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The properties of π, η, K+ and K− mesons are studied in nuclear re-
actions from SIS to SPS energies within the covariant transport approach
HSD in comparison to the experimental data. Whereas the pion, η and
kaon abundancies and spectra indicate little or vanishing self energies for
these mesons in the medium, antikaons (as well as antiprotons) are found
to experience strong attractive potentials in nucleus–nucleus collisions at
SIS energies. However, even when including these potentials the K+ and
K− spectra at AGS energies are noticeably underestimated showing an ex-
perimental excess of strangeness that points towards a nonhadronic phase
in these reactions. On the other hand the K+, K− production at SPS ener-
gies is well described by the hadronic approach without incorporating any
parton degrees of freedom.

PACS numbers: 13.60.Le, 14.40.–n

1. Introduction

The aim of high energy heavy-ion collisions at the GSI Schwerionen Syn-
chrotron (SIS), the Brookhaven Alternating Gradient Synchrotron (AGS)
and the CERN Super Proton Sychrotron (SPS) is to investigate nuclear mat-
ter under extreme conditions, i.e. high temperature and density. The most
exciting prospect is the possible observation of a signal for a phase transition
from normal nuclear matter to a nonhadronic phase, where partons are the
basic degrees of freedom. In this context strangeness enhancement in heavy-
ion collisions compared to proton–proton collisions has been suggested as a

∗ Presented at the Meson’98 and Conference on the Structure of Meson, Baryon and
Nuclei, Cracow, Poland, May 26–June 2, 1998.

∗∗ Supported by BMBF, FZ Jülich and GSI Darmstadt.
† In collaboration with E.L. Bratkovskaya, J. Geiss, C. Greiner, U. Mosel and

A. Sibirtsev

(3175)



3176 W. Cassing

possible signature for the phase transition [1]. On the other hand, precursor
effects might already be seen at SIS energies since densities up to 3×ρ0 can
be achieved in central collisions of heavy nuclei [2] and the effect of meson
potentials can be studied with a higher sensitivity to the productions thresh-
olds, respectively. Furthermore, dilepton spectroscopy should be well suited
to investigate the in-medium properties of especially the ρ-meson which due
to its short life time preferentially decays in the medium [3].

In this contribution a brief survey is presented on the information gained
so far in comparison of experimental data to nonequilibrium transport the-
ory, here the Hadron-String-Dynamics (HSD) approach [4]. For a more
detailed discussion of the issues presented the reader is referred to a recent
review [3].

2. Analysis of meson properties from SIS to SPS energies

The production of particles especially at ‘subthreshold’ energies is ex-
pected to provide valuable information about the properties of hadrons at
high baryon density and temperature [2]. Their relative abundance and spec-
tra should reflect the in-medium properties of the particles produced since
for a ‘dropping’ mass — i.e. a reduced quasiparticle energy in the medium,

m∗ = ω(p = 0) =
√

m2
0
+ Πh(ρB , ρS ,p = 0) , (1)

where Πh(ρB , ρS , . . .) denotes the meson self-energy as a function of the
baryon density ρB and scalar density ρS — the particle can be created more
abundantly. On the other hand it will be suppressed in case of repulsive
potentials. Furthermore, a quasiparticle feeling an attractive potential at
finite baryon density will be decelerated during its propagation out of the
medium and thus asymptotically its momentum spectrum will be enhanced
at low relative momenta with respect to the baryon matter rest frame [5].
The opposite holds in case of repulsive potentials.

As mentioned above the dynamics of hadron–hadron, hadron–nucleus
and nucleus–nucleus collisions is described within the HSD transport ap-
proach [4] that so far has been well tested in a large dynamical domain [6].
We start with pion and η dynamics at SIS energies. The transverse-mass
spectra of π0 and η mesons in heavy-ion collisions up to 2 A·GeV have been
measured by the TAPS Collaboration [7–9] and a mT scaling has been ob-
served for both mesons. The same scaling can be found in the HSD transport
calculations when including no pion and η-meson self-energies. In Fig. 1 we
compare the results of the calculation [10] for the inclusive transverse-mass
spectra of π0 and η mesons with the TAPS data. The r.h.s. shows the mT

spectra for π0’s (dashed histogram) and η’s (solid histogram) for C + C at
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Fig. 1. The calculated transverse mass spectra for neutral pions and η-mesons in

comparison to the data from the TAPS Collaboration (see text).

