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A novel extrapolation method has been used to deduce directly the
charged πNN coupling constant from backward np differential scattering
cross sections. The extracted value, g2c = 14.52(0.26) is higher than the
indirectly deduced values obtained in nucleon-nucleon energy-dependent
partial-wave analyses. Our preliminary direct value from a reanalysis of
the GMO sum-rule points to an intermediate value of g2c about 13.97(30).
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1. Introduction

The πNN coupling is a basic quantity both in nuclear physics and in
particle physics. In nuclei it sets the scale of the interaction together with
the pion mass and it the fundamental constant. In particle physics it is of
great importance for one of the most important tests of chiral symmetry
[1]. Its experimental error is the main obstacle in the accurate discussion of
the corrections to the Goldberger–Treiman relation as predicted from chiral
symmetry breaking. With the latest value for the axial coupling constant,
gA = 1.266(4) [2], this relation would lead to g2GT (q

2 = 0) = 13.16(16), if
it were exact, which is not expected. The uncertainty, here of about ±1%,
comes from the experimental error in gA and fπ. The value above is takes
into account the remeasured value for the neutron life time: until a short
time ago the old neutron lifetime gave g2GT (q

2 = 0) = 12.81 ± 0.12. The
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characteristic correction to the relation can be estimated from the effect of
the form factor to be of order 2m2

π/Λ
2, where Λ is a monopole formfactor

of order 800 MeV/c. This corresponds to a +6% correction or δg2 about
+0.8 which gives a coupling constant of about 14. From the precision of this
relation we note that an accuracy of the πNN coupling constant of about
1% is desirable.

The present situation is the following. In the 1980’s, the πNN cou-
pling constant was believed to be well known. In particular, Koch and
Pietarinen [3] determined a value of the charged pion coupling constant,
g2c = 14.28(18), from π±p scattering data. All this was put in question in the
early 1990’s when the Nijmegen group [5–7] determined smaller values on the
basis of energy-dependent partial-wave analyses (PWA) of nucleon–nucleon
(NN) scattering data. They obtained g20 = 13.47(11) and g2c = 13.58(5).
Similar values with g2 about = 13.7 have also been found by the Virginia
Tech group [8–10] from analysis of both π±N and NN data. Using a very
similar method in the πp sector Timmermans also finds similar values [12].
A larger value with a larger quoted error has been found by our group using
the methods which will be discussed below. The situation is summarized in
the Table I.

TABLE I

Some important determinations of the pion–nucleon coupling constant

Source Year System g2πNN

Karlsruhe-Helsinki [3] 1980 πp 14.28(18)
Kroll[4] 1980 pp 14.52(40)

Nijmegen [7] 1993 pp 13.58(5)
VPI [9] 1994 pp 13.7
Nijmegen [11] 1997 pp, np 13.48(5)
Timmermans [12] 1997 πp 13.39(14)

VPI [10] 1994 GMO πp 13.75(15)
Uppsala [13] 1995 np charge exchange 14.62(30)
Uppsala[15] 1998 np charge exchange 14.52(26)

It has become quite clear that the determinations in the 1980’s were too
optimistic about the systematic errors originating in experimental uncer-
tainties. The present global partial wave analyses based on the compounded
data of many experiments treated as statistically independent, but with a
selection of data, yield both from NN data and πN data a coupling con-
stant of order 13.5 with a precision of 1/2 to 1% and in fact quoted to a
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precision of even 1/3% in some cases. The goal of determining the πNN
coupling to 1% precision appears to have been achieved. Why do we bother
to attempt a determination that cannot match the accuracy of better than
1%? The reason is methodological. The high precision has been achieved
by removing obviously deviant data and some more in addition and then
analyzing the rest purely statistically. The resulting value is very indirect
and based on a large number of experiments, each with inevitable systematic
errors. There is no way known to us to determine a true systematic error
in this procedure. It may be that the value which is obtained is the correct
one, but the uncertainty is unknown. This is why the usual procedure in
any branch of physics is to determine fundamental constants directly from
highly controlled, dedicated and improvable experiments using transparent
methods of analysis subject to constructive criticism. The precision will be
less, at least initially, but the approach is then controllable. There should
be no disagreement in principle on the desirability of the direct approach.

