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We summarize recent developments related to meson spectra in a dense
nuclear medium. Our primary emphasis is on vector meson mass spectra in
matter and their role as possible indicators of a tendency toward restoration
of spontaneously broken chiral symmetry.

PACS numbers: 24.85.+p, 12.38.–t

1. Introduction

QCD with massless u-, d-, and s-quarks has a chiral SU(3)L×SU(3)R
symmetry. As a consequence of strong QCD forces, this symmetry is spon-
taneously broken. It is also explicitly broken by the quark masses. This
symmetry breaking pattern is clearly manifest in the low energy hadron
spectrum, with the octet of light pseudoscalar mesons representing the Gold-
stone bosons of the spontaneously broken symmetry. No parity doublets are
observed. For example, the masses of the (Jπ = 1−) vector mesons are sys-
tematically lower than those of their chiral partners, the (Jπ = 1+) axial
vector mesons.

Spontaneously broken chiral symmetry is expected to be restored at high
temperatures and high baryon densities. At this point vector and axial vec-
tor modes become degenerate, and one expects that in-medium vector meson
spectra should show traces of this tendency. One of the issues of chiral dy-
namics in dense matter is then to explore the driving mechanisms for chiral
restoration. The framework for our discussion is an effective Lagrangian,
based on chiral SU(3)L×SU(3)R symmetry, which incorporates the interac-
tions of the Goldstone bosons (pions, kaons) with the octets of baryons and
vector mesons [1].
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2. Pions and kaons in matter: brief summary

Before focusing on vector meson spectra in a dense nuclear medium,
let us give a brief summary on recent progress in our understanding of the
in-medium behaviour of pions and kaons.

Chiral dynamics predicts the leading s-wave interactions of pions in nu-
clear matter. For example, a π− in a typical heavy nucleus with a sub-
stantial neutron excess, like Pb, should experience a moderately repulsive
central potential of about 20–25 MeV [2]. This has been beautifully con-
firmed by the recent observation of deeply bound pionic states using the
208Pb(d,3 He)(π− ⊕207 Pb) reaction at GSI [3].

Chiral SU(3) dynamics also predicts a characteristic splitting of the K+

and K− masses in nuclear matter. The K+ is expected to experience weak
repulsion, whereas the K− feels a strongly attractive potential of order −100
MeV at normal nuclear matter density, ̺ = ̺0 = 0.17 fm−3. While various
approaches differ in their quantitative details [4, 5], a consistent qualitative
picture has emerged. This picture is supported by the recently measured
subthreshold K−/K+ production ratios at GSI/SIS [6].

3. Vector meson spectra in dense matter

Let us now turn to the in-medium behaviour of ρ, ω and φ mesons. The
basic quantity to start with is the current–current correlation function

Πµν(ω, ~q) = i

+∞∫

−∞

dt

∫
d3x eiωt−i~q·~x〈T jµ(~x, t)jν(0)〉, (1)

where jµ is the electromagnetic current and T denotes time-ordering. At
temperature T = 0, the expectation value in Eq. (1) is taken in the ground
state of nuclear matter at density ̺. The imaginary part of Πµν determines
the spectrum of vector meson excitations in matter. At finite temperature,
this spectrum can be “seen” by detecting the e+e− pairs produced in high-
energy heavy-ion collisions. The ongoing CERES and forthcoming HADES
experiments are aimed at the question whether in-medium spectra differ
markedly from the corresponding vacuum spectra observed in the process
e+e− → hadrons.

We proceed as follows: Using an effective Lagrangian which combines
chiral dynamics with the vector meson dominance of the electromagnetic
current, we specify a Lorentz frame in which nuclear matter as a whole is
at rest and first study vector meson spectral distributions at ~q = 0 as a
function of energy ω. In this case only the transverse components of the
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correlation tensor (1) survives with

Π00 = Π0i = Πj0 = 0 and Πij(ω, ~q = 0; ̺) = −δijΠ(ω, ~q = 0; ̺) .

This specifies the reduced scalar correlation function Π. It involves the
vector meson self-energies ΠV ( with V = ρ, ω, φ) to all orders. At low
density, ΠV = ΠV (vac) − ̺TV N , where the vacuum quantity ΠV (vac) is
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Fig. 1. Spectral distributions in the vector meson channels of the current–current

correlation function [7, 8]. The dashed lines show the vacuum spectra in the ρ,

ω and φ channels normalized such that they can be compared directly with the

corresponding e+e− → hadrons data. The long dashed and solid lines show the

calculated spectral functions in nuclear matter at densities ̺0/2 and ̺0 = 0.17fm−3,

as discussed in Section 3.
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known from e+e− → hadrons. The primary problem is now to calculate the
T -matrix describing the interactions of vector mesons with nucleons. Details
of these calculations are explained in [7, 8].