1.0 A·GeV in the rapidity interval 0.42 ≤ y ≤ 0.74 and at 2.0 A·GeV for
0.8 ≤ y ≤ 1.08. The experimental data — the open circles and solid squares
correspond to π0 and η mesons, respectively — are taken from Ref. [8]. The
theoretical results as well as the experimental data at 2.0 A·GeV here are
multiplied by a factor of 102. The middle part corresponds to Ca + Ca at
1.0 A·GeV for 0.48 ≤ y ≤ 0.88 (multiplied by 10−1) and at 2.0 A·GeV for
0.8 ≤ y ≤ 1.1 in comparison with the data from Ref. [9]. The l.h.s. shows
the calculated mT spectra for Ni + Ni at 1.93 A·GeV for 0.8 ≤ y ≤ 1.1
in comparison with the data from Ref. [9]. As seen from Fig. 1 the HSD
transport model gives a reasonable description of the mT spectra of pions
and η’s as measured by the TAPS Collaboration without incorporating any
medium modifications for both mesons. It is important to point out that
these calculations are parameter-free in the sense that all production cross
sections for η mesons are extracted from experimental data in the vacuum
and the η-nucleon elastic and inelastic cross sections are obtained by using
detailed balance on the basis of an intermediate N(1535) resonance. As
shown in Ref. [10] an attractive potential for the η-meson would lead to a
violation of the mT scaling found experimentally. Without explicit repre-
sentation we note that the pion and η spectra at AGS and SPS energies also
do not indicate sizeable in-medium effects [3].

Kaons and antikaons have shown to be more promising in this respect
[11, 12]. Since the real part of the actual K+ and K− self-energy Πh in (1)
is quite a matter of debate we adopt a more practical point of view and as
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a guide for the analysis use a linear extrapolation of the form,

m∗
K(ρB) = m0

K

(

1 − α
ρB

ρ0

)

, (2)

with αK̄ ≈ 0.2–0.25 for antikaons and αK ≈ −0.06 for kaons. Alternative
fits to the antikaon self-energies lead to different values for the parameter
αK̄ in the range 0.1 ≤ αK̄ ≤ 0.3 (cf. Ref. [13]). The choice αK̄ ≈ 0.2 leads
to a fairly reasonable reproduction of the antikaon mass from Refs [14–16]
and the results from Waas, Kaiser and Weise [17]. In (2) a momentum
dependence of the kaon or antikaon potential has been neglected for reasons
of numerical simplicity. The dispersion analysis of Sibirtsev et al. [18] shows
that this is roughly fulfilled for the kaon potential, however, the antikaon
potential should be more strongly momentum dependent.

The Lorentz invariant K+ spectra for Ni + Ni at 0.8, 1.0 and 1.8 A·GeV
are shown in Fig. 2 (l.h.s.) in comparison to the data from the KaoS Col-
laboration [19]. Here the full lines reflect calculations including only bare
K+ masses (αK = 0) while the dashed lines correspond to calculations with
αK = −0.06 in Eq. (2), which leads to an increase of the kaon mass at ρ0

by about 30 MeV. The general tendency seen at all bombarding energies is
that the calculations with a bare kaon mass seem to provide a better de-
scription of the experimental data for Ni + Ni than those with an enhanced
kaon mass. This trend continues to hold also for the light system C + C
as well as for the heavy systems Ru + Ru and even Au + Au [3]. Further-
more, this tendency is also confirmed by the independent calculations from
Li et al. [12].
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Fig. 2. The calculated K+ (l.h.s.) and K− (r.h.s.) momentum spectra in the

nucleus–nucleus cms for Ni + Ni reactions for different meson potentials in com-

parison to the experimental data (see text).
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On the other hand, the kaon flow in the reaction plane should show some
sensitivity to the kaon potential in the nuclear medium as put forward by
Li, Ko and Brown [20,21]. Here due to elastic scattering with nucleons the
kaons partly flow in the direction of the nucleons thus showing a positive
flow in case of no mean-field potentials [20]. With increasing repulsive kaon
potential the positive flow will turn to zero and then become negative. In
fact, experimental data on kaon flow indicate a slightly repulsive potential
for kaons in the nuclear medium [22]. Further data with cuts on centrality
are expected to allow for more definite conclusions [23].