There are not many possibilities to determine the pion-nucleon coupling
constant directly. In the πN sector the best prospect is the Goldberger-
Miyazawa-Oehme (GMO) sum-rule, while in the NN sector we favor the np
charge exchange reaction in the backward direction. It is in this spirit we
have developed a method of analyzing accurate single energy experiments of
backward np charge exchange to be described below and have collaborated
closely with a dedicated experiment in this area [13, 15].

Our work has given rise to an animated debate with the Nijmegen group.
In their earlier analysis [7] the pion-nucleon coupling constant appeared
rather insensitive to such backward np cross section within the approach
used by the Nijmegen group. In our work [13, 15], we demonstrate the
opposite using explicit analysis of extensive sets of ‘pseudodata’ built from
models in common use. The experimental normalization of the cross section
is crucial and this has been a well known problem in the past. Most energy-
dependent PWA’s and in particular the Nijmegen one have therefore chosen
to let the normalization of data float more or less freely. The sensitivity to
the np cross section is then lost, and the coupling constant depends diffusely
on many observables. There is strong evidence that precision data of the
backward np cross section is one of the best places in the NN sector to
determine the charged coupling constant directly. We now describe the
extrapolation procedure and its results then give preliminary, independent
results on the coupling constant from our ongoing re evaluation of GMO
sum rule.

2. Neutron–proton charge exchange data analysis

It is very striking that the np unpolarized charge exchange cross sections
in a very large range of energies from about 100 MeV to several GeV, have
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similar shape and normalization (in the laboratory system). These data
contain essentially the same physical information as far as the extrapolation
to the pion pole is concerned. Here we shall concentrate our analysis to new
precise data at 162 MeV [15] consisting of an extension from θCM = 72◦ to
120◦ of our previous backward measurement [13]. This allows to improve
the absolute normalization to about ±2%. A study of the present np data
base [18], shows that there are two main families with respect to the angular
shape. The first one is dominated by the Bonner et al. data [19], which have
a flattish angular distribution at backward angles. The second one, which
includes our measurements and the Hürster et al. [20] data, have a steeper
angular shape. The total c.m. cross sections can be defined in terms of the
five amplitudes a, b, c, d, e as

dσ

dΩ
(q2) =

1

2
(|a|2 + |b|2 + |c|2 + |d|2 + |e|2)

=
1

2

[
1

2
(|a+ c|2 + |a− c|2) + 1

2
(|b+ d|2 + |b− d|2) + |e|2

]
,

where q2 is the squared momentum transfer from the neutron to the proton.

In order to understand the qualitative contributions of pion exchange,
we have chosen the regularized pion Born amplitudes of Ref. [21] with the
r-space δ-function subtracted. This ensures a non-zero cross section at 180◦.
The different components for this Born pion terms, and for the more realistic
Paris potential, are then displayed in Figs 1(a) and 1(b), respectively. The
combination |b−d|2, which contains the entire pion pole term, is for the Paris
potential remarkably close to that of the Born term, particularly at small

Fig. 1. Contributions to the np cross section at 162 MeV of combinations of the
amplitudes a, b, c, d, e of Eq. 1. (a) for the regularized pion Born terms (b) for
the Paris potential model.
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q2. The term |a + c|2 is very small in both cases and the more important
|a−c|2 terms are again very similar. The simple structure of the term which
contains the pion pole gives considerable confidence that the extrapolation
can be achieved realistically.

3. Extrapolation to the pion pole

The basic step to extrapolate to the pion pole is to construct a smooth
physical function, the Chew function [22],

y(x) =
sx2

m4
πg

4
R

dσ

dΩ
(x) =

n−1∑
i=0

aix
i. (1)

Here s is the square of the total energy and x = q2 +m2
π. At the pion pole

x = 0, the Chew function gives y(0) ≡ a0 ≡ g4/g4R, g being the pseudoscalar
coupling constant related to the pseudovector coupling by f = (mπ+/2Mp)g.
The quantity g2R is a reference scale for the coupling chosen for convenience.
The model-independent extrapolation requires accurate data with absolute
normalization of the differential cross section. If the differential cross section
is incorrectly normalized by a factor N , the extrapolation determines

√
Ng2.

