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Hadron radii are discussed with particular emphasis on chiral singu-
larities m−1

PS and log mPS ; those result from the photon coupling to the
(PS + PS) continuum and are, therefore, most visible in isovector elec-
tromagnetic radii. It is shown that OZI rule violation leads to m−1

K and
log mK-terms in the isoscalar radii as well. The γπππ vertex function is
free of chiral singularities and so are all quark core contributions. The
∆(1232) contribution is particularly important for the subleading log mπ-
terms, where a delicate cancellation occurs with pion loop contributions of
the same order.

PACS numbers: 12.38.–t

1. Introduction

There are more than 260 experimentally well-established particles known
as “hadrons”. For only a few their “size” has been determined experimen-
tally. The “size” of any object depends on the nature of the (point-like)
probe which is used in the scattering process. The systematics of hadron
radii can, at least at a qualitative level, be obtained from an analysis of to-
tal hadron–proton cross sections, where the introduction of “effective” radii
allows for a quasi-geometrical picture, see [1]. The emerging pattern for
p, π,K, φ, J/ψ,Λ,

∑

, Ξ, p is strikingly similar to the one obtained from elec-
tromagnetic probes and in some cases (φ, J/ψ,Λ,

∑

, Ξ, p) is the only em-
pirical information on the hadron’s size. A more accurate way1 of probing

∗ Presented at the Meson’98 and Conference on the Structure of Meson, Baryon and
Nuclei, Cracow, Poland, May 26–June 2, 1998.

1 Pointlike particles (like the electron) have an accurately known QED vertex (in the
one-photon approximation); this is not the case for the hadronic QCD vertices (the
one-gluon approximation doesn’t make sense here) involved in hadron–hadron colli-
sions.
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a hadron’s size is by scattering elastically point-like particles off the ex-
tended hadron (or as in the case of the neutron n(939) thermal neutrons
have been scattered off atomically bound electrons). The fact that em-
pirically re,µ,τ . 10−3 fm [2] points naturally at leptonic currents (neutral
leptons are believed to be point-like, subject to (extremely difficult) preci-
sion tests of the weak interaction theory within the Standard Model). This
simple fact has initially been widely used by Rutherford and Hofstätter in
their historic experiments to obtain first information on nuclear and nucle-
onic radii (a hadron with its numerous different flavour “excitations” could
be seen as the smallest nucleus including all its “isotopes”). A scattering
process using the weak current instead would allow to determine a different
size parameter, the weak hadronic size, and so on. On the theoretical side
the size parameter (“rms radius”) of a specific hadron is a distinctive prop-
erty of that hadron’s “form factor” which describes the current expectation
value between the incoming and outgoing hadron. The simplest example is
the electromagnetic form factor of the (pseudoscalar) lightest hadron, the
pion π (140), defined by

2mπ〈π(p′)|jµ(0)|π(p)〉 = eπ(p′ + p)µ Fπ(q2) , (1)

where qµ = (p′ − p)µ and eπ is the pion’s charge. The pion radius is now
defined by2 (with an obvious generalization for other hadrons)

〈r2π〉 = − 6
d

dq2
Fπ(q2)

Fπ(0)
|q2→0− . (2)

This definition is motivated by the (non-relativistic) definition of a rms ra-
dius 〈r2〉 =

∫

d3~r r2ρ(r)/
∫

d3~rρ(r). The connection between these two def-
initions is the well-known fact that the form factor F (q2) (for example as
in (1)) is the Fourier-transform of the corresponding (electric,magnetic (as
in (1,2)), or axial charge, scalar, pseudoscalar, etc.) density ρ(r) which in

the non-relativistic limit is ρ(r) = ψ+(~r)ψ(~r) = ψ(~r)ψ(~r). In the fully rela-
tivistic situation (as is the case for the pion) the radius is defined by (2).
The form factor is deduced directly from the measured differential cross sec-

tions. For electron-nucleon scattering two form factors G
(p,n)
E,M (q2) have to

2 In the case of a neutral hadron F (0) = 0 (n, π0, K0, etc.) and 〈r2
h0〉 =

−6 d

dq2 F (q2)|q2=0 instead; for the neutron this leads to a negative 〈r2〉. The sign

is due to an inner positive core (p) and a negative cloud (π−). Due to C-invariance
the photon can not couple to the π0 which is its own anti-particle, in line with a
(uu, dd) quark content. Therefore, the π0 has no electromagnetic form factor, unlike

