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A connection between one-loop N -point Feynman diagrams and certain
geometrical quantities in non-Euclidean geometry is discussed. A geomet-
rical way to calculate the corresponding Feynman integrals is considered.

PACS numbers: 12.38.Bx

1. Introduction

As a rule, explicit results for diagrams with several external legs possess a
rather complicated analytical structure. This structure can be better under-
stood if one employs a geometrical interpretation of kinematic invariants and
other quantities. For example, the singularities of the general three-point
function can be described pictorially through a tetrahedron constructed out
of the external and internal momenta. This method can be used to derive the
Landau equations defining the positions of possible singularities [1] (see also
in [2]) and a similar approach can be applied to the four-point function [3]
too. Another known example of using geometrical ideas is the massless
three-point function with arbitrary off-shell external momenta (see [4, 5]).
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In this paper, we briefly describe how some geometrical ideas can be
used to calculate multileg Feynman diagrams. In particular, we show that
there is a direct transition from the Feynman parametric representation to
the geometrical description connected with an N -dimensional simplex. A
more detailed discussion can be found in [6] (see also in [7]).

2. A simplex related to the N-point function

The scalar integral corresponding to the one-loop N -point function is

J (N)(n; ν1, . . . , νN ) ≡
∫

dnq

N
∏

i=1

[

(pi + q)2 −m2
i

]−νi

, (1)

where n is the space-time dimension and νi are the powers of the propagators.
In general, it depends on 1

2N(N − 1) momenta invariants k2
jl (j < l), where

kjl ≡ pj − pl, and N masses mi corresponding to the internal propagators.
The Feynman parametric representation for the integral (1) reads

J (N) (n; ν1, . . . , νN ) = i1−2Σνiπn/2 Γ
(

∑

νi − n
2

) [

∏

Γ (νi)
]−1

×
1
∫

0

. . .

1
∫

0

∏

ανi−1
i dαi δ

(

∑

αi − 1
)

×
[

∑

α2
im

2
i +2

∑∑

j<l
αjαlmjmlcjl

]n/2−Σνi

, (2)

where
cjl ≡ (m2

j +m2
l − k2

jl)/(2mjml). (3)

In the region between the corresponding two-particle pseudo-threshold, k2
jl =

(mj − ml)
2, and the threshold, k2

jl = (mj + ml)
2, we have |cjl| < 1, and

therefore in this region they can be understood as cosines of some angles
τjl, cjl = cos τjl, with cjl = 1 and τjl = 0 at the pseudo thresholds, whereas
at the threshold cjl = −1 and τjl = π. Note that the limits of integration
in Eq. (2) can be extended from (0, 1) to (0,∞), since the actual region of
integration is defined by the δ function. The expressions in other regions
should be understood in the sense of analytic continuation, using (when
necessary) the causal prescription for the propagators.

Let us consider a set of N -dimensional Euclidean “mass” vectors whose
lengths are mi. Let them be directed so that the angle between the j-th
and the l-th vectors is τjl. If we denote the corresponding unit vectors as ai

(so that the “mass” vectors are miai), we get (aj · al) = cos τjl = cjl. If we
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put all “mass” vectors together as emanating from a common origin, they,
together with the sides connecting their ends, will define a simplex which is
the basic one for a given Feynman diagram. In two dimensions, the simplex
is just a triangle, whereas in three dimensions we get a tetrahedron. It is
easy to see that the length of the side connecting the ends of the j-th and

the l-th mass vectors is
√

k2
jl, so we shall call it a “momentum” side. In

total, the basic N -dimensional simplex has 1
2N(N + 1) sides, among them

N mass sides (corresponding to the masses m1, . . . ,mN ) and 1
2N(N − 1)

momentum sides (corresponding to the momenta kjl, j < l), which meet at
(N + 1) vertices. Each vertex is a “meeting point” for N sides. There is one
vertex where all mass sides meet, the mass meeting point, whereas all other
vertices are meeting points for (N − 1) momentum sides and one mass side.

The matrix ‖c‖ ≡ ‖cjl‖ with the components (3) is nothing but the Gram
matrix of the vectors a1, . . . , aN . It is associated with many geometrical
properties of the basic simplex. In particular, we need its determinant,

D(N) ≡ det ‖cjl‖. (4)

The content (hyper-volume) of the N -dimensional simplex is given by

V (N) =
1

N !

(

N
∏

i=1

mi

)

√

D(N) . (5)

The number of (N − 1)-dimensional hyperfaces is (N + 1). N of them
correspond to the (N − 1)-point functions, which can be obtained from the
basic N -point function by shrinking one of the internal propagators in turn.
The last hyperface contains only momentum sides and can be associated
with the massless N -point function. The content of this (N−1)-dimensional
momentum hyperface is

Λ(N)

(N − 1)!
, Λ(N) = det ‖(kjN · klN )‖. (6)

Using substitutions of variables similar to those described in Refs. [5,8],
we can transform (2) into the following form:

J (N) (n; ν1, . . . , νN ) = 2i1−2Σνiπn/2 Γ
(

∑

νi− n
2

) [

∏

Γ (νi)
]−1 ∏

m−νi

i

×
∞
∫

0

. . .

