156.808 − 5.708 ln
M2

t

M2
H

)

≈ 1 + 0.66 + 0.21,
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with ΓBorn(H → gg) = GFM
3
H/36π

√
2 × (α

(5)
s (MH)/π)2. In the last line

Mt = 175 GeV and MH = 100 GeV has been chosen. The analytical ex-
pressions can be found in [10]. We observe that the new O(α2

s) term further
increases the well-known O(αs) enhancement [7, 11] by about one third. If
we assume that this trend continues to O(α3

s) and beyond, then Eq. (11)
may already be regarded as a useful approximation to the full result. In-
clusion of the new O(α2

s) correction leads to an increase of the Higgs-boson
hadronic width by an amount of order 1%.

Concerning the decay rate into quarks we restrict ourselves to the case
of bottom quarks. Inserting numerical values into the coefficient functions
C1 and C2 and the correlators Im〈O′

1O′

2〉 [12] and Im〈O′

2O′

2〉 [12, 13] leads
to:

Γ (H → bb̄) = Abb̄

{

1 + 5.667 a
(5)
H + 29.147

(

a
(5)
H

)2
+ 41.758

(

a
(5)
H

)3

+
(

a
(5)
H

)2
[3.111 − 0.667Lt] +

(

a
(5)
H

)3
[

50.474 − 8.167Lt − 1.278L2
t

]

}

,

(11)

with Abb̄ = 3GFMHm
2
b/4π

√
2, Lt = lnM2

H/M
2
t and a

(5)
H = α

(5)
s (MH)/π. In

Eq. (11) electromagnetic and electroweak corrections have been neglected.
Also mass correction terms and second order QCD corrections which are
suppressed by the top quark mass are not displayed. One observes from
Eq. (11) that the top-induced corrections at O(α3

s) (second line) are of the
same order of magnitude than the “massless” corrections (first line).

I would like to thank the organizers for the invitation and the pleasant
atmosphere during the workshop.

REFERENCES

[1] R. Clare, Acta Phys. Pol. B29, 2667 (1998), these proceedings.

[2] T. Appelquist, J. Carazzone, Phys. Rev. D11, 2856 (1975).

[3] S.G. Gorishny, S.A. Larin, Nucl. Phys. B283, 452 (1987) and references cited
therein.

[4] K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 79, 2184
(1997).

[5] K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Nucl. Phys. B510, 61 (1998).

[6] T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, Phys. Lett. B400, 379
(1997); T. van Ritbergen, Acta Phys. Pol. B29, 2567 (1998), these proceed-
ings.



2890 M. Steinhauser

[7] T. Inami, T. Kubota, Y. Okada, Z. Phys. C18, 69 (1983).

[8] V.P. Spiridonov, INR Report No. P–0378 (1984).

[9] K.G. Chetyrkin, Phys. Lett. B404, 161 (1997); S.A. Larin, T. van Ritbergen,
J.A.M. Vermaseren, Phys. Lett. B405, 327 (1997).

[10] K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 79, 353 (1997).

[11] A. Djouadi, M. Spira, P.M. Zerwas, Phys. Lett. B264, 440 (1991).

[12] K.G. Chetyrkin, M. Steinhauser, Phys. Lett. B408, 320 (1997).

[13] K.G. Chetyrkin, Phys. Lett. B390, 309 (1997).


