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We give a pedagogical introduction to the concept that light quarks
diffuse in the QCD vacuum following the spontaneous breaking of chiral
symmetry. By analogy with disordered electrons in metals, we show that
the diffusion constant for light quarks in QCD is D = 2F 2

π
/|〈q̄q〉| which is

about 0.22 fm. We comment on the correspondence between the diffusive
phase and the chiral phase as described by chiral perturbation theory, as
well as the cross-over to the ergodic phase as described by random matrix
theory. The cross-over is identified with the Thouless energy Ec = D/

√
V4

which is the inverse diffusion time in an Euclidean four-volume V4.

PACS numbers: 64.60.Cn, 11.30.Rd, 12.38.Aw

1.

In this talk and borrowing from our recent work [1], we explain using
theoretical arguments how the QCD vacuum can be viewed as a chirally
disordered medium, with chiral quarks diffusing through Euclidean four-
space V4 with diffusion constant D = 2F 2

π/|〈q̄q〉|.
In Section 2 we define the basic concepts of diffusion, a phenomenon well

known in 1,2,3-dimensional electronic systems, where the coherent descrip-
tion of electron waves fails at transport distances greater than the mean
free path. In Section 3 we argue that a similar behavior in 4-dimensional
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Euclidean space allows us to interpret the result of multiple scatterings of
originally coherent quark waves, in the form of a diffusion pole. In Section 4
we show how the diffusive picture merges with the universal predictions of
random matrix models, provided that the eigenvalues of the Dirac operator
are smaller than the Thouless energy E = D/

√
V4. In Section 5 we com-

ment on the generic character of this description in comparison with chiral
perturbation theory, the instanton model and lattice QCD simulations. In
Section 6 we list some plausible extensions of our description to important
issues in QCD.

2.

The typical distance of a diffusing particle grows as a function of time as
r2(t) = Dt, where D is a diffusion constant. One could therefore identify a
time scale in which a particle is diffusing through the sample of a linear size
L as τc = L2/D. The corresponding energy scale known as the Thouless
energy, is therefore Ec = 1/τc = D/L2. For energies lower than the Thouless
energy (times greater than τc), particle probes the whole volume of the
system, defining in this way an ergodic regime. Decreasing the energy yields
a minimal scale of the order of the mean quantum spacing ∆, where the
quantum description of the system becomes dominant. On the other side,
for energies larger than the Thouless energy, a particle has time to probe
only small domains of the whole volume. This is a diffusive regime. For even
larger energies the diffusive regime breaks down, and we enter a ballistic
regime — simply times are so short, that the particle cannot even travel the
mean free path (m.f.p.) between elastic collisions. This scale hierarchy is
shown beneath.

-

∆ Ec 1/tm.f.p. E

quantum ergodic diffusive ballistic

Quantitatively, the diffusion is easily described in terms of the retarded
and advanced Green’s function G±(r, r′, E) = 〈r|(E − H ± iε)−1|r′〉, where
r, r′ are positions in d-dimensional space, and where the Hamiltonian H con-
tains the details of the disorder (e.g. H could be an Anderson Hamiltonian).
With the help of the Green’s function, one could easily define [2] the return
probability P (t) to the origin in fixed time t for the diffusing particle with
energy EF . Specifically,

P (t) =
V

2πρ

∫

dλe−iλt〈G+(r, r, EF + λ/2)G−(r, r, EF − λ/2)〉 , (1)



Chiral Disorder and Diffusion of Light Quarks in . . . 3217

where ρ is an average spectral density, and 〈...〉 is the connected average
over the underlying disorder. Ergodicity implies that the disorder average
and spectral average are the same.

The process of averaging is equivalent to integrating over “fast” variables
of the system. As a result (for details see e.g. [2]) the return probability is
given by a classical formulae (in t space and Fourier space, respectively)

P (t) =
∑

Q

e−DQ2t , P (λ) =
∑

Q

1

−iλ + DQ2
, (2)

where the details of integration over the fast variables are hidden in the
diffusion constant D, and the diffusion modes Q are “slow” (effective) degrees
of freedom. Since in the infinite volume limit the solution (2) reduces to the
classical solution of the Helmholtz equation, the effective “slow” variable is
sometimes called a “diffuson”.

