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We show how ρ–ω mixing can be exploited to constrain the strong
phase difference between tree and penguin contributions to the decays
B± → π+π−ρ± and to enhance the CP violation. The resulting CP viola-
tion is greater than 20% and very stable against theoretical uncertainties.
Moreover, it should be possible to extract the sign of the CKM angle, α,
unambiguously.

PACS numbers: 11.30.Er

1. Introduction

Within the Standard Model (SM) CP violation arises from a phase (δ) in
the CKM matrix [1]. Because of its role in generating the apparent baryon
number asymmetry of the universe, the origin of this phase and possible
alternative explanations of CP violation are the subject of great interest.
It is therefore very frustrating that it has so far only been observed in the
K0–K̄0 system. This also explains the great excitement at the prospects
offered by the B-factories to give us the first new experimental examples in
30 years.

If the standard model is complete, the CKM matrix must be unitary.
This gives a number of constraints which can be tested experimentally. Of
those relevant to b-quark systems, one has a special status:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (1)
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Equation (1) can be conveniently represented by a triangle in the complex
plane, whose angles are given by

α ≡ arg

(
− VtdV

∗
tb

VudV
∗
ub

)
, β ≡ arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
, γ ≡ arg

(
−VudV

∗
ub

VcdV
∗
cb

)
. (2)

The unitarity condition can then be written in a form independent of the
particular convention used for the CKM matrix elements

α+ β + γ = π|mod 2π . (3)

The equality only holds modulo 2π because α, β and γ can, in principle, be
either the internal or external angles of a triangle — depending on the sign
of sin δ [2]. However, it is generally accepted that sin δ > 0 and hence the
angles are internal [3]. Equation(3) therefore provides a significant test of
the standard model.

In general CP violation is manifest either indirectly or directly. The neu-
tral kaon system is the classic example of indirect CP violation, in which
there is some mixing between CP conjugate states. One can anticipate play-
ing the same game with neutral B-mesons. Our concern here is with direct
CP violation which has so far never been observed. In order to generate
direct CP violation three conditions must be satisfied:

• There must be two different mechanisms for the transition (i.e., at
least two different Feynman diagrams).

• These diagrams must have a different strong phase.

• The diagrams must also have a different CP violating phase.

If ī and f̄ are the CP conjugates of states i and f , the CP-violating asym-
metry in the decay i→ f is defined through:

A6CP =
Γ (i→ f) − Γ (̄i→ f̄)

Γ (i→ f) + Γ (̄i→ f̄)
. (4)

The main theoretical obstacle in testing Eq. (3) is the uncertainty in-
troduced by the need to know the strong phase difference between the two
diagrams precisely. There has been considerable effort devoted to finding
decay channels for which the interpretation of A6CP is not clouded by un-
certainties in the strong phase. Particular attention has focussed on neutral
B decay to CP eigenstates and the two initial experiments are likely to
be Bd → J/ψKS (aCP = sin 2β) and Bd → π+π− (aCP ≃ sin 2α). Al-
though there is still some residual hadronic uncertainty in these extractions,
through the sign of the mixing parameter, BB, this is believed to be well
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understood. On the other hand, measuring sin 2φ only determines φ up to
a four-fold ambiguity (φ, π/2 − φ, −π/2 − φ, −π + φ) [2, 3].

In charged B decay only direct CP violation is possible and the resul-
tant asymmetries are proportional to sinφ (where φ = α, β or γ). They
are also necessarily dependent on hadronic quantities and hence, due to the
strong interaction uncertainty, cannot be used in isolation to determine the
unitarity angles. However the extraction of the sign of sinφ, S(sinφ), would
complement the results from neutral systems and reduce the four-fold un-
certainty to two-fold. The measurement of cos 2φ, would then completely
determine φ [3].

In Ref. [7] we sketched the argument leading to the conclusion that the
particular decay channel B± → ρ±π+π− should allow us to determine the
sign of sinα unambiguously. Here we provide a more detailed discussion of
the role of ρ–ω mixing in this particular channel. This work followed the
original suggestion by Lipkin [4] that ρ–ω mixing (for a review see, e.g.,
Ref. [5]) might provide a phenomenologically well constrained contribution
to the strong phase leading to CP asymmetries. Enomoto and Tanabashi [6]
examined this suggestion for decays of the form B± → h±ρ0(ω) → h±π+π−

and found a considerable CP asymmetry around the ω peak.

2. Direct CP violation in B±
→ ρ±π+π−

The first discussion of direct CP violation in b-decays came from Bander,
Silverman and Soni (BSS) [8] in 1979. They suggested that CP violation
could be observed in charged B systems, in particular those involving the
decay b → f + q + q̄, through interference between the tree and penguin
contributions shown in Fig. 1.

-
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Fig. 1. The tree and penguin contributions to B decay.