The results are summarized in Fig. 1. We observe important differences
between the various channels. The ρ meson mass is expected to decrease
only slightly while the width increases very strongly. This causes the spectral
strength to shift downwards and broaden substantially. We also see strong
threshold contributions starting at the pion mass. The ρ meson evidently
dissolves in nuclear matter; it does not survive as a “good” quasi-particle.
On the other hand the mass of the ω meson decreases significantly. Its
width also increases but not as strongly as for the ρ meson, so it can still
be regarded as a good quasi-particle in matter. For the φ meson there is
almost no change in the peak position while the width increases.

As demonstrated in [7], the calculated ρ, ω and φ spectra are perfectly
consistent with in-medium QCD sum rules. There are, of course, uncer-
tainties on both sides of the sum rule analysis. On one side, the calculated
spectra have some model dependence related to the vaguely known high-
energy behaviour of the vector meson-nucleon amplitudes, and to unknown
possible contact terms in the basic interactions. On the other side, in the
operator product expansion part of the QCD sum rule, uncertainties exist
as to the factorization of four-quark condensates at finite baryon density. In
view of this, in-medium QCD sum rules do not have predictive power, but
they are useful as a consistency test for calculated mass spectra.

4. Dilepton spectra

In a simple thermal model the dilepton production rates in high-energy
heavy-ion collisions are determined by

dR

d4x d4q
=

α2

π3q2
|Im Π(q; ̺, T )|fB(q0, T ) , (2)

with α = e2/4π ≃ 1/137 and Π = gµνΠµν/3. We denote the four-
momentum of the dilepton pair by q = (q0, ~q ). The space-time volume
element which radiates the dilepton pair is d4x. Apart from the Boltzmann
factor fB = [exp (q0/T ) − 1]−1, the imaginary part of the current–current
correlation function completely determines the dilepton yield in this picture
which we will use here to outline the primary effects.

We can now compare our results for Im Π with the dilepton data mea-
sured by CERES [9]. The produced dileptons in this experiment carry three-
momenta |~q | of the same order as their invariant mass, so we have to include
p-wave interactions of the ρ meson with nucleons as in [10]. We incorporate
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the relevant N∗ and ∆ resonances (the ∆(1232), N∗(1720) and ∆∗(1905))
in the calculation. For the ωN and φN systems no such resonances are
known. The resulting momentum dependent amplitudes TV N (ω, q̄) are then
included in Eq. (2).

The explicit temperature dependence of Im Π is generally found to be
quite weak, so that we can use Im Π(q; ̺, T = 0) as a good first approx-
imation and leave the temperature dependence entirely to the Boltzmann
factor fB.

The differential production rate of the e+e− pairs with respect to rapidity
η and invariant mass m is then determined as follows:

d2Ne+e−

dη dm
=

tf∫

0

dtV (t)

∫
d3q

m

qo
·
dR(q; ̺(t), T (t))

d4x d4q
A(q) . (3)

The integrals are taken over the time evolution of the expanding fireball from
its formation at t = 0 until the freeze-out time tf , and the acceptance A(q)
of the detector. The density profile ̺(t) and the temperature profile T (t)
for the evolving fireball are adjusted to agree with more involved transport
calculations [11]. We use T (t) = (Ti − T∞)e−t/τ1 + T∞ with Ti = 170
MeV, T∞ = 110 MeV, τ1 = 8 fm and ̺(t) = ̺i exp(−t/τ2) with ̺i =
2.5̺0, τ2 = 5 fm. An overall normalization factor is set by the result of
transport calculations using the vacuum vector meson spectra, in the absence
of in-medium modifications. This normalization factor presumably accounts,
among other things, for non-equilibrium dynamics in the transport equations
which is ignored in the crude thermal approach.

Despite its extreme simplicity, the thermal model together with the cal-
culated in-medium spectral distributions reproduces the CERES data quite
well, as shown in Fig. 2(a). Qualitatively similar results have been found
in [10]. This figure also shows that the resonant p-wave ρN dynamics at
~q 6= 0 has only a moderate effect. The primary feature is the strong broad-
ening of the in-medium ρ meson spectrum which shifts spectral strength to
low e+e− invariant masses. The ω and φ peaks, not seen by CERES because
of limited energy resolution, remain essentially at their unperturbed posi-
tions since they are formed in the final phase of the expansion. By that time
the baryon density has already decreased to a fraction of normal nuclear
matter density.

One should note that the apparent “hill” structure in the data below the
free ρ resonance and above 0.2 GeV is entirely due to the CERES detector
acceptance A(q). Setting A(q) ≡ 1 produces an equivalent, structureless
spectrum which is reminiscent of a simple thermal spectrum with a charac-
teristic temperature T = 170 MeV.
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Fig. 2. Comparison of the dilepton rates from sulfur on gold collisions measured

by the CERES collaboration; — (a) hadronic scenario with (solid) and without

(dashed) medium modifications. The short-dashed line shows the in-medium result

when finite ~q effects are neglected. — (b) Mixed scenario with free qq̄ pairs at

T > Tc = 150 MeV and hadrons at T < Tc (solid). The dashed curve shows the

limiting case of a purely uncorrelated qq̄ spectrum.

