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I review recent progress in developing a systematic power counting
scheme for scattering processes involving more than one nucleon.
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1. Why effective field theory?

There exist many nucleon–nucleon potentials which reproduce phase
shifts and nuclear properties with remarkable accuracy (an extensive ref-
erence list can be found in Ref. [1]). Three fundamental features are shared
by these potential models:

(i) pions are important at long distances,

(ii) there is a source of intermediate-range attraction, and

(iii) there is a source of short-distance repulsion.

However, in general, distinct physical mechanisms in these models account
for the same feature of the nuclear force. Agreement with experiment is
maintained in spite of these differences because of the large number of fit
parameters.

Systematic approaches to the scattering of strongly interacting particles,
such as chiral perturbation theory, are based on the ideas of effective field
theory (EFT). The fundamental premise of EFT is that when a system
is probed at momentum k ≪ M , details of the dynamics at scale M are
unimportant. What is important at low energies is the physics that can be
captured in operators of increasing dimensionality which take the form of
a power-series in k/M [2, 3]. It is entirely possible that EFT fits to phase
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shifts will ultimately not be as good as those produced by conventional NN
potentials with the same number of parameters. So then, what can be gained
from such an enterprise?

Consider the following questions: Is it possible to account for short dis-
tance physics at low energies systematically, using power counting argu-
ments? What is the minimal set of parameters required to describe data
at low energies? Or rather, what is the minimal short distance physics re-
quired? Can we fit some processes to experiment and use that information to
predict other processes? For instance, one would like to relate NN scatter-
ing systematically to scattering processes with more nucleons, such as NNN
scattering, and to make predictions for processes involving electromagnetic
and pionic probes of few-nucleon systems. The underlying theory, QCD, has
one scale, ΛQCD. Why are characteristic nuclear binding energies ≪ ΛQCD?
These are the sort of questions that EFT can help answer. In what follows
I will review recent progress in answering some of these questions.

2. The Weinberg program

Naive application of EFT ideas to nuclear physics immediately suggests a
puzzle. In nuclear physics there are bound states whose energy is unnaturally
small on the scale of hadronic physics. In order to generate such bound states
within a “natural” theory it is clear that one must sum some operators to all
orders. Weinberg proposed [4,5] implementing the EFT program in nuclear
physics by applying the power counting arguments of chiral perturbation
theory to an n-nucleon effective potential rather than directly to the S-
matrix. Only n-nucleon irreducible graphs should be included in the n-
nucleon effective potential. The potential obtained in this way is then to be
inserted into a Schrödinger equation and iterated to all orders. See Fig. 1.
There will of course be unknown coefficients in the effective potential, but
these can be fit to experimental data as in ordinary chiral perturbation
theory [6–10]. Perhaps the most powerful result to emerge from Weinberg’s
power counting is the hierarchy of n-body forces (e.g. three-body forces are
small) [4, 5, 11, 12].

+ + ...+

Fig. 1. The diagrammatic solution of the Schrödinger equation with the effective

NN potential represented by the shaded blob.
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Weinberg did not specify a regularization and renormalization scheme.
Yet, as we will see, an understanding of regularization and renormalization
appears to be crucial in the identification of a consistent power counting
scheme.

3. Dissecting the Weinberg program — the pionless EFT

In Ref. [7] Kaplan, Savage and Wise (KSW) considered NN scattering
in the 1S0 (np) channel at momentum scales k ≪ mπ. The EFT at these
scales involves only nucleons since the pion is heavy and may therefore be
“integrated out”. The effective Lagrangian thus consists of contact operators
of increasing dimensionality constrained by spin and isospin. This EFT
is useful because scattering amplitudes can be calculated analytically. It
therefore allows one to address issues of principle in EFT for NN scattering.

The most general effective Lagrangian consistent with spin and isospin,
including only operators relevant to 1S0 scattering is

L = N †i∂tN − N † ∇2

2M
N − 1

2
C(N †N)2

−1

2
C2(N

†∇2N)(N †N) + h.c. + . . . . (1)

It is important to realize that all of the coefficients in the effective theory,
C,C2, . . ., are renormalization scheme dependent. This means that power
counting will necessarily look different in different schemes. It is clearly
fruitful to choose a scheme which maintains the power counting hierarchy of
operators; although ultimately the scattering amplitude which is calculated
to a given order in the EFT is scheme independent, the power counting is
transparent in some schemes while requiring counterintuitive cancellations
in others [3]. For instance, in a perturbative EFT expansion — such as
Fermi theory — power counting is transparent in dimensional regularization
(DR) with minimal subtraction (MS), while somewhat mysterious using a
cut-off [3].