We have already reviewed the conditions necessary to produce direct CP
violation. Let us concentrate first on the need for a well understood strong
phase difference. The usual source of this strong phase is the absorptive
part of the penguin quark loops corresponding to j and j̄ being on mass-
shell [8]. Unfortunately this phase is small and somewhat uncertain. The
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process which we consider, namely B± → h±ρ0(ω) → h±π+π−, solves this
problem beautifully. As long as charge symmetry is respected by the strong
interactions, the penguin process produces only a ρ0 final state, which decays
to π+π−. The tree diagram, on the other hand, produces either a ρ0 or an
ω. The latter can decay to a π+π− final state through mixing with a ρ0.
This process has been extensively studied with e+e− colliding beams and the
mixing amplitude is well known – modulo subtleties that we discuss below,
which do not alter this conclusion. The relative phase of these two processes
differs by the presence of the ω propagator and hence the relative strong
phase difference passes through π/2 at or near the ω mass. As a result, the
relative phase is under control and the signal is maximised because sinπ/2
is one.

With respect to the CP violating phase difference, we note that in the
penguin graph j runs over u, c, t. The top contribution, which is proportional
to VtdV

∗
tb(Pt − Pu), is generally assumed to dominate because of the GIM

cancellation. Although this is exact only for mu = mc, corrections to it are
expected to be small and we neglect them. In this case the CP violating
phase is exactly α. We note also that in addition to strong penguins there
are electroweak penguins where the gluon in Fig. 1 is replaced by a photon
or Z0 and we also include those.

3. The short distance physics

Using the renormalization group we can evolve the pieces of Fig. 1 in-
volving a weak boson from the W mass scale to the b scale, contracting the
W propagators to obtain an effective Hamiltonian for both the tree and pen-
guin diagrams. This effective Hamiltonian involves a set of local four-quark
operators and Wilson coefficients, ci(µ) [11]

Heff = HT + HP =
4GF√

2

(
VubV

∗
uq

2∑

i=1

ciOi − VtbV
∗
tq

10∑

i=3

ciOi

)
+ h.c. (5)

where GF is the Fermi couping constant. The 4-quark operators are given
by (qL,R = (1 ∓ γ5)q/2)

Ou
1 = q̄Lαγ

µuLβūLβγµbLα Ou
2 = q̄Lαγ

µuLαūLβγµbLβ

O3 = q̄Lαγ
µbLαΣq′ q̄

′
Lβγµq

′
Lβ O4 = q̄Lαγ

µbLβΣq′ q̄
′
Lβγµq

′
LαbLβ

O5 = q̄Lαγ
µbLαΣq′ q̄

′
Rβγµq

′
Rβ O6 = q̄Lαγ

µbLβΣq′ q̄
′
Rβγµq

′
RαbLβ

O7 = 3
2 q̄Lαγ

µbLαΣq′eq′ q̄
′
Lβγµq

′
Lβ O8 = 3

2 q̄Lαγ
µbLβΣq′eq′ q̄

′
Lβγµq

′
LαbLβ

O9 = 3
2 q̄Lαγ

µbLαΣq′eq′ q̄
′
Rβγµq

′
Rβ O10 = 3

2 q̄Lαγ
µbLβΣq′eq′ q̄

′
Rβγµq

′
RαbLβ ,

(6)
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where α and β are color indices and eq′ = 2/3(−1/3) for q′ = u, c(d, s).
The Wilson coefficients, ci, to be used in Eq. (5), are effective coefficients,

independent of renormalization scheme, and are given in standard works. We
therefore do not repeat them here. As noted above, the phase occuring in the
effective Wilson coefficient of the penguin terms arises from the absorptive
part of the charm loops in the BSS mechanism [8].

Using this short distance Hamiltonian, the two body hadronic decay
amplitude for B mesons is now given by

Ah1h2
= 〈h1h2|Heff |B〉 . (7)

This is calculated using the factorization approximation which assumes that
the decay B → h1h2 can be considered as a product of two individual
processes by taking pairwise combinations of the quarks and antiquarks in
the effective Hamiltonian operators

〈h1h2|H|B〉 =
∑

i

vici〈h1h2|Oi|B〉 (8)

≡
∑

i

vici [〈h1|Ji(1)µ|0〉〈h2|Ji(2)
µ|B〉 + 〈h2|ji(2)µ|0〉〈h1|ji(1)µ|B〉] ,

where jµ and Jµ are currents constructed from the constituents of the four
quark operators Oi of Eq. (5). Note that currents of the type q̄αγµq

β are
suppressed by a factor 1/Nc with respect to those like q̄αγµq

α, after Fierz
rearrangement.