The diffusion pole could easily develop a gap, −iλ+DQ2→ −iλ+γ+DQ2

if an exponential damping exp(−γt) tantamount of loss of coherence, mul-
tiplies P (t). The damping is related to a finite coherence length Lcoh as

γ = D/L2
coh . (3)

In the ergodic regime (and ignoring the damping γ), the return prob-
ability is always 1. Technically, one could recover this result from (2) by
restricting the sum to zero modes Q=0. In this way the results are space in-
dependent (infinitely long range, or equivalently, no derivatives), and there-
fore belong to the same universality class as ensembles of random matrices
(i.e. a field theory in 0 dimensions). What only matters are the underlying
symmetries of the Hamiltonian H, leading in this way to the famous Dyson’s
threefold path: Gaussian Unitary (GUE), Orthogonal (GOE) and Symplec-
tic (GSpE) Ensembles, for hermitian, real and skew-symmetric Hamiltoni-
ans, respectively [3].

3.

The idea that light quarks in the QCD vacuum might undergo (one-
dimensional) random walk was pointed out by Banks and Casher [4]. It
was later on suggested in the context of the instanton liquid model [5, 6]
that light quarks may behave like in a ‘semiconductor’ depending on the
instanton density in the vacuum. This point was established using numer-
ical simulations with instantons [6, 7]. In this context it is suggestive to
compare the Einstein–Kubo–Greenwood formula for the conductivity σ of a
dc-current to the to the Banks-Casher relation for the quark condensate as
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suggested explicitly in [8]

σ = Dρ(EF ) ↔ |〈q̄q〉| =
1

πV4
ρ(0) , (4)

where ρ(EF ) is the average electronic density at the Fermi level, and ρ(0) is
the average spectral quark density of the eigenvalues of the Dirac operator
in QCD, averaged over all gluonic configurations.

What is new in our present arguments is that the analogy is indeed
quantitatively realized in the QCD vacuum. Despite the fact that they
confine, light quarks diffuse in d=4 in the QCD vacuum [1]. The conductivity
is played by the pion decay constant F 2, and the Einstein–Kubo–Greenwood
formula is precisely realized in QCD in the form of the (GOR) Gell-Mann–
Oakes–Renner relation [9] 1. The idea that light quarks diffuse in d=4 is
key to understanding a number of phenomena in QCD in light of results in
disordered electronic systems. More importantly, it allows us to organize
certain aspects of infrared QCD as corrections to the Ohmic conductivity,
thereby providing a new and nonperturbative calculational scheme.

Indeed, the eigenvalue equation of the massless Dirac operator for fun-
damental quarks in a fixed gluon field A in Euclidean volume V4

i∇/[A] qk = λk[A] qk (5)

allows us to extend the theory into 4+1 dimension with proper time t, and
define the probability P (t) for a light quark to start at x(0) in V and return
back to the same position x(t) after a proper time duration t. Here the
four-dimensional “Hamiltonian” i∇/[A] acts as a generator for the evolution
operator along the additional time t, so the diffusion picture dwells in 4+1
dimensions.

We restrict our description to zero virtuality, i.e. we focus on the dif-
fusion of quarks corresponding to EF ∼ 0, by analogy with (4). Therefore
P (t) reads [1], in analogy to (1)

P (t) =
V4

2πρ
lim
y→x

∫

dλe−iλt
〈

Tr
(

S(x, y; z)S†(x, y; z̄)
) 〉

A
(6)

with complex z = m − iλ/2, and Green’s function (quark propagator)

S(x, y; z) = 〈x| 1

i∇/[A] + iz
|y〉 . (7)

1 Recently, Stern [10] has presented arguments in which F
2 is also interpreted as a con-

ductivity but challenged the conventional form of the GOR relation and the Einstein–
Kubo–Greenwood formula for light quarks.
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Here 〈...〉 denotes connected average over all gluonic configurations in the
QCD vacuum, making at first sight the r.h.s. intractable. Nevertheless, it
is possible to relate the classical return probability to the properties of the
pion, since S†(x, y; z̄) = −γ5S(y, x; z)γ5. Therefore the return probability
reads

P (t) ∼ lim
y→x

∫

dλ e−iλt
Cπ(x, y; z) , (8)

where

1
ab

Cπ(x, y; z) =
〈

Tr
(

S(x, y; z)iγ5τ
aS(y, x; z)iγ5τ

b
)〉

A
. (9)

We recognize that Cπ is the analytically continued (with z = m−iλ/2) pion
correlation function2, given (for z = m), due to pion-pole dominance, by

