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1. Introduction

While most of the traditional nuclear-structure theories start from a bare
nucleon-nucleon interaction, the theory of Fermi liquids, originally developed
by Landau [1] and adapted to the nucleus by Migdal [2] and his followers,
aimed at a description of the low-energy nuclear spectrum in terms of a
universal effective two-body interaction amplitude. In infinite systems this
was sufficient to describe a whole series of low-energy phenomena, since the
few free one-body parameters of an isotropic liquid, e.g. the effective mass,
could be directly linked to specific parts of the universal amplitude. In
nuclei however, surface effects are so much more important that a concept
as that of the effective mass is by far to crude to account for the complex
interplay between fermionic and bosonic degrees of freedom. Consequently,
for a reliable microscopic description a link is needed between the mass
operator and the two-body interaction amplitude.

2. The consistent system of equations

In the end-sixties the number-operator method was introduced [3] to
discuss the over-estimation of the nuclear ground-state correlations by the
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quasi-boson (RPA) method. Formulated in the language of Green’s func-
tions, the method amounts to calculating the nuclear response to the number
operator

N̂ =
∑

µ

a†µaµ

which plays the role of an external field. The result is the difference

〈Φs(A + 1)|N̂ |Φs(A + 1)〉 − 〈Φ0(A)|N̂ |Φ0(A)〉 = 1 .

Using the many-body T matrix, which is the correlated part of the two-body
Green function, this leads to an equation for the single-particle strength zs,

1 − zs = zs

∑

1234

〈σ|1〉〈2|σ〉

∮
dΩ

2πi
T1423(Es, Ω, 0)

∑

5

G54(Ω)G35(Ω) ,

which is related to the derivative of the mass operator by

zs =
∣∣∣〈Φs(A + 1)|a†σ |Φ0〉

∣∣∣
2

=
(
1 − M ′

σσ′(Es)
)−1

.

In this equation (where the Ω-integration is meant to be closed in the upper
half plane) the T matrix (not the mass operator as one might have expected)
contains all the nuclear information.

What was not known at that time, and was found later by the author [4],
is that there is another operator that plays a role complementary to the
number operator, namely the Hamiltonian. Assuming that it has the form
of a sum of a kinetic and a (two-body) potential-energy part one can write
it as follows:

H =
∑

12

a
†
1
a2 + 1

2

∑

1234

V1234a
†
1
a
†
2
a4a3 = 1

2

∑

12

(t12a
†
1
a2 + ia†

1
ȧ1δ12) .

At the cost of having introduced a time dependence (or an ω dependence
after Fourier transformation) the Hamiltonian has adopted a single-particle-
like form here. Using it in the same way as the number operator just before,
we can calculate the difference

〈Φs(A + 1)|H|Φs(A + 1)〉 − 〈Φ0(A)|H|Φ0(A)〉 = Es .

After using Ritz’s variational principle, in order to determine the optimal
single-particle basis, this gives the following eigenvalue equation:

E〈1|σ〉 =
∑

2

{
t12 +

∑

3456

∮
dΩ

2πi
T1625(E,Ω, 0)G46(Ω)G53(Ω)

×
(
t34+(Ω−2E)δ34

)}
〈2|σ〉 .



On Self-Consistency in the Theory of Finite Fermi Systems 3377

Comparing with Dyson’s equation,

Eλ〈1|λ〉 =
∑

2

(t12 + M12(Es))〈2|λ〉 ,

we see that we have got an expression for the mass operator on the energy
shell in terms of the T matrix, which contains all nuclear-structure infor-
mation. In fact, it can be shown that Landau’s basic amplitude is closely
related to its particle-hole irreducible part. Now, however, one has to expand
it into all three two-body channels. The resulting equation is

T1423(Ω,Ω′, ω) = K1423(Ω,Ω′, ω)

+i
∑

1′2′3′4′

∫
dΩ′′

2π

∫
dΩ′′′

2π
F121′2′(Ω,Ω′′, ω)R1′2′3′4′(Ω

′′, Ω′′′, ω)F3′4′34(Ω
′′′, Ω′, ω)

−i
∑

1′2′3′4′

∫
dε

2π

∫
dε′

2π
F131′3′

(
1

2
(Ω + Ω′ + ω), ε,Ω − Ω′

)

×R1′3′2′4′(ε, ε
′, Ω − Ω′)F2′4′24

(
ε′, 1

2
(Ω + Ω′ − ω), Ω − Ω′

)

+1

4
i

∑

1′2′3′4′

∫
dε

2π

∫
dε′

2π
I141′4′

(
1

2
(Ω − Ω′ + ω), ε,Ω + Ω′

)

×GII
1′4′2′3′(ε, ε

′, Ω + Ω′)I2′3′23

(
ε′, 1

2
(Ω − Ω′ − ω), Ω + Ω′

)

with

R1234(Ω,Ω′, ω) = GII
1423(Ω,Ω′, ω) − 2πδ(ω)G12(Ω)G43(Ω

′)

being what is called the response function, which is the non-decomposing
part of the two-body Green function. The new fundamental interaction
amplitude is now the K matrix, which is the totally irreducible part of
the T matrix. The remaining three terms on the right-hand side of the
equation are each reducible in exactly one of the three expansion channels,
the corresponding effective interactions being the particle-hole irreducible
amplitude F and the particle-particle irreducible amplitude I.

In the simplest possible approximations the above equation leads to
Hartree–Fock and Tamm–Dancoff. The next step gives the shifts of the
single-particle energies due to particle-phonon coupling, as well as the single-
particle strength factors zs. Already at this level it can be shown that, unlike
in conventional theories, no Pauli-principle violation problems arise.
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