The Difference Method, which we introduced to obtain a substantial
improvement [13], is based on the Chew function, but it recognizes that a
major part in the cross section behaviour is described by models with exactly
known values for the coupling constant. It applies the Chew method to the
difference between the function y(x) obtained from a model and from the
experimental data, i.e.,

yM (x)− yexp(x) =
n−1∑
i=0

dix
i (2)

with gR of Eq. 1 replaced by the model value gM . At the pole yM (0) −
yexp(0) ≡ d0 ≡ (g4M−g4)/g4M . This should diminish systematic extrapolation
errors and remove a substantial part of the irrelevant information at large
momentum transfers.

In our work we have explicitly shown, using ‘pseudodata’ generated from
models in common use including the Nijmegen potential [17], that we can
reproduce the input coupling constants of the models to a precision less than
1%. We have grouped the data into a “reduced range”, 0 < q2 < 4 m2

π with
31 data points and a “full range”, 0 < q2 < 10.1 m2

π with 54 data points.
The reduced range is the range of the data available for the analysis in our
previous work [13]. This allows to check the sensitivity and stability of the
extrapolation to a particular cut in momentum transfer and to verify that
it is the small q2 region that carries most of the pion pole information.
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The Difference Method requires only a few terms in the polynomial ex-
pansion in favorable cases, and this gives a small, statistical extrapolation
error. The similarity between the angular distributions from models and the
experimental data is exploited, particularly for large q2. This incorporates
substantial additional physical information without introducing any model
dependence. We apply the method using three comparison models: the Ni-
jmegen potential [17], the Nijmegen energy-dependent PWA NI93 [23] as
well as the Virginia SM95 energy-dependent PWA [24, 25]. The result, for
this last case, is shown in Fig. 2 for the reduced and full ranges of data. In all
cases the extrapolation to the pole can be made easily and already a visual
extrapolation gives a good result. The polynomial fits cause no problem as
long as the data are not overparametrized. The resulting g2 = 14.52± 0.26
is consistent with our previous finding [13].

Fig. 2. Extrapolations of the Chew function y(q2) to the pion pole at 162 MeV with
the Difference Method using PWA SM95 as comparison model, different order of
polynomials and different intervals in q2. The left panel uses the reduced range
0 < q2 < 4 m2

π; the right panel uses the full range 0 < q2 < 10.1 m2
π.

Subsequent to our first publication [13] Arndt et al. [25] subjected a
major part of the np charge exchange cross section data to an analysis using
the Difference Method at energies from 0.1 to 1 GeV. They found an average
value 13.75 using SM95 as comparison model. Their individual results show
a considerable scatter of approximately ±10%. This appears to come from
the quality of the data. In particular, the deduced g2 shows systematic
trends with energy as can be seen in Fig. 3 for the Bonner data leading to
an increase of g2 with energy. Note that for energies above 400 MeV the
slope of the data at large angle is as steep as that of the Uppsala data.

There is a spread of 7 % for the value of the πNN coupling constant
between our determination and the one PWA value. If one or the other is
adopted has important consequences on our present understanding of QCD.
Here we have shown that using the most accurate extrapolation method, the
Difference Method, on high precision np differential cross section measure-
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Fig. 3. g2 values obtained [25] with the Difference method applied to the Bonner
data [19] using the PWA SM95 as comparison model. The dotted line is the
average g2 when applied to many data from .1 to 1 GeV, the solid line a linear
fit to the Bonner’s g2. The systematic variation with energy indicates systematic
uncertainties in these experiments.

ments at 162 MeV in the angular range 72◦–180◦ one can obtain a precise
value of this coupling, namely

