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We use a new value for the s-wave matrix element at threshold for the
pp → dπ+ reaction to determine the isoscalar πN scattering length. This
is done by invoking symmetries and three ratios. Two of the ratios are
measured and the third one is obtained from a new calculation. This leads
to a new value for the πNN coupling constant f2/4π = 0.0760± 0.0011.

PACS numbers: 13.75.Gx

The s-wave matrix element at threshold α0 for the reaction pp → dπ+ can
be related to the πN isovector scattering length b1 through a chain of symme-
tries and ratios given in Fig. 1. The cross section σ(pp → dπ+) can be trans-
formed into σ(π+d → 2p) by making use of time reversal invariance (TRI).
From this one has σ(π−d → 2n) by applying charge symmetry (CSY). The
cross section is converted into a rate w(π−d → 2n) ∝ limk→0 σ(π−d → 2n)/k
by extrapolation to zero energy EZE). Then one has to apply three ratios:
S = w(π−d → 2n)/w(π−d → 2nγ), T = w(π−d → 2nγ)/ w(π−p → nγ),
and the Panofsky ratio P = w(π−p → nγ)/w(π−p → π0n). Then one can
go back to a cross section via w(π−p → π0n) ∝ limk→0 σ(π−p → π0n). Fi-
nally, isospin symmetry yields from this cross section the one for elastic π
scattering on the proton. This cross section is determined by the isovector
scattering length.

Recently new cross section data for the pp → dπ+ reaction close to
threshold were published by [1] and [2] making a reliable extraction of the
s-wave partial cross section possible. Older data are dominated by the p-
wave cross sections due to ∆ excitation. The data in the threshold region
were fitted by different models as is discussed in [3]. Since one can not a
priori distinguish between the different models the arithmetic mean is taken
for the amplitudes. The fit labelled with E is closest to these mean values.
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Fig. 1. Chain of reactions coupled by symmetries and ratios R, S, T and P .

In Fig. 2 it is compared with the data. Also shown are separately the
s-wave and the p-wave contributions to the total cross sections. These can
be compared with calculations which became recently available [5] and show
a remarkable degree of agreement for the p-wave. The s-wave part of the
calculation overestimates the data slightly. Also shown is the prediction
from a recent phase shift analysis [4]. Again there is excellent agreement in
the p-wave, the s-wave is below the fit E.

We now make use of the new s-wave pion production matrix element
at threshold [3]: α0 = 0.230 ± 0.019 (mb). The ratios S and P are of-
ten measured and we make use of the newest values. The ratio T can be
taken from the individually calculated rates as given by [6]. However, if
one is only interested in the ratio this can be calculated in an quasi free
model (see [3]) yielding T = 0.78 ± 0.04. With these ingredients one gets
b1 = −(87.3±4.4)10−3/mπ. This value is included in Fig. 3. In this figure we
compare this value with results from other measurements or analyses. Here
we have restricted ourselves to processes with a real charged pion only. It
may well be that for neutral pions a different πNN coupling constant exists.
Recently Gibbs et al. [7] analyzed π-nucleon scattering in terms of a potential
in the Klein–Gordon equation. Kovash et al. [8] extrapolated their measure-
ments of the radiative pion capture π−p → γn to threshold and making
then also use of the chain in Fig. 1. Elastic pion scattering was analyzed in
terms of phase shift analysis with fixed-t dispersion relation in Ref.’s [9–12].
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Fig. 2. The data for the pp → dπ+ reaction in the threshold region. Also shown

is fit E from Ref. [3] as solid curve as well as its s-wave and p-wave contributions.

The results from phase shift analysis [4] labelled as PSA are shown as long dashed

curves, a calculation [5] labelled as Hanhardt as dotted curves.

  

 tree level analysis

α
0
 (this work)

photoproduction 

pionic H width (Sigg)

PSA (Höhler)

PSA (Koch)

PSA,fixedf-t (Bugg)

PSA-fixed-t  (VPI)

radiative pion capture

 potential scattering

pionic H + D

70 80 90 100 110
-b1 (1/1000 mπ)

Fig. 3. The isovector πN scattering length for different reactions with a real pion.
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Photoproduction data were similarly analysed by Hanstein et al. [13]. The
isovector scattering length is then again deduced by applying the correspond-
ing chain in Fig. 1. This quantity was also measured via the width of the
pionic hydrogen atom [15].

It is interesting to note that the value obtained from pionic hydrogen
width is not in agreement with the one from a combined analysis of the shifts
of pionic hydrogen and pionic deuterium measured by the same group [15,16].
The origin may that for the pionic deuterium a scaling of the Thomas and
Landau theory was necessary [17]. In order to demonstrate this problem
we have reanalyzed the data in terms of a theory by Weinberg including
three body forces in the πNN -system [18]. Besides the two-body interaction
Weinberg calculated three-body interactions based on CHPT-Lagrangians.
His final result is

aπd =
1 + mπ/mN

1 + mπ/md

(aπp + aπn) +

e
∑

r=a

ar , (1)

where the first and second term refer to the two- and the three-body con-
tributions, respectively. For the most important graph the result is aa =
(−26 ± 1) ∗ 10−3/mπ. This is in agreement with the double scattering
term given in Ref. [17]. The remaining terms in the sum give

∑e
r=b ar =

(−0.5 ± 0.5) ∗ 10−3/mπ. The error we quote is an educated guess. From
the experimental value we find by using (aπp + aπn) = 2b0 a value b0 =
(0.047±0.73)∗10−3/mπ. This is compatible with the soft-pion result b0 = 0
but even a small negative value remains possible. On the other hand one
can relate b0 and b1 via

b0 = a(π−p → π−p) + b1. (2)