As factorization is only an approximation [12], Nc is treated as a phe-
nomenological parameter. Rather than the exact value, Nc = 3, of QCD,
phenomenological fits to B decay prefer Nc between 2 and 3 [13]. It is useful
to introduce the parameters:

ai = ci + ci+1/Nc i odd, (9)

ai = ci + ci−1/Nc i even. (10)

In factorizing the hadronic matrix elements all information on the gluon
momentum, q2, is lost. It is customary to estimate the uncertainty by letting

it vary over the range
m2

b

4 < q2 <
m2

b

2 , (2 < Nc < 3).
In order to deal with the strong phase difference we need to isolate the

tree terms (those involving a1 and a2) from the penguins (those with a3−10).
We, therefore, rewrite Eq. (9) as

〈f1f2|H|B〉 = (aTVT + aPVP )A + (bTVT + bPVP )B , (11)

where A and B are the amplitudes for (B → h1)(0 → h2) and (B → h2)(0 →
h1), respectively. The coefficients aT and bT are the tree terms composed
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of a1 and a2, while aP and bP are the analogous penguin terms. For the
B decay amplitude and vacuum to meson matrix element that constitute A
and B we use the model of Bauer, Stech and Wirbel (BSW) [15].

4. The role of ρ–ω mixing

We now consider the strong phase phase difference between the tree and
penguin diagrams. We have already seen there is a short distance contri-
bution from absorptive quark loops. However, there is an additional mech-
anism for the case of interest to us, where we have resonant final states.
In particular, the propagator of a resonance such as the ρ or ω is complex,
with a phase that passes through π/2. This can provide a vital constraint
on the CP invariant strong phase which is usually so difficult to determine
accurately [16].

We see that while the ω penguin term comes largely from the strong
interaction, pρ survives only through the electroweak interaction. The sup-
pression of pρ can be understood in general terms. The B is a 0− state and
therefore decays to a J = 0 final state, which is symmetric for integer spin
particles. Therefore the spin degrees of freedom must conspire to produce an
overall symmetric state. Applying this to B+ → ρ+ρ0 we note that the final
state has isospin MI = 1 and is therefore either I = 1, which is antisymmet-
ric and therefore forbidden, or I = 2, which cannot be accessed in penguin
decay as ∆I = 3/2 is greatly suppressed compared with ∆I = 1/2 [17].

We now come to the essential feature of this channel. What is actu-
ally seen in this particular B± decay channel is, for our purposes, B± →
π+π−ρ−. The production of π+π− in the ρ resonance region is very well
known from e+e− → π+π− experiments [18] and can be fixed by fitting to
this data [19]. A notable feature of this reaction is the G-parity violating
appearance of the isosinglet ω, which is clearly visible in the data. The ω
formed in the penguin process can couple to the π+π− final state through
either the direct decay ω → π+π− (which has often been neglected) or by
mixing, through the function, Πρω(q2), to a ρ0 (ω → ρ0 → π+π−). The role
of ρ–ω mixing in the decay we are considering is illustrated in Fig. 2. The
mixing function, Πρω(q2), is necessarily momentum dependent as a result
of current conservation [20]. Therefore, we may write the pion form-factor
as [21]

Fπ(s) =
fργgρππ

s−m2
ρ + imρΓρ

(
1 +

fωγ

fργ

Πρω(s)

s−m2
ω + imωΓω

)
+

fωγgωππ

s−m2
ω + imωΓω

,

(12)

where the photon couples to a vector meson, V , with strength efV γ .
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It is a vital feature of Eq. (12) that the unknown ω → π+π− coupling
enters in exactly the same way here as in the pion form factor. We can
therefore simplify Eq. (12) by introducing an effective mixing matrix ele-

ment, Π̃ρω, which incorporates both direct (ω → π+π−) and mixing in-
duced (ω → ρ0 → π+π−) G-parity violation [19]. We can then write the
pion electromagnetic form-factor as:

Fπ(s) =
fργgρππ

s−m2
ρ + imρΓρ

(
1 +

fωγ

fργ

Π̃ρω(s)

s−m2
ω + imωΓω

)
. (13)
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π
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Fig. 2. The contributions to B− → ρ−π+π− in the ρ–ω interference region.

In principle, Π̃ρω can be both momentum dependent and complex, as we
might expect from a comparison of Eqs. (12) and (13). This has been tested
in the most recent analysis of pion form factor data [19], with the result
that there are very good limits on the extent of its possible momentum
dependence (or its imaginary piece). Note that, whereas isospin violation is
typically very small [22], the ω contribution to e+e− → π+π− accounts for
roughly 20% of |Fπ(s)|2 at the ω mass pole, in part due to the narrowness
of the ω. We note, following an old argument of Renard, that even if gωππ

is non-zero, it would only effect the real part of Π̃ρω [21]. The most recent

value of Π̃ρω, which we use here, is [19]

Π̃ρω = −3920 ± 330MeV2. (14)