the K0 = ds which is different from K0 = ds. Note that there is no contradiction to
the existence of the electromagnetic polarizability for the π0 which requires a Comp-
ton amplitude (2 photons in a contact interaction with the π0, called a “seagull”
diagram).
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be taken into account. These can be disentangled from cross sectional data
using the “Rosenbluth plot”. They give rise, via a generalised Eq. (2), to
different sizes < r2E,M〉(p,n) of proton (p) or neutron (n). In an analogous
fashion a scalar radius of the pion and nucleon can be defined, although not
directly accessible to experiment. A typical result is < r2s〉 = (0.54, 1.5) fm2

for the (pion, nucleon) [3].
On the theoretical side hadron radii, like other low-energy parameters

of hadrons, have entered “low-energy” theorems and other relations among
low-energy parameters which have to be fulfilled by any low-energy approx-
imation to proper QCD which carries the essential chiral symmetry of QCD,
breaks it spontaneously in the same way as QCD and produces dynamically a
non-vanishing quark scalar condensate and a “constituent” quark mass that
satisfies the Goldberger–Treiman relation, see [4, 5]. The systematic low-
energy expansion of QCD has become known under the label “χPTh”. A
sizeable number of low-energy parameters of χPTh depend on hadron radii.
Furthermore, electromagnetic radii strongly influence the (usually well mea-
sured) electromagnetic mass shift of hadrons, see for example [5] and further
references to earlier papers there. A further peculiarity is that chiral sym-
metry is realized in a different way for mesons and baryons. For mesons
(notably the lightest meson, the pion) the chiral limit is mh → 0. While
this is suggested by Goldstone’s theorem (which implies that quark masses
mq → 0 as well) and confirmed by the near masslessness of the pion, the
chiral limit for baryons is far from undisputed. There are strong indications
that the chiral limit in the baryon sector would correspond to the heavy
fermion limit [6] (which implies that the lightest baryon, the nucleon, would
be furthest away from this limit, unlike the pion which is closest amoung all
mesons to the chiral limit). Hadronic radii have recently been studied for
hadrons which are embedded in a hot and/or dense medium instead of in a
vacuum [7] (if not otherwise stated values for radii will refer to the vacuum).
This leads to the notion of the “swelling” of nucleons in a medium. We will
briefly return to this issue below.

2. Chiral singularities

Chiral symmetry and its observed breaking pattern is reflected in hadron
radii in the form of 1/mps and log (mps) “chiral singularities”. This was first
noted more than 25 years ago [8],

〈r2π±〉 = − 2

(4πfπ)2
log

(

mπ

µπ

)

+ f.t. ,

〈r21〉I=1 = −1 + 5g2
A

8π2f2
π

log

(

mπ

µN

)

+ f.t. ,
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(

µp − µn

µN
− 1

)

〈r22〉I=1 =

(

g2
πNN

8πm2
N

)

mN

mπ
+

(

3g2
πNN

2π2m2
N

+
1

4π2

[

∂

∂ν
A(−)(ν, 0)

]

ν=0

)

log
mπ

µN
+ f.t. (3)

The origin of these chiral singularities is in all the above cases the ππ inter-
mediate state (or in general the (PS + PS) state) see Figs. 1, 2. Empir-
ically 〈r2

π±〉 = [0.657(12)fm]2 (Ref. [9]), 〈r2
K±〉 = [0.53(5)fm]2 (Ref. [10a]),

〈r2
K0〉 = −0.054(26) fm2 (Ref. [10b]), 〈r2E〉p = (0.838(12)fm)2, (Ref. [11]) or

(0.862(12)fm)2, (Ref. [12]), 〈r2E〉n = −0.113± 0.003± 0.004 fm2 (Ref. [13]),
〈r2M 〉p = (0.853(9) fm)2, (Ref. [14]), 〈r2M 〉n = (0.889(9)fm)2, (Ref. [14]) or
(0.85(1)fm)2 (Ref. [11]), and the negative sign of 〈r2

K0〉 hints at a positively
charged core K∗(892)+ and a negatively charged pion cloud. This is in
line with the non-relativistic quark model which has the heavier s, which is
positively charged, closer to the origin than the negative but much lighter
d-quark. Note the unspecified scale parameters µπ,N in Eq. (3). In the

(a) (b) (c)

Fig. 1. (a + b) Pion cloud corrections to pion (a) and K0 electromagnetic form

factor; (c) contribution which gives rise to a log mK-term in K± electromagnetic

form factor. The circles respresent vertex functions due to sub-hadronic degrees of

freedom.