∞
∫

0

∏

ανi−1
i dαi δ

(

αT ‖c‖α−1
)

(

∑ αi

mi

)Σνi−n

, (7)

where

αT ‖c‖α ≡
N
∑

j=1

N
∑

l=1

cjlαjαl =
∑

α2
i + 2

∑∑

j<l
αjαlcjl. (8)
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Consider a special case n = N , ν1 = . . . = νN = 1. In this case, the
integrand of the parametric integral in (7) is just the δ function. The integra-
tion extends over a part of a quadratic hypersurface defined by αT ‖c‖α = 1.
We can make a rotation to the principal axes, αT ‖c‖α ⇒ ∑

λiβ
2
i , where

λ1 . . . λN = D(N). Let us assume that all λi are real and positive, i.e. the
hypersurface is an N -dimensional ellipsoid (if some of the λ’s are negative,
the analytic continuation should be used). Now we can rescale βi = γi/

√
λi,

and the ellipsoid becomes a hypersphere. All we need to calculate is the
content of a part of this hypersphere which is cut out (in the space of γi)
by the images of the hyperfaces restricting the region where all αi are pos-
itive (in the space of αi). This content, Ω(N), can be understood as the
N -dimensional solid angle subtended by the above-mentioned hyperfaces.

The following statement can be proved (see in [6]): The content of theN -
dimensional solid angle Ω(N) in the space of γi is equal to that at the mass
meeting point of the basic N -dimensional simplex. Moreover, the angles
between the corresponding hyperfaces in the space of γi and those in the
basic simplex are the same. Therefore, the result can be expressed as

J (N) (N ; 1, . . . , 1) = i1−2N πN/2 Γ (N/2)

N !

Ω(N)

V (N)
. (9)

We see that Ω(N) is indeed the only thing which is to be calculated, since
V (N) is known through Eq. (5).

Moreover, Ω(N) is nothing but the content of a non-Euclidean (N − 1)-
dimensional simplex calculated in the spherical (or hyperbolic, depending on
the signature of the eigenvalues λi) space of constant curvature. The sides
of this non-Euclidean simplex are equal to the angles τjl. Therefore, the
problem of calculating Feynman integrals is intimately connected with the
problem of calculating the content of a simplex in non-Euclidean geometry.

In the general case, when Σνi 6= n, we need some modification of the
above transformations (see Ref. [6]). In particular, when ν1 = . . . = νN = 1
(but N 6= n) the result generalizing Eq. (9) reads

J (N)(n; 1, . . . , 1) = i1−2Nπn/2 Γ
(

N − n
2

) mn−N
0 Ω(N ;n)

N ! V (N)
, (10)

with

Ω(N ;n) ≡
∫

. . .
∫

Ω(N)

dΩN

cosn−N θ
. (11)

Geometrically, θ can be understood as the angle between the “running” vec-
tor of integration and the direction of the height of the basic simplex, H0.



Geometrical Approach to the Evaluation of Multileg Feynman Diagrams 2895

Denoting the angle between H0 and the i-th mass side as τ0i, we get

cos τ0i =
m0

mi
, m0 ≡ |H0| =

(

N
∏

i=1

mi

)

√

D(N)/Λ(N), (12)

with Λ(N) defined by Eq. (6).
Furthermore, we can use the height H0 to split the basic N -dimensional

simplex into N rectangular ones, each time replacing one of the mass sides,

mi, by H0 (|H0| = m0). In this way, we split Ω(N) into N parts Ω
(N)
i .

Therefore, the Feynman integral (10) can be presented as

J (N)(n; 1, . . . , 1) =
N
∑

i=1

V
(N)
i

V (N)
J

(N)
i (n; 1, . . . , 1), (13)

where J
(N)
i denotes the integral associated with the i-th rectangular simplex,

whilst V
(N)
i is the known content of this simplex.

3. Some examples

For the two-point function, the basic simplex is a triangle with the sides
m1, m2 and

√

k2
12. Furthermore, V (2) = 1

2m1m2 sin τ12, Ω
(2) = τ12 and

Λ(2) = k2
12. In two dimensions, from (9) we obtain the well-known result

J (2)(2; 1, 1) =
iπ

m1m2

τ12
sin τ12

, (14)

In four dimensions, introducing dimensional regularization [9], we get

J (2)(4 − 2ε; 1, 1) = iπ2−εΓ (ε)
m1−2ε

0√
Λ(2)

{

Ω
(2;4−2ε)
1 +Ω

(2;4−2ε)
2

}

, (15)

with (see, e.g., in [10])

Ω
(2;4−2ε)
i =

τ0i
∫

0

dθ

cos2−2ε θ
= 2 tan τ0i 2F1

(

1/2, ε
3/2

∣

∣

∣

∣

− tan2 τ0i

)