We now have all the necessary elements for the decay B− → ρ−ρ(ω) and
can derive an expression for the CP violating asymmetry. It is convenient
to introduce the ratios of Enomoto and Tanabashi [6]

arg(VP /VT ) ≡ φ,
pω

tρ
≡ r′ei(δq+φ),

tω
tρ

≡ αeiδα ,
pρ

pω
≡ βeiδβ , (15)
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where φ is the CP-violating phase. Then, defining sV = s−m2
V + imV ΓV ,

the amplitude for B− → ρ−π+π− is given by (see Fig. 2)

A−
2π =

tρ
sρ

+
tω
sω

Π̃ρω

sρ
+
pρ

sρ
+
pω

sρ

Π̃ρω

sρ

=
tρ
sρ

[
1 + αeiδα

Π̃ρω

sω
+ r′ei(δq+φ)

(
Π̃ρω

sω
+ βeiδβ

)]
. (16)

We see that, assuming isospin invariance for the decay amplitude, the only
surviving contribution to β is from EW penguins. Within factorization β

is small compared with |Π̃ρω/mωΓω| ≈ 0.6, and can be ignored. Similarly

αeiδα ∼ 1 and hence the decay amplitude can be approximated by

A−
2π =

tρ
sρ

[
1 +

Π̃ρω

|sω|2
(s−m2

ω − imωΓω)(1 + r′ei(δq+φ))

]
. (17)

Therefore, the CP violating asymmetry is given by

A2π
6CP =

4Π̃ρωr
′

|sω|2
sinφ

[mωΓω cos δq + (m2
ω − s) sin δq]

|D|2 , (18)

where

|D|2 = 2 +
4Π̃ρω

|sω|2
(r′ cosφ((s−m2

ω) cos δq +mωΓω sin δq) + s−m2
ω). (19)

At the ω mass, the CP violating asymmetry is maximal and given by (defin-

ing Xρω = Π̃ρω/mωΓω),

A2π
6CP =

4Xρωr
′ sinφ cos δq

2(1 + 2r′ cosφ sin δqXρω + [1 + 2r′ cos δq cosφ+ r′2]X2
ρω)

. (20)

The s-dependent term in Eq. (18), proportional to sin δq, induces a “skew”
in the shape of the asymmetry.

A similar analysis for the decay B− → ωρ−, where the ω then decays
through its 3π decay mode, receives no enhancement from meson mixing.
Any strong phase there arises solely from the BSS mechanism, but we can
still make use of isospin symmetry for the B decays to write

A3π
6CP =

−4r′ sinφ sin δq
2[1 + 2r′ cos δq cosφ+ r′2]

. (21)

We, therefore, have a check on the factorization approximation, because the
skew of A2π

6CP is related to the sign of A3π
6CP. Unfortunately, it does not allow
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one to fix the sign of sinφ from experimental measurement alone, and we
must appeal to factorization for this.

Working within the factorization approximation, we have calculated the
expected values for the short distance strong phase, δq. The results are
very stable, δq ∼ −170◦, because the strong penguin contributions to pρ

are suppressed by isospin and the imaginary parts of the effective Wilson
coefficients arising from charm loop corrections, are electromagnetic and
hence very small. Using this phase we find that pω/tρ is always negative as
is cos δq, and hence the sign of A2π

6CP fixes the sign of sinφ. In addition, the

sign of A3π
6CP or the skew of A2π

6CP, acts as a check of factorization. The results
of a typical calculation within the factorization approximation are shown in
Fig. 3. The comparison between the two-pion and three-pion decay modes
is dramatic. In particular, because of the role of ρ–ω mixing the asymmetry
in the two-pion channel is both large and extremely stable in the ω-mass
region.
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Fig. 3. Results demonstrating the stability of A2π

6CP as compared with A3π

6CP (which

is momentum independent) within the factorization approximation. The lines

correspond to [Nc, q
2/m2

b
] = [2,0.5] (solid), [2,0.3] (dashed), [3,0.5] (dot-dashed),

[3,0.3] (dotted). (We have used the Wolfenstein parameters A = 0.81, λ = 0.2205,

ρ = 0.12 and η = 0.34, following Ref.[24].)

5. Conclusion

We have shown that ρ–ω mixing can be used to enhance the CP violation
in the decays B± → π+π−ρ± in the region where the π+π− pair has invariant
mass nearmω. There are sound reasons to expect factorization to fix cos δq ≈
−1 in Eq. (18) and under this assumption a measurement of CP violation
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in this channel will determine the sign of sinφ unambiguously. Finally, the
additional measurement of either the skew of A2π

6CP or A3π
6CP would provide a

consistency check of factorization.

This work was carried out in collaboration with S. Gardner and
H. O’Connell. It was supported in part by the DOE under DE-FG02-
96ER40989 (SG and HOC) and by the Australian Research Council (AWT).
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