(a) (b)

Fig. 2. Isovector electromagnetic form factor of the nucleon. (a) Born term,

(b) full πN scattering amplitude.
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simplest pion model where only a σ-meson is exchanged between the two
pions in the intermediate state (Fig. 1(a)) µπ = mσ results [15]. In the sim-
plest model of nucleon mesonic substructure only a g.s. nucleon is exchanged
between the two pions in the intermediate state (Fig. 2(a)) and µπ = mN

with

gA ≡ 1,
∂

∂ν
A(−)(ν, 0)|ν=0 ≡ 0 (4)

results [16]. This is perhaps not surprising as the πN → πN amplitude
enters only at the tree level (Fig. 2(a)); if, however, more than the Born
term is included (Fig. 2(b)) one encounters at least two-loop contributions
and gA and ∂

∂ν
A(−)(ν, 0)|ν=0 will start to deviate from 1 and 0, respectively.

The fact that gA remains unrenormalized at one-meson loop level [16] has
been confirmed at the quark level in a different chiral model (the 0(1/Nc)
corrections to the Nambu–Jona–Lasinio model, see Ref. [4]).

Of course the findings (3) are confirmed by χPTh; a notable exception
are only Skyrme-type models with pion masses [17–19], which find instead
of (3),

〈r21〉I=1
Skyrme ∼ m−1

π . (5)

Unfortunately, no results for 〈r22〉I=1
Skyrme have been reported which could be

compared with (3).
The reason for the difference between (5) and (3) as suggested in [18] is

the non-commutativity of the chiral limit mπ → 0 with the large-Nc limit.
The Skyrme model takes the limit Nc → ∞ implicitly from the beginning
while the relations (3) are a finite- Nc result. Ref. [17] offers a mechanism
by which the discrepancy would disappear for Nc → ∞: the B = ∆(1232)-
exchange contribution to the relevant diagram (see Fig. 1(b) of [16])

γ N → γ π B → π B → N (6)

cancels exactly the chiral log-term in (3) for Nc → ∞, and results in a
form (5). It is important to note that the m−1

π singularity in (3) is a result
of the fermionic nature of the exchanged particle (baryon B) in (6). Hence
there is only a log mπ-term in the corresponding mesonic isovector radius,
see first equation of (3), which results from the σ−meson exchange3. The
spin- 3/2 nature of the ∆(1232)−exchange could explain the removal of the
exact cancellation of the coefficient of m−1

π due to N - exchange in 〈r21〉I=1. It

3 The meson propagator ∼ 1
m2·−p2 in loop integrals

R

d4p... is replaced with a fermion

propagator ∼ 6p+...

m2−p2 in loop integrals
R

d4p... which results in a higher singularity

due to 6p in the numerator.
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is important to further clarify this point in the soliton as well as the Nc <∞
sector. The ∆(1232) contribution plays a similar role in the electromagnetic
polarizabilities of the proton (for which there are recent, rather accurate
experimental values [20]) which are proportional to m−1

π and do not have a
log mπ-term, due to a peculiar cancellation of ∆(1232) tree and pion loop
Compton amplitudes, see [21].

An independent way of studying the origin of the chiral singularities is

via dispersion relations. If the form factors G
(S,V )
E,M (t) fulfill an unsubtracted

dispersion relation4 then

〈r2〉 =
6

π

∞
∫

to

dt′
ImG(t′)

t′2
(7)

with t0 = 4m2
π(9m2

π) for I = 1(0). The chiral limit is obtained for t0 → 0 (i.e.