Cπ(x, y;m) ≈ 1

V4

∑

Q

eiQ·(x−y) Σ
2

F 2
π

1

Q2 + m2
π

(10)

with Qµ = nµ2π/L in V4 = L4 and Σ = |〈qq〉|.
Using the GOR [9] relation F 2

πm2
π = mΣ, and the analytical continuation

m → z = m − iλ/2, we find [1]

Cπ(x, y; z) ≈ 1

V4

∑

Q

eiQ·(x−y) 2Σ

−iλ + 2m + DQ2
(11)

with the diffusion constant D = 2F 2
π/Σ, in full analogy to (2). Inserting (11)

into (8), and using the Banks–Casher relation we conclude, after a contour
integration that indeed

P (t) = e−2mt
∑

Q

e−DQ2t . (12)

For very large current quark masses m, the diffusion is suppressed. For
small m, we see that twice the current quark mass plays the role of the damp-
ing γ, introducing a cutoff on infinitely long diffusion paths. For m 6= 0, the
coherence length corresponding to the collective excitations of the QCD vac-
uum is finite, Lcoh = 1/mπ, and we see that this is again consistent with the
GOR formula (cf. (3) with D = 2F 2

π/Σ). The analytically continued pion
propagator plays the role of the “diffuson” degrees of freedom, after integrat-
ing the QCD fast variables. The effective Lagrangian for pions is organized

2 The insertion of the isospin generators τ
a is a formal ‘trick’ to project onto the

connected part of the correlation function.
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on the basis of chiral counting [11], and similarly effective Lagrangian for
diffusions are basically sigma models [2].

It is now easy to identify all the relevant length scales defined in Sec-
tion 2 and separating the different regimes of the QCD vacuum viewed as
a disordered medium. The scale which separates the quantum regime from
the ergodic one is the average level spacing ∆ from the spectral function of
the Dirac operator, ∆ = π/ΣV4. The Thouless energy equals D/

√
V4 with

D = 2F 2
π/Σ. In this way we define the ergodic regime. The diffusive regime

starts to be relevant for eigenvalues of the Dirac operator greater than the
Thouless energy. The diffusive regime merges with the ballistic regime when
the eigenvalues approach twice the value of the constituent quark mass. In-
deed, if the propagation in time is not enough to cover a mean free path,
the concept of “dressing” the quark through multiple collisions becomes ob-
solete. We note that the segregation of scales take place naturally in a finite

Euclidean volume V4, hence the usefulness of the ‘box’ [1].

4.

It is inspiring to see how the universal (ergodic) regime appears as a
limit of the diffusive regime. This regime gained recently a lot of attention
in ‘random’ QCD, due to several remarkable agreements between predic-
tions based on chiral random matrix models and lattice QCD simulations.
Like in disordered metallic systems, where the ergodic regime appears as a
consequence of restricting to zero modes of diffusion, a similar simplification
operates in QCD. For energy scales smaller than the Thouless energy, the
quark return probability is equal to 1, which again corresponds to the zero-
mode approximation. Since restricting to Q = 0 is equivalent to keeping
only constant modes (no derivatives), much of the QCD dynamics becomes
irrelevant. The partition function for full QCD in this regime is simply [11]

Z(m) =

∫

dUeΣV4Tr (m(U+U†)) . (13)

One sees that the r.h.s. depends solely on the way chiral symmetry is sponta-
neously broken (the integration dU over the coset space of Goldstone modes)
and on the explicit pattern of breaking chiral symmetry (exponent), here in
the (Nf , N̄f )+(N̄f , Nf ) representation. Like in the nonchiral case, here also
only three generic scenarios are possible, depending on the symmetries of
the Dirac operator [12]. For QCD with Nc ≥ 3 where quarks are in fun-
damental representation, theory belongs to the universality class of Chiral
GUE. For QCD with Nc = 2 the theory belongs to the universality class of
Chiral GOE. For QCD with quarks in the adjoint representation the theory
belongs to the universality class of Chiral GSpE.
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The “chirality” (off-block diagonal structure) of the random ensembles is
the remnant of the chiral property [iD/, γ5]+ = 0. All three possibilities have
a simple interpretation from the point of view of approaching the ergodic
regime from the diffusive regime [1]. For QCD with three or more colors,
each quark orbit is traversed once. For QCD with two colors, each quark
orbit is traversed twice, since SU(2) does not ‘distinguish’ between quarks
and antiquarks. Finally, the adjoint representation of quarks means that
we have supersymmetric QCD (same group representation for quarks and
gluons). Intuitively, in this case the quark traverses only “half” of the orbit,
due to the fact that supersymmetry is “taking a square root” from the Dirac
equation. More formally, in the diffusive regime of QCD one could postulate
following semiclassical arguments from classical chaos [13]

K(t) ≈ 2t∆2/(4π2β)P (t) , (14)

where the spectral form factor K(t) is directly related to two-level quantum
correlation function, and β = 1, 2, 4 for Chiral GUE,GOE,GSpE, respec-
tively.