, (16)

where τ01 and τ02 are defined in Eq. (12), τ01 + τ02 = τ12.
For the three-point function, the three-dimensional basic simplex is a

tetrahedron with three mass sides (the angles between these mass sides are
τ12, τ13 and τ23) and three momentum sides. The volume of this tetrahedron
is defined by Eq. (5) at N = 3. Furthermore, Ω(3) is the usual solid angle at
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the vertex derived by the mass sides. Its value can be defined as the area of
a part of the unit sphere cut out by the three planar faces adjacent to the
vertex; in other words, this is the area of a spherical triangle corresponding
to this section. The sides of this spherical triangle are obviously equal to the
angles τ12, τ13 and τ23 while its angles, ψ12, ψ13 and ψ23, are equal to those
between the plane faces. The area of this spherical triangle is

Ω(3) = ψ12 + ψ13 + ψ23 − π = 2arctan

( √
D(3)

(1+c12+c13+c23)

)

. (17)

Finally, the result

J (3)(3; 1, 1, 1) = − iπ2

2m1m2m3

Ω(3)

√
D(3)

(18)

corresponds to one obtained in [11] in a different way.
If we consider the four-dimensional three-point function, the only (but

very essential!) difference is that we should divide the integrand by cos θ. We
split the spherical triangle with the sides τ12, τ13 and τ23 into three spher-
ical triangles, corresponding to the solid angles of rectangular tetrahedra.
Calculating the corresponding integrals, we obtain the result in terms of the
dilogarithms, or the Clausen function (see e.g. in [12]).

For the four-point function, the corresponding four-dimensional simplex
has four mass sides and six momentum sides. It has five vertices and five
three-dimensional hyperfaces. Four of these hyperfaces are the reduced ones,
corresponding to three-point functions, whereas the fifth one is the mo-
mentum hyperface. This four-dimensional simplex is completely defined
by its mass sides m1,m2,m3,m4 and six “planar” angles between them,
τ12, τ13, τ14, τ23, τ24 and τ34. The content (hyper-volume) of this simplex is
given by Eq. (5) at N = 4, with D(4) = det ‖cjl‖.

The four-dimensional four-point function can be exhibited as (cf. Eq. (9))

J (4)(4; 1, 1, 1, 1) = 1
12 iπ2 Ω

(4)

V (4)
=

2 iπ2

m1m2m3m4

Ω(4)

√
D(4)

. (19)

So, the main problem is how to calculate Ω(4).
In four dimensions, Ω(4) is the value of the four-dimensional generaliza-

tion of the solid angle at the mass meeting point of the simplex. In the
spherical case, it can be defined as the volume of a part of the unit hy-
persphere which is cut out from it by the four three-dimensional reduced
hyperfaces, each hyperface involving three mass sides of the simplex. This
hyper-section is a three-dimensional spherical tetrahedron whose six sides
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(edges) are equal to the angles τjl. In the hyperbolic case, this is a hyper-
bolic tetrahedron whose volume can be obtained by analytic continuation.

Unfortunately, there are no simple relations like (17) which might make
it possible to express the volume of a spherical (or hyperbolic) tetrahedron
in terms of its sides or dihedral angles. In fact, calculation of this volume
in an elliptic or hyperbolic space is a well-known problem of non-Euclidean
geometry (see e.g. in [14]). A standard way to solve this problem, say in
spherical space, is to split an arbitrary tetrahedron into a set of birectan-
gular ones. The volume of a birectangular tetrahedron is known and can
be expressed in terms of Lobachevsky or Schläfli functions which can be
related to dilogarithms or Clausen function (see in [15]). Different ways of
splitting the non-Euclidean tetrahedron can be used to reduce the number
of dilogarithms (or related functions) involved (cf. in [12, 13]).

4. Conclusion

We have shown that there is a direct link between Feynman parametric
representation of a one-loop N -point function and the basic simplex in N -
dimensional Euclidean space. In the case N = n (where n is the space-time
dimension), the result for the Feynman integral turns out to be propor-
tional to the ratio of an N -dimensional solid angle at the meeting point of
the mass sides to the content of the N -dimensional basic simplex. For the
four-dimensional four-point function, the representation (7) provides a very
interesting connection with the volume of the non-Euclidean (spherical or
hyperbolic) tetrahedron.

In the general case (N 6= n), the height of the basic simplex, H0, plays an
essential role in the calculation of the integrals. It is used to split the basic
Euclidean simplex into N rectangular simplices. When N < n, this splitting
simplifies the calculation of separate integrals. When N = n + 1, each

integral J
(N)
i (see Eq. (13)) corresponding to one of the resulting rectangular

tetrahedra can be reduced to an (N − 1)-point function (cf. also in [11,16]).
In the resulting expressions, all arguments of functions arising possess a

straightforward geometrical meaning in terms of the dihedral angles, etc. In
particular, this is quite useful for choosing the most convenient kinematic
variables to describe the N -point diagrams. We suggest that this approach
can help in understanding the geometrical structure of loop integrals with
several external legs, as well as the structure of phase-space integrals. We
also note a connection with 3-loop vacuum graphs in three dimensions [17].
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