t′ runs between 0 and ∞). One finds
ImGV

E,M (t)

t2
∼ 1

t2
, 1

t
for t → 0 resulting

in m−1
π and log mπ-terms in 〈r2〉I=1. Due to a delicate cancellation which

occurs only for N -exchange contributions, the m−1
π -term in 〈r21〉I=1 vanishes

while both terms survive in the combination 〈r22〉I=1. With respect to the

isoscalar form factors one finds instead
ImGS

E,M (t)

t2
∼ t,

√
t for t → 0. Hence

there are only finite terms in 〈r21,2〉I=0 for mπ → 0.
A striking feature of (3) is that all chirally singular radii are isovec-

tor, none of them is isoscalar in nature. That fact is quite astonishing as
the probing virtual photon is known to be isovector (ρ-like) and isoscalar
(ω−, φ−, J/ψ−like) with comparable weights. Therefore, it is the ρ-like part
of the photon and its strong coupling to the 2π-intermediate state5 which
causes the chiral singularity in the isovector radii. Knowing that the ω-like
part of the photon couples to the πρ = 3π intermediate state (and only
very little to the 2π-state via ρ − ω mixing) it is not surprising that the
πρ = 3π intermediate state does not generate any chiral singularities, hence
the isoscalar radii are free from singularities from this intermediate state.
In the vector-meson-dominance picture, part of the photon “behaves” like a
virtual φ(1019) which then naturally couples to the KK intermediate state.
Following the same arguments which led to Eq. (3), it is not difficult to see
that formK → 0 the dominant contributions to the isoscalar 〈r21,2〉I=0 will be

log(mK

µN
)− and m−1

K - terms at the scale µN = mΛ = 1.12GeV, because now

the lightest exchanged baryon will be Λ(1115) or
∑

±(1197), see Fig. 3. If

4 The existence of dispersion relations in proper QCD is not undisputed, see Ref. [22].
5 The virtual ρ couples to the 2π continuum even below the ρ-resonance, close to

threshold, see discussion in [23,24].
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one draws Fig. 3 as a quark-line diagram, the strange quark line is closed and
“disconnected” from the non-strange quark lines in the nucleon; according
to the Okubo–Zweig–Iizuka (OZI) rule such diagrams should be supressed
(here manifest in a small ΛKN and

∑

KN coupling). Strong violations
of the OZI rule have, however, been discussed, also in connection with the
strange vector form factors of the nucleon, see discussion in refs [25, 26].

Fig. 3. Isoscalar electromagnetic form factor contribution due to the Kaon cloud.

It might seem unphysical to consider the limit mK → 0 for the massive
K(494). In most SU(6)flavour models, however, one separates quarks into
three “light” quarks (u, d, s) and three heavy quarks (c, b, t). The former
set would lend itself naturally to the chiral limit mq → 0 (mesonic chiral
limit), whereas the latter part seems closer to the heavy quark limit mQ >>
mq (Q = c, b, t and q = u, d, s) i.e. the baryonic chiral limit. The singularities
in baryon radii occur for mπ,K → 0 and might not be directly related to the
baryonic chiral limit.

According to the relevant diagram Fig. 1(b) we expect a log mπ

µK
−term

with µK = mK
∗ = 892MeV in 〈r2

K0〉 as well. The absence of Fig. 1(b) for
the charged K leads to a log mK

mσ
−term instead, due to Fig. 1(c).

We note in passing that one can obtain analytical results for 〈r2π〉 [15]
and 〈r21,2〉I=0,1 [16]. Without any prejudice towards the correct answer to
the question “do hadrons swell when embedded in a medium?” we would
like to mention that those analytical results for radii allow us to study these
hadronic radii as a function of the parametersmπ,σ,mN , gπqq, gπNN , gσNN , fπ.
Medium effects might change those parameters and, hence, could influence
〈r2〉 in a well-defined way, within the approximations of [15] and [16]. The
analysis of [16] clearly showed that the σ-meson cloud around the nucleon is
important to reproduce the nucleon radii, and the anticipated swelling of the
nucleon in a medium could conceivably come from an enhancement of the
σ-meson cloud due to medium effects. We find that changing the σ-meson
mass and coupling has a more dramatic effect than changing the pion mass
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and coupling6. An anticipated “swelling of the nucleon” could also come from
a medium-enhanced three-pion state contribution (the γ π π π anomaly); in
that case the medium effects should conspire to increase the parameter

κ =
9g3

πNN gρππ MN gωπρ

128π4 gω

(see discussion in [16] and [27]).