We now turn to the production of antikaons which similar to antiprotons
[24] do clearly show the effect from attractive potentials in the medium.
We recall that for αK̄ = 0 in Eq. (2) we recover the limit of vanishing
antikaon self-energy, whereas for αK̄ ≈ 0.2 we approximately describe the
scenario of Kaplan and Nelson [14, 15] or Waas, Kaiser and Weise [17]. For
practical purposes one should consider αK̄ to be a free parameter to be
fixed in comparison to the experimental data in order to learn about the
magnitude of the antikaon self-energy. The K− spectra for Ni + Ni at
1.85 and 1.66 A·GeV from Refs. [25, 26] are shown in Fig. 2 (r.h.s.) for
αK̄ = 0, 0.2 and 0.24 where the latter cases correspond to an attractive
potential of −100 and −120 MeV at density ρ0, respectively. We note,
that due to the uncertainties involved in the elementary BB production
cross sections we cannot determine this value very reliably. With increasing
αK̄ not only the magnitude of the spectra is increased, but also the slope
becomes softer. This is most clearly seen at low antikaon momenta because
the net attraction leads to a squeezing of the spectrum to low momenta. As
seen from Fig. 2 the K− spectra at 1.85 A·GeV are underestimated at high
antikaon momenta which might indicate the necessity for explicit momentum
dependent antikaon potentials [18].

Whereas the kaon and antikaon dynamics at SIS energies is reasonably
described within the hadronic transport approach HSD when including me-
son potentials [3], this no longer holds at AGS energies [3]. The heaviest
system studied here is Au + Au at ≈ 11 A·GeV. The calculated π−, K+

and K− rapidity spectra for central (0-10%) reactions (b ≤ 2 fm) are dis-
played in Fig. 3 in comparison to the data from Ref. [28]. The solid his-
tograms correspond to the ‘bare mass’ scenario and underestimate the data
strongly whereas the dashed histograms are obtained for αK = −0.06 and
αK̄ = 0.24, respectively. Whereas the K− yield is almost reproduced in the
latter scheme, the K+ yield is still underestimated as in case of the Si + Au
system at 14.6 A·GeV [27].

We now step on to SPS energies. The calculated results for the negative
hadron (h−) (l.h.s.), kaon (middle) and antikaon (r.h.s.) rapidity distribu-
tions for central collisions of Pb + Pb at 160 A·GeV are shown in Fig. 4 in
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Fig. 3. The calculated π− (l.h.s.), K+ (middle) and K− (r.h.s.) rapidity spectra

for central Au + Au reactions at 11 A·GeV in comparison to the experimental data.

The solid histograms are obtained without meson potentials whereas the dashed

histograms represent calculations with the same potentials as at SIS energies (see

text).

comparison to the data from [29]. The solid histograms correspond to the
‘bare mass’ scenario whereas the dashed histograms reflect the ‘in-medium
mass’ case with αK = −0.06 and αK̄ = 0.24. As for S + S at 200 A·GeV [27]
the h−, K+ and K− distributions are reproduced rather well showing even a
tendency for an excess of kaons and antikaons in the calculations rather than
missing strangeness. The distribution in rapidity becomes slightly broader
for in-medium kaon masses (dashed histograms in Fig. 4), but both scenar-
ios are compatible with the present data. Kaon and antikaon self-energies
thus are hard to extract from data at SPS energies due to the low sensitivity
of the spectra on in-medium potentials. We mention that the strangeness
enhancement at SPS energies in nucleus–nucleus collisions does not qualify
as a signal for an intermediate quark–gluon plasma (QGP) phase since the
spectra are fully compatible with a hadronic reaction scenario. However, the
strangeness production at much lower energy appears more promising [27].