Ultimately what one would like to reproduce in the NN EFT is the
effective range expansion, written here as
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2 + O(k4) − ik

]

, (2)

where T (k) is the scattering amplitude, a is the scattering length and re

is the effective range. Experiment determines (in the 1S0 (np) channel)
a = −23.714 ± 0.013 fm and re = 2.73 ± 0.03 fm. The extremely large value
of the scattering length implies that there is a virtual bound state in this
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channel very near zero energy. While the value of re is consistent with what
one might expect for a natural theory where pions dominate the low-energy
physics (re ∼ 1/Mπ), the value of a is far from being natural (a ≫ 1/Mπ). As
seen in Fig. 2 this scattering amplitude (neglecting O(k4) terms) compares
favorably with data up to up to center of mass momenta of order Mπ. Phase
shift data of Fig. 2 are taken from Ref. [13].
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Fig. 2. The effective range expansion with the extracted phase-shift data up to

center-of-mass momenta of order Mπ.

I will proceed in the spirit of Weinberg power counting. The effective
potential in the pionless EFT is simply the sum of all tree graphs extracted
from the Lagrangian of Eq. (1). It is straightforward to find the “second-
order” potential:

V (2)(p′, p) = C + C2(p
2 + p′2) . (3)

The Schrödinger equation iterates this potential to all orders (see Fig. 1).
The divergences get worse as one goes to higher order in the potential. All
divergences are of power-law type. Therefore DR with MS has the effect of
unitarizing the scattering amplitude with the potential from Eq. (3) [1, 9].
The problem is that the resulting scattering amplitude only matches to the
effective range expansion for momenta k ≪ 1/

√
are. Given our working as-

sumption that all renormalization schemes give equivalent results but gen-
erally have different power counting, this means that DR with MS is not
particularly well suited to the problem since higher order operators must be
highly correlated in this scheme in order to ensure that the EFT matches to
the effective range expansion [7]. In Ref. [14] a novel way of reproducing the
effective range expansion within the DR with MS scheme was proposed.
The main idea is that the effective range expansion can be viewed as aris-
ing from the exchange of a di-baryon field (transvestite in the vernacular)
which is included in the EFT as a fundamental field and “dressed” via its
interactions with the nucleons.
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Following the work of Ref. [7] many authors argued that the pathological
features of DR with MS are a good reason to work with a cut-off EFT [9,
15–17]. The problem is that, unless one is willing to carry out all analysis
numerically, not much insight is gained into power counting; the unpleasant
features that one has in cut-off Fermi theory are present in NN scattering
with a vengeance. There are other pathologies as well which force the cut-off
to be very low [1,8,15–17], unless the bare coefficients in the Lagrangian are
chosen to be imaginary. We will return to the issue of cut-off EFT below.

4. Resolution

The physical scattering amplitude that is generated when an effective
potential is iterated in the Schrödinger equation is exactly unitary (like
Eq. (2)) and therefore necessarily contains arbitrarily high powers in mo-
mentum. This occurs regardless of the order to which one is working in the
momentum expansion of the potential V . Therefore, the scattering ampli-
tude thus obtained samples arbitrarily short-distance scales. Such a scat-
tering amplitude is not necessarily in contradiction with the EFT approach
since short-distance physics included in the amplitude might be small in a
power counting sense. But if it is small it is not clear why it should be
included in the scattering amplitude.

An important observation in this spirit was made by van Kolck [18]
and KSW [19]. Given the experimentally established hierarchy of scales
a ≫ re ∼ 1/Mπ , what the effective theory should be reproducing is

T (k) = −4π

M

1

(1/a + ik)

[

1 +
re/2

(1/a + ik)
k2 + O(k4)

]

, (4)

and not necessarily the full effective range expansion of Eq. (2). This form
of the scattering amplitude can be reproduced in a scheme independent
way by summing the C operator of Eq. (1) to all orders and treating all
higher order derivative operators as perturbations. Say ℵ represents the
long-distance nonperturbative scale [18]. If Λ represents the scale of short
distance physics, then the effective expansion parameter is ℵ/Λ ∼ 1/aMπ.
Summing to all orders in 1/aMπ gives the effective range expansion, or
equivalently, the transvestite.

A scheme in which this power counting is manifest was found by KSW in
Ref. [19], which gives an elegant renormalization group analysis of the coeffi-
cients in the EFT. The regularization and renormalization scheme in which
the power counting is manifest is DR with power divergence subtraction
(PDS). As opposed to MS, in which counterterms are added which subtract
the poles in three space dimensions, in PDS the poles in two space dimen-
sions are also subtracted by counterterms. This scale-dependent scheme is
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similar to performing a momentum subtraction at p2 = −µ2 [20]. In this
scheme, the fine-tuning in the underlying theory which gives rise to a large
scattering length is identified with a single operator in the Lagrangian, the
C operator of Eq. (1).