To summarise: we would like to stress once more, that several nontriv-
ial results for QCD below the Thouless energy, like the existence of the
Leutwyler-Smilga sum rules [14], the existence of universal microscopic cor-
relators suggested by the Stony Brook group [15] and proven to be universal
by the Copenhagen group [16], the observation of universal oscillations in
lattice spectra [17] and other results, are all various facets of the same fact
that “P (t) = 1 in the ergodic regime.”

5.

The diffusive picture of the QCD vacuum, sketched here on the basis
of analogies to condensed matter physics, has several relations to existing
descriptions of the spontaneous breakdown of chiral symmetry. In the lan-
guage of chiral power counting, the ergodic regime corresponds to the limit
mV4 ∼ 1, whereas the diffusive regime to the limit m2V4 ∼ 1. The first
counting dwarfs the contribution of the non-zero modes to the pion propa-
gator Cπ, leaving only the zero mode. The second counting enhances the
contribution of the non-zero modes over the zero mode, leading to standard
chiral perturbation theory [11].

It is interesting to compare the diffusive picture to the model of instan-
tons, since the analytical scenario put forward by Diakonov and Petrov [5]
and numerical one suggested by Shuryak [6] are (in our knowledge) the first
detailed realization of some of the ideas on disorder in a QCD model. In
the instanton model, the average 〈...〉 over all gluonic configurations is per-
formed explicitly, assuming an ansatz for a random model of instantons and
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antiinstantons. Disorder comes from random positions and colors of instan-
tons, and chirality is built in through the chiral properties of (right/left)
fermionic zero modes for each instanton (antiinstanton). Since in the in-
stanton model one could express parametrically each dimensionfull quantity
in terms of the average instanton radius r̄ and average inter-instanton dis-
tance R ∼ 1 fm, the smallness of the diffusion constant D = 0.22 fm reflects
simply the diluteness of the instanton vacuum, where r̄/R = 0.2− 0.3. The
fact that the instanton vacuum has a regime consistent with (13) is well
known. A recent numerical study by Osborn and Verbaarschot [18] has also
confirmed the existence of the Thouless energy in this model, as we originally
predicted [1].

Perhaps the most interesting comparison of our predictions is a direct
lattice simulation. From (14), a direct comparison to the lattice is possible
since the l.h.s. is explicitly measured on the lattice, and the r.h.s. is explic-
itly calculable for all regimes of disorder. The first interesting investigation
confirming some of the results presented here was recently carried out by
Berbenni–Bitsch et al. [19] In particular, they have considered the dimen-
sionless ratio λMax/∆, where λMax is the maximal eigenvalue of the Dirac
operator for which the universal predictions based on random matrix theory
still hold. Since λMax is nothing but the Thouless energy, this dimensionless
ratio reads

Ec

∆
=

2

π
F 2

πL2 , (15)

where we used the Banks–Casher relation and the preceding definitions for
the Thouless energy Ec and the diffusion constant D, respectively. By study-
ing various lattice sizes, the authors [19] have observed that the scaling is
consistent with (15) and identified the Thouless energy for the lattice.

6.

The present ideas on chiral disorder translate concepts of disorder from
condensed matter physics to low-energy chiral QCD. Most of the results
are directly amenable to lattice studies.3 A number of non-perturbative
investigations can be carried out in the present context. In particular,

— the effects of finite temperature and chemical potential on the diffusive
properties of the QCD vacuum;

— the role of the number of flavors and finite θ (strong CP violating)
angle on the diffusion scenario;

3 We also hope that the ballistic regime is amenable to a lattice investigation despite
the proximity of this regime to the UV-spectrum.
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— the change of the spectral properties of the ‘diffusion’ at the criti-
cal temperature and the dependence of the return probability on the
critical exponents in QCD phase transitions;

— the modifications of the diffusion due to the addition of electromag-
netic and chromomagnetic external fields (negative magnetoresistance
of the QCD vacuum, Bohm-Aharonov like effects due to the presence
of fluxons or maximally abelian-projected monopoles).

Some of these issues will be brought up next.
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