The E866 and E895 Collaborations recently have measured Au + Au
collisions at 2,4,6 and 8 A·GeV kinetic energy at the AGS [30]. Thus it is of
particular interest to look for a discontinuity in the excitation functions for
pion and kaon rapidity distributions and to compare them to the hadronic
HSD transport approach. In Fig. 5 the calculated K+/π+ ratios (open
squares) at midrapidity (|ycm| ≤ 0.25) for central (b = 2 fm) Au + Au colli-
sions at 1,2,4,6,8 and 11 A·GeV and Pb + Pb collisions at 160 A· are shown
together with the preliminary data (full dots). The ratio at midrapidity is
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Fig. 4. The calculated h− (l.h.s.), K+ (middle) and K− (r.h.s.) rapidity spectra for

central Pb + Pb reactions at 160 A·GeV in comparison to the experimental data.

The solid histograms are obtained without meson potentials whereas the dashed

histograms represent calculations with the same potentials as at SIS energies (see

text).
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Fig. 5. The calculated K+/π+ ratio at midrapidity for central Au + Au reactions

(full squares) from SIS to RHIC energies in comparison to the preliminary exper-

imental data from 1–160 A·GeV and the corresponding ratio for p + p collisions

(open circles) from the HSD approach (see text).

slightly higher than the total K+/π+ ratio, because the kaon rapidity dis-
tribution is narrower than that of the pions. While the scaled kaon yield at
1 and 2 A·GeV (SIS energies) is well described in the HSD approach within
the error bars, the experimental K+/π+ ratio at 4 A·GeV is underestimated
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already by a factor of 2 and increases up to roughly 19% for 11 A·GeV. As
mentioned before the calculated and measured ratio coincide again at 160
A·GeV.

The increase of the K+/π+ ratio with bombarding energy in the HSD
approach is much slower up to 11 A·GeV in comparison to the data and
similar to the corresponding ratio for p + p collisions (open circles) in HSD.
The relative strangeness enhancement in the transport approach for Au +
Au compared to p + p is due to Fermi motion and hadronic rescattering;
obviously this hadronic rescattering scenario is insufficient to describe the
experimental excitation function.

3. Summary

Pions and η-mesons are found not to show sizeable in-medium effects
in their relative abundancy and spectra. The same holds for kaons where
only the data on kaon flow indicate a slightly repulsive potential. Antikaons
similar to antiprotons [3,24], however, do show strong attractive potentials in
the medium which is seen most clearly at ‘subthreshold’ production energies
in nucleus–nucleus collisions. The magnitude of the K+,K− potentials seen
at finite density is roughly in line with Lagrangian models based on chiral
perturbation theory [14, 17] and relativistic mean-field approaches [13].

An enhancement of the K+/π+ ratio in heavy-ion collisions relative to
p + p reactions is found due to hadronic rescattering both with increasing
system size and energy. It should be emphasized that this is expected within
any hadronic model: the average kinetic energy and the particle density
increases monotonically with incoming kinetic energy of the projectile while
the life time of the fireball increases with the system size. The excitation
function in the K+/π+ ratio from the hadronic transport approach has a
similar slope in nucleus–nucleus and p + p collisions (cf. Fig. 5) indicating
a monotonic increase of strangeness production with bombarding energy.
However, the experimental K+/π+ ratio for central Au + Au collisions at
midrapidity increases up to ≈ 19% at 11 A·GeV — it is unknown if a local
maximum will be reached at this energy — and decreases at SPS energies to
≈ 16.5%. Such a decrease of the scaled kaon yield from AGS to SPS energies
is hard to obtain in a hadronic transport model. On the contrary, the higher
temperatures and particle densities at SPS energies always tend to enhance
the K+/π+ yield closer to its thermal equilibrium value of ≈ 20÷25% [31] at
chemical freezout and temperatures of T ≈ 150 MeV. Thus the steep rise of
the strangeness yield and its decrease indicates the presence of nonhadronic
degrees of freedom which might become important already at about 4 A·GeV;
according to our present understanding such nonhadronic degrees of freedom
should be attributed to partons, i.e. quarks and gluons.
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