5. The three-body force

One of the most important results that has emerged from EFT in nuclear
physics is due to Bedaque, van Kolck and Hammer [21, 22]. These authors
consider N-deuteron scattering. There are two channels, a quartet of total
spin J = 3/2 and a doublet of J = 1/2. The leading interactions involve
two-body interactions whose low-energy parameters have been fit to NN
scattering. Recall that this is EFT at its best; parameters fit to one process
predict an independent process. The two-body interactions are accounted
for using transvestite fields and iterated using a Fadeev equation. This is not
strictly systematic in the sense of ℵ/PDS power counting; however, including
some of the higher order terms in ℵ/Λ via the transvestite does not make the
results any less accurate. Specifically, the transvestite should be considered
accurate to second order in the ℵ/PDS power counting scheme. Only the
transvestite with spin one, isospin zero contributes to the quartet scattering
length, giving a theoretical prediction of 4a = 6.33 fm as compared to the
experimental value of 4a = 6.35 ± 0.02 fm.

One might wonder about the doublet channel in N–deuteron scattering.
Unlike the quartet channel, the scattering length in this channel is not well
described in the EFT because the absence of Pauli blocking (which is present
in the quartet channel) renders physics at short distances potentially relevant
to long distance observables. Bedaque and van Kolck have pointed out that
the problem might be remedied by inclusion of a 3-body contact interaction
in the EFT which “summarizes” the effects of this short-distance physics.

6. The role of the pion — a challenge for nuclear theorists

It is desirable to push the short distance cut-off of the NN EFT to as
high a momentum scale as possible. In a realistic EFT of NN scattering it is
important to include the pion. The lightness of the pion in itself guarantees
that it should play a fundamental role in nuclear physics. However, it is the
fact that chiral symmetry is spontaneously broken — implying a light pion
interacting weakly at low energies — that allows pion effects to be included
in an EFT description.

KSW have pointed out that Weinberg’s power counting arguments are
problematic when computations are performed using dimensional regulariza-
tion. The fundamental problem is that pion exchange effects in the 3S1−3D1
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channel that are leading order in Weinberg’s power counting require coun-
terterms at all orders in the momentum expansion, suggesting that Wein-
berg’s power counting scheme is not consistent.

Given the pathologies of the nonperturbative pion, KSW have proposed
a radical power counting scheme which fuses the ℵ/PDS power counting of
the pionless effective theory with a perturbative pion [19]. To date, phase
shifts in the 1S0 and 3S1− 3D1 channels have been computed in this scheme
at next-to-leading order. The 3S1− 3D1 mixing parameter ǫ1 is a prediction
at this order. Agreement with experiment is reasonable. Moreover, KSW
have calculated the electromagnetic form factors of the deuteron by using
the parameters fit to scattering data and have found good agreement with
experiment [23]. This is a true test of the EFT.

The idea of a nuclear force with a perturbative pion is anathema to most
nuclear physicists. However, given that a consistent power counting scheme
has been proposed and nontrivial calculations have been performed with
good experimental agreement, it would seem incumbent on traditionalists to
propose low-energy observables whose description requires a nonperturbative
pion.

7. Conclusion

There has been remarkable progress made in the last few years in de-
veloping systematic power counting technology for scattering processes in-
volving more than a single nucleon. A new power counting scheme, which
is consistent in the sense of renormalization, has emerged to challenge the
original Weinberg power counting proposal.

Is Weinberg power counting wrong? Is a nonperturbative pion truly
incompatible with EFT ideas? The work of Refs [6, 8–10, 24] using cut-off
EFT suggests otherwise. These numerical analyses include nonperturbative
pions and yet exhibit universal low-energy behavior: low-energy physics is
insensitive to the specific choice of regulator. One way of gaining insight
into this issue might be to unitarily transform the effective potential (which
is unobservable) to a new effective potential which by construction involves
only momenta less than a fixed value [25]. In my view, understanding why
EFT with a nonperturbative pion works in spite of the failure implied by
dimensional regularization is an important issue, and not purely academic.
In losing Weinberg power counting we lose his beautiful explanation of the
hierarchy of n-body forces, which evidently has no explanation in the new
power counting scheme.

Be that as it may, it is clear that Kaplan, Savage and Wise have intro-
duced a consistent power counting scheme which is economical in the sense
that it appears to include only minimal short distance physics and not the
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barrage of short distance physics which is inherent to any solution of the
Schrödinger equation.

This work was supported by the U.S. Department of Energy grant DE-
FG02-93ER-40762. I thank Tom Cohen, Dan Phillips and Bira van Kolck
for valuable conversations.
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