With the experimental result of Sigg et al. [15] a(πp → πp) = (88.5 ± 0.9) ∗
10−3/mπ we obtain b1 = (−88.6±1.1)∗10−3/mπ. This is the number with by
far the smallest error. We note that similar results for the combined analysis
of the pionic hydrogen and pionic deuterium data have been obtained in the
framework of a multiple scattering model in Ref. [19], b0 ∈ {−1.3, 0.6} ∗
10−3/mπ and −b1 ∈ {87.7, 89.6}∗10−3/mπ. Beane et al. [20] have recently
recalculated the three body amplitudes in terms of chiral perturbation theory
up to third order in momentum. They applied different nucleon nucleon
interactions to deduce the deuteron wave function yielding different results.
The arithmetic mean of all these numbers yields aa = (−19.6±0.4)∗10−3/mπ

and
∑e

r=b ar = (−0.72 ± 0.11) ∗ 10−3/mπ. Then the isoscalar scattering
length becomes larger but changes its sign to b0 = (−2.6 ± 0.6) ∗ 10−3/mπ

and hence b1 = (−91.1 ± 1.1) ∗ 10−3/mπ. This is just out of the error bar
larger than the Weinberg result. New measurements under way at PSI will
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reduce the experimental errors making this type of analysis more precise.
For the moment we apply only the Weinberg result. Also shown in Fig. 3
is the result from charged pion scattering analysis in terms of a tree model
[21]. His results are b0 = (2.8 ± 1.6) ∗ 10−3/mπ and b1 = (−79.8 ± 1.6) ∗
10−3/mπ. Here again b0 is positive but larger than our result in term of
Weinberg’s theory. The isovector scattering length is surprisingly small. We
now calculate the mean of all the values compiled in Fig. 3. Entries which
do not overlap within error bars are excluded. These are in a first step the
results of Matsinos and Koch. The latter result is based on rather old and
uncertain data. In the second step the uncertain shift of pionic hydrogen is
excluded. The final result is

b1 = (−86.7 ± 2.0) ∗ 10−3/mπ. (3)

This can be converted into a new value of the πNN coupling constant
by making use of the GMO [14] sum rule: f2/4π = 0.0760 ± 0.0011 or
g2/4π = 13.7 ± 0.2 which is smaller than the previously accepted value
g2/4π = 14.3 [22].

We now proceed and use these new values to study the breaking of the
Goldberger–Treiman relation

g(1 − ∆) =
gA ∗ M

fπ

(4)

with gA the Gamow–Teller coupling in neutron decay and fπ the pion de-
cay constant and 1 − ∆ the breaking term. With gA = 1.266 ± 0.004
and fπ = 92.42 ± 0.26 MeV we find ∆ = 2.2 ± 0.8%. This quantity is
a measure of chiral symmetry breaking due to finite quark masses. Fol-
lowing the idea of Timmermans [23] to express the breaking factor by a
Gaussian form factor interpolating between the pion pole and t = 0, i.e.,

1 − ∆ = exp
(

− m2
π

2Λ2

)

, we get Λ = 662 ± 26 MeV.

REFERENCES

[1] M. Drochner et al., Phys. Rev. Lett. 77, 454 (1996).

[2] P. Heimberg et al., Phys. Rev. Lett. 77, 1012 (1996).

[3] H. Machner, Nucl. Phys. A 633, 341 (1998).

[4] Ch.H. Oh, R.A. Arndt, I.I. Strakowsky, R.L. Workman, Phys. Rev. C56, 635
(1997) and SAID interactive program.

[5] Ch. Hanhart, Ph. D. thesis, Jülich 1997 and private communications to H. M.

[6] W.R. Gibbs et al., Phys. Rev. C16, 322 (1977) and ibid. 327.

[7] W.R. Gibbs, Li Ai, W.B. Kaufmann, Phys. Rev. C57, 784 (1998).



3086 H. Machner

[8] M.A. Kovash et al., πN Newsletter 12, 51 (1997).

[9] G. Höhler, Pion–Nucleon Scattering, Landoldt-Börnstein, Vol. I/9b2,
ed. H. Schopper, Springer (1983).

[10] R. Koch, Nucl. Phys. A448, 707 (1986).

[11] F.G. Markopoulou–Kalamara, D.V. Bugg, Phys. Lett. B318 (1993) 565.

[12] R.A. Arndt, I.I. Strakovsky, R.L. Workman, M. Pavan, Phys. Rev. C52, 2120
(1995).

[13] O. Hanstein, D. Drechsel, L. Tiator, Phys. Lett. B399, 13 (1997).

[14] M.L. Goldberger, H. Miyazawa, R. Oehme, Phys. Rev. 99, 986 (1955).

[15] D. Sigg et al., Phys. Rev. Lett. 75, 3245 (1995); Nucl. Phys. A609, 269 (1996);
A617, 526(E) (1997).

[16] D. Chattelard et al., Phys. Rev. Lett. 74, 4157 (1995); Nucl. Phys. A625, 855
(1997).

[17] A.W. Thomas, R.H. Landau, Phys. Rep. C58, 122 (1980).

[18] S. Weinberg, Phys. Lett. B295, 114 (1992).

[19] V.V. Baru, A.E. Kudryavtev, πN Newsletter 12, 64 (1997).

[20] S.R. Beane et al., Phys. Rev. C57, 424 (1998).

[21] E. Matsinos, Phys. Rev. C56, 3014 (1997).

[22] T. Ericson, W. Weise, Pions and Nuclei, Clarendon Press, Oxford 1988.

[23] R.G.E. Timmermans, πN Newsletter 11, 7 (1995).


