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The properties of vector mesons in nuclear matter are discussed. I
examine the constraints imposed by elementary processes on the widths of
ρ and ω mesons in nuclear matter. Furthermore, results for the ρ- and ω-
nucleon scattering amplitudes obtained by fitting meson-nucleon scattering
data in a coupled-channel approach are presented.
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1. Introduction

The electromagnetic decay of the vector mesons into e+e− and µ+µ−

pairs makes them particularly well suited for exploring the conditions in
dense and hot matter in nuclear collisions. The lepton pairs provide virtually
undistorted information on the mass distribution of the vector mesons in the
medium.

The lepton-pair spectrum in nucleus-nucleus collisions at SPS energies
exhibits a low-mass enhancement compared to proton-proton and proton-
nucleus collisions [2]. A quantitative interpretation of the lepton-pair data
can be obtained within a scenario, where the effective vector-meson masses
are reduced in a hadronic environment [3–6]. On the other hand, attempts to
interpret the low-mass enhancement of lepton pairs in terms of many-body
effects also yield good agreement with the data [7, 8]. In these calculations
the broadening of the ρ meson in nuclear matter due to the interactions of
its pion cloud with the medium [9–12] and the momentum dependence of the
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ρ-meson self energy due to the coupling with baryon-resonance–nucleon-hole
states [13, 14] are taken into account.

Through the low-density theorem hadron-nucleon scattering data can
be used to determine the self-energies of hadrons in nuclear matter at low
densities. In this talk I discuss the the constraints on the imaginary part
of the vector-meson self energy in nuclear matter that can be derived from
elementary reactions, and present results of a coupled channel calculation
of meson-nucleon scattering. The latter provides a model for the vector-
meson–nucleon scattering amplitude.

2. Constraints from elementary processes

The low-density theorem states that the self energy of e.g. a vector meson
V in nuclear matter is given by [15]

ΣV (ρN ) = −4π(1 +
mV

mN
)〈fV N 〉 ρN + . . . , (1)

where mV is the mass of the vector meson, mN that of the nucleon, ρN the
nucleon density and 〈fV N 〉 denotes the V N forward scattering amplitude
fV N , appropriately averaged over the nucleon Fermi sea. For the vector
mesons ρ, ω and φ the elastic scattering amplitudes have to be extracted
indirectly, e.g. in a coupled channel approach, which I will discuss in Sec-
tion 3.

In order to avoid an extrapolation over a wide range in mass, which
would introduce a strong model dependence [16], I will use only data in the
relevant kinematic range to constrain the V N scattering amplitudes. As an
example, I shall first discuss the implications of the data on pion-induced
vector-meson production for the in-medium width of ω mesons.

Using detailed balance and unitarity one can relate the cross section for
the reaction π−p → ωn to the imaginary part of the ω-nucleon scattering
amplitude due to the π−p channel [16]

σπ−p→ωn = 12π
kω

k2
π

Im f̄ (π−p)
ωn→ωn(θ = 0), (2)

where f̄ denotes the spin-averaged scattering amplitude. Close to the ωn

threshold, the scattering amplitude can be expanded in powers of the relative
momentum in the ωn channel qω. An excellent fit to the data from threshold

up to q = 120 MeV/c2 is obtained with Im f̄
(π−p)
ωn→ωn = a + bq2

ω + cq4
ω, where

a = 0.013 fm, b = 0.10 fm3 and c = −0.08 fm5 (see Fig. 1). The coefficient
a is the imaginary part of the scattering length.
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Fig. 1. The π−p contribution to the imaginary part of the ω−n forward-scattering

amplitude obtained by a fit to the π−p → ωn data (Ref. [17]) near threshold.

The corresponding contribution of the π-nucleon channel to the width
of the ω meson at rest in nuclear matter can now be obtained by using the
low-density theorem (1)

∆Γω = 4π(1 +
mω

mN
)
3

2

〈Im f
(π−p)
ωn→ωn〉 ρN

mω
. (3)

This implies that at nuclear-matter density the width of the ω meson in
nuclear matter is increased by 9 MeV due to the π-nucleon channel. Other
channels, like the ππN channel leads to a further enhancement of the ω

width in matter.
For the ρ meson the situation is more complicated. First of all the

experimentally accessible πN channel is subdominant. Second, both isospin
1/2 and 3/2 are allowed. Thus, three independent reactions are needed
to pin down the amplitudes of the two isospin channels and their relative
phase. The data [18, 19] on the reactions π−p → ρ0n, π+p → ρ+p and
π−p → ρ−p would, if measured down to threshold, be sufficient to determine
the amplitudes. Unfortunately the large width of the ρ meson makes its
identification close to threshold very difficult. Thus, the data even in the
one channel, which is measured close to threshold π−p → ρ0n, is afflicted
with a large uncertainty [20]. Clearly new data on ρ production close to
threshold would be very useful.