At this point one might raise doubts whether a hadronic scenario is at all
appropriate. If the initial temperature of the fireball is indeed that large, the
system may have already passed through a phase (at critical temperature
Tc ≃ 150 MeV) in which chiral symmetry is (approximately) restored. In
this phase with Ti > T > Tc the sources which radiate e+e− pairs should
be almost free quark-antiquark pairs rather than mesons. We have therefore
tried a mixed scenario which starts out, at Ti = 170 MeV, with a free qq̄
continuum, (−12π/q2)ImΠ(q2) = 5/3 for 4m2

u,d ≤ q2 ≤ m2
s and equal to

2 above the strange quark threshold, with current quark masses mu,d ≃
10 MeV and ms ≃ 150 MeV. When the temperature reaches Tc ≃ 150
MeV, the system is assumed to cross over to the hadronic phase, with ImΠ
determined as before. The result is shown in Fig. 2(b). At the present
level of data statistics, it cannot be distinguished from the purely hadronic
scenario, Fig. 2(a), except that the mixed scenario produces more strength
at masses above the φ meson. Notably, a completely flat free qq̄ continuum
corresponding to a spectrum (−12π/q2)ImΠ = const., would also be in
accordance with the data.

5. Nuclear bound states of ω mesons

Given the obvious uncertainties encountered in ultra-relativistic heavy-
ion collisions, it is certainly useful to explore in-medium effects under less



Chiral Dynamics in Dense Matter: In-Medium Meson Spectra 3231

extreme, better controlled conditions. The ω meson is clearly an interesting
candidate. The driving ωN interactions based on the chiral effective La-
grangian (with inclusion of anomalies) suggest strong in-medium attraction,
corresponding to a mass shift of about −100 MeV at normal nuclear matter
density.

In the local density approximation, the ω meson self-energy can be trans-
lated into a complex, energy dependent potential

U (E,~r) =
1

2E
[Πvac(E) − TωN (E)ρ(~r)] . (4)

Terms involving ~▽ρ(~r) · ~▽ are expected to be less important. Here Πvac is
the self-energy in free space which incorporates the ω → 3π decay. The ωN
amplitude TωN (E) is strongly energy dependent. Its real part is positive
for E > 0.4 GeV and turns negative at lower energies. Its imaginary part
represents the ωN → πN, ππN etc. reaction channels. Unlike the ρ meson
case, the in-medium decay width of the ω meson turns out not to be over-
whelming, given that the ω → 3π width in free space is only about 7.5 MeV
to start with.

-100.0 -50.0 0.0 50.0 100.0
Q-Q0 [MeV]

0.0

0.5

1.0

1.5

d2 σ/
dΩ

dE
| θ=

0 
[n

b/
(s

r 
M

eV
)]

7
Li(d,

3
He) ω6

He
Td=4.0 GeV

with potential
free

-100 -50 0 50 100
 Eω-mω [MeV]

0.0

0.1

0.2

0.3

dσ
/dE

ω  [nb/M
eV

]

π−
+

7
Li -> n + ω6

He
Tπ=1.5 GeV

with potential
free

(a) (b)

Fig. 3. Differential cross sections for the production of an ω meson using a 7Li

target close to threshold (E = mω): — (a) (d,3He) transfer reaction with beam

kinetic energy Td = 4 GeV; — (b) π−A → n + ω(A − 1) reaction with a pion

beam energy Tπ = 1.5 GeV, assuming that the energy of the ω meson is detected

through its decay into e+e−. Dashed curves: quasi-free production; solid curves:

with inclusion of the density dependent ω meson potential (4). A flat background,

not shown here, is expected to come primarily from ρ meson production.

This raises the interesting question about the possible existence of quasi-
bound ω meson states in ordinary nuclei. We have solved the wave equation
with the potential (4) for several nuclei up to A = 40 and found that such
states are indeed likely to be formed. For example, the energies of deeply
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bound s-states turn out to be about −50MeV for A = 6 and −90 MeV for
A = 40. The corresponding widths of these states do not exceed 40 MeV.

Bound ω meson states could be generated in A(d,3 He)(ω⊕A−1) trans-
fer reactions or, alternatively, using the pion-induced production process
π−p → ωn in nuclei, under kinematical conditions which minimize the
momentum transfer such that the ω meson is produced with small recoil
momenta comparable to the nuclear Fermi momentum. Examples of calcu-
lations are shown in Figs 3(a), 3(b). These calculations use the empirical
p + d →3 He + ω and π−p → ωn cross sections and response function tech-
niques combined with the eikonal approach to treat distortion effects for in-
and out-going particles.

The increased ω meson width in the nuclear environment prohibits the
identification of isolated bound states. The differential cross sections are
small, but nevertheless, a systematic downward shift of strength as compared
to quasi-free ω production should be visible, even in light nuclei.

We would like to thank Volker Koch for discussions and for providing us
with the CERES acceptance filter.
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