√
Ng2 = 14.52 ± 0.13 with a systematic er-

ror of about ±0.15 and a normalization uncertainty of ±0.17. We have no
difficulty in reproducing the input coupling constants of models using equiv-
alent pseudo-data. The practical usefulness of the method, its precision and
its relative insensitivity to systematics appear to be in hand without seri-
ous problems. The data were normalized using the total np cross section,
which is one of the most accurately known cross sections in nuclear physics,
together with a novel approach, in which the differential cross section mea-
surement was considered as a simultaneous measurement of a fraction of the
total cross section. In the angular region 150◦–180◦, our data are steeper
than those of the large data set of Bonner et al. [19] below about 400 MeV.
This steeper behaviour, leading to a high value of g2, should be confirmed
and a dedicated np charge exchange precision experiment at 200 MeV with a
tagged neutron, to allow an absolute measurement, is going to be performed
at IUCF.

In view of this situation we have asked ourselves, whether a larger value
is supported by other direct evidence. An obvious place to investigate is the
GMO relation.
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4. The GMO relation

The GMO dispersion relation[16] is the following relation between the
charged πNN coupling constant, the πp scattering lengths and an integral
over the difference between the total cross sections for π+p and π−p. Al-
though it is often discussed in terms of isospin in the literature, isospin
conservation is not assumed in this form.

g2c = 90.0J− + 10.35

(
aπ−p − aπ+p

2

)
. (3)

Here the integral is given by

J− =
1

4π2

∞∫
0

σTπ+p − σ
T
π−p

ω
dk . (4)

Everything is in principle measurable to good precision. Still this ex-
pression has not been too useful in the past and even now there are a few
question marks. The reason was that the scattering lengths for a long time
were theoretical constructs from the analysis of scattering experiments at
higher energies. Recent splendid experiments at PSI[26] now determine the
π−p and π−d energy shifts and widths in pionic atoms to very high preci-
sion and from that the corresponding scattering lengths follow accurately.
Electromagnetic corrections are under excellent control. We (B. Loiseau,
T. Ericson and A.W. Thomas) have critically examined the situation with
careful attention to errors. In particular, we have examined the accuracy of
the constraints due to pion-deuteron data.

In order to get a robust evaluation we write the relation as

g2c = 90.0J− + 10.35aπ−p − 10.35

(
aπ−p + aπ+p

2

)
. (5)

or, numerically,

g2c = 4.85(22) + 9.12(9)− 10.35

(
aπ−p + aπ+p

2

)
. (6)

Here the first two terms add up to 13.97(24), while the last term is a small
quantity which we can evaluate using the deuteron scattering length. Un-
certainties in this term will not have a major impact on the result which is
stable. We arrive at the following preliminary conclusions.

g2c (GMO) = 13.98(29?) .

The magnitude of contributions to the correction term are seen as follows
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TABLE II

Magnitude of terms in −10.35
(
aπ−p+aπ+p

2

)
Source δg2πNN

Impulse approximation
−10.35aπ−d +1.34(11)
double s wave scattering −1.30
p wave single scattering +0.25
s-p wave double scattering[27]
(probably spurious) −0.022
Dispersion correction [28] +0.27(9)

Net correction (no s-p interference) +0.04(14)

These results requires a correct analysis of the deuteron scattering length
only to about 12–15% precision and the uncertainties do not come from
the deuteron. Instead, the largest uncertainty comes from the dispersive
integral, although it only represents 30% of the sum rule and the cross
sections are rather accurately known to nearly 10 GeV. Present estimates
suggest a 5% systematic uncertainty in the integral, mainly associated with a
high energy extrapolation. The result is intermediate between the Difference
Method and the PWA ones and consistent with the former.

5. Conclusion

We have two direct determinations of the coupling constant.

g2c = 14.52± 0.13± 0.15± 0.17 = 14.52(26) (Difference Method)

g2c = 13.98 ± 0.29? (GMO relation: preliminary, error probably over-
estimated)

Both of these approaches can be improved. The Difference Method would
profit mainly from an improved absolute normalization and a precision of
about 1% appears possible. In the GMO relation the large systematic error
in the dispersion integral can certainly be reduced. Although the multiple
scattering description and dispersive corrections in the deuteron presently
give no major limitation to the precision both are improvable. An ultimate
precision of 1/2 to 1 % in the value from the GMO relation seems within
reach.
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