3. Meson-nucleon scattering

In this section I describe a coupled channel approach to meson-nucleon
scattering [21]. The following channels are included: πN , ρN , ωN , π∆ and
ηN . Our goal is to determine the vector-meson–nucleon scattering amplitude
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close to threshold, which in turn determines the self energy of a vector-meson
at rest in nuclear matter to leading order in density.

Since we are interested in the vector-meson scattering amplitude close to
threshold, it is sufficient to consider only s-wave scattering in the ρN and ωN

channels. This implies that in the πN and π∆ channels we need only s- and
d-waves. In particular, we consider the S11, S31,D13 and D33 partial waves
of πN scattering. Furthermore, we consider the pion-induced production of
η, ω and ρ mesons off nucleons. In order to learn something about the mo-
mentum dependence of the vector-meson self energy, vector-meson–nucleon
scattering also in higher partial waves would have to be considered.
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Fig. 2. The πN scattering phase shifts and inelasticity. The line shows the best fit,

while the data points are those of the analysis of Arndt et al. [22].

In accordance with the approach outlined above only data in the relevant
kinematical range will be used in the analysis. The threshold for vector-
meson production off a nucleon is at

√
s ≃ 1.7 GeV. We fit the data in the

energy range 1.45 GeV ≤ √
s ≤ 1.8 GeV, with an effective Lagrangian with

4-point meson-meson–baryon-baryon interactions. For details the reader is
referred to Ref. [21]. In Fig. 2 our fit to the πN scattering data is illustrated
by the D13 channel. In the remaining channels the quality of the fit is in
general better.
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Fig. 3. The cross section for the reaction π−p → ρ0n. The data points are from

Ref. [18], as given in Ref. [19]

Furthermore, in Fig. 3 the cross section for the reaction π−p → ρ0n is
shown. The bumps at s1/2 below 1.6 GeV are due to the coupling to res-
onances below the threshold, like the N⋆(1520). This indicates that these
resonances may play an important role in the ρ-nucleon dynamics, in agree-
ment with the results of Manley and Saleski [20]. However, the strength of
the coupling is uncetrain, due to the ambiguity in the ρ-production cross
section close to threshold mentioned above. We find that also the ω meson
couples strongly to these resonances.

The pion-induced η-production cross section is well described up to
s1/2 ≃ 1.65 GeV. At higher energies presumably higher partial waves, not
included in our model, become important. Similarly, the pion-induced pro-
duction of ω mesons is reasonably well represented close to threshold, al-
though the strong energy dependence of the amplitude shown in Fig. 1 is
not reproduced by the model. This may be due to the coupling to channels
not included at present, like the K − Σ channel.

The resulting ρ- and ω-nucleon scattering amplitudes are shown in Fig. 4.
The ρ −N and ω − N scattering lengths are (-0.2+0.7i) fm and (-0.5+0.1i)
fm respectively. To lowest order in the density, this corresponds to the
following in-medium modifications of masses and widths at nuclear matter
density: ∆mρ ≃ 20 MeV, ∆mω ≃ 50 MeV, ∆Γρ ≃ 140 MeV and ∆Γω ≃
20 MeV. However, the coupling of the vector mesons to baryon resonances
below threshold, which is reflected in the strong energy dependence of the
amplitudes, implies that in medium the vector-meson strength will be split
into a meson like mode, which is pushed up in energy, and a resonance-
hole like mode, which is pushed down in energy. The downward shift of
vector-meson strength would contribute to the low-mass enhancement in
the lepton-pair spectra. Thus, our results support the dynamical scenario
discussed in Ref. [23].
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Fig. 4. The ρN and ωN scattering scattering amplitudes, averaged over spin and

isospin.
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