3. Quark core of nucleon and pion

We have recently extended the investigation in [16] to include (quark)
substructure of π, σ andN in a fully gauge-invariant manner [28]. With-
out (quark) substructure the nucleon electromagnetic radii generally come
out too small, although their magnetic moments can be reproduced. The
simplest extension of the sigma model with a fixed cut-off is the replace-
ment of the point couplings πNN, σNN, γππ, γNN , with vertex functions
which naturally cut down large momentum transfers due to (quark or higher-
order mesonic) substructure of the hadrons involved. The γππ vertex func-
tion, including the all-important non-perturbative qq substructure of the
(Goldstone) pion will be taken from the NJL model calculation of Ref. [15].
For other vertex functions we use various relativistic quark model calcula-
tions [27, 29]

Not surprisingly we find no factorization of form factors due to the quark
core and those due to the meson cloud of the nucleon. Therefore, without
additional assumptions, in general

〈r2〉N 6= 〈r2〉core + 〈r2〉cloud

independent of the specific form of the quark form factors. Quite generally
one finds that chiral singularities do not come from the quark core of either
π, σ or N . Nevertheless, the quark core of hadrons is important to reproduce
the empirical radii. To illustrate this we quote the following results for the
singular terms alone, with mπ = 140MeV, and compare with the empirical
values,

〈r21〉I=1 =







0.96 fm2 for gA = 1.25
0.65 fm2 for gA = 1
0.58 fm2 empirically

6 In models where the σ−meson couples to the isoscalar-scalar 2π continuum, only this
(I = 0, J = 0) part of the 2π continuum would possibly be enhanced (i.e. not Fig. 2,
but Fig. 1(c) of [16] is responsible for the effect).
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〈r22〉I=1 =

{

≤ 0 for ∂
∂ν
A(−)(ν, 0)|ν=0 ≡ 0

0.77 fm2 empirically

Without the finite terms 〈r22〉I=1 would be negative for mπ = 140MeV (the
positive 1

mπ
-term and the negative logmπ-term compete in 〈r22〉I=1 with the

1
mπ

-term taking over only for relatively small values of mπ).
In order to study the effects from the quark core and the meson cloud in

a meaningfull way one has to compare with all available form factor data.
Some form factors turn out to be more sensitive to the cloud, others are
dominated by the quark core. It is useful to compare with phenomenological
fits which are available for most form factors. They reproduce at least the
normalization G(0) and slope at q2 = 0 (i.e. the radius) in the space-like
region of that form factor G(q2) = G(0)[1 + 1

6q
2〈r2〉+O(q4)]. In particular,

for q2 ≤ 0

Gp
E(q2) = [1 − q2

√
2 GeV−2]−2 = GD(q2) ,

Gp
M (q2) = µpG

p
E(q2) ,

Gn
E(q2) = −q

2

q20
eq2R2

0 , Gn
M (q2) = µnGD(q2)

with µp,n = (2.793,−1.913), q20 = 1.95GeV2, R2
0 = 3.8GeV−2, and

GA(q2) = gA











[1 − q2/M2
A]−2 seeRef. [19]

[

1 − q2/2M2
ρ

]−1
exp [16q

2R2
L/(1 − q2

4M2
N

)], Ref. [30]

exp [q2/Λ2] seeRef. [31]

Fπ(q2) = [1 − q2/M2
ρ ]−1

withMρ = 770MeV,MA = (900−1100)MeV, R2
L = 6GeV−2, Λ = 770MeV.

The corresponding charge distributions ρ(~r) =
∫

d3q
(2π)3 ei~q·~rG(~q2) can be found

in Fig. 3 of Ref. [23], where the Breit-frame (q0 = 0, q2 = −~q2) has been
used.

Other form factors are related to those above

GπNN (q2) =
MN

fπ
[GA(q2) − ηGquark

p (q2)]. (8)

The pseudoscalar form factor Gp(q
2) = Gquark

p (q2)+Gπ
p (q2), with Gquark

p (q2)

in the Goldberger–Treiman relation (8), and Gπ
p (q2) = 4MNFπ

G
πNN(q2)

m2
π−q2 , the
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PCAC relation. Parametrizations for time-like q2 can be found in Ref. [23].
The last relations indicate where a separation into quark core and meson
cloud in form factors might make sense. The non-renormalization of gA by
one-meson loop contributions [15,16] implies that GA(q2) should (at least for
moderate q2) be dominated by the quark core of the nucleon. The size pa-

rameter, 〈r2A〉
1
2 = (0.5−0.6) fm, comes out significantly smaller than the elec-

tromagnetic nucleon radii and hints at a non-negligible extent of the quark
core. For a proper, fully relativistic description of the low-energy parameters
of the pion, the confinement aspect of QCD seems to be irrelevant [4,5,15].
This is not so for the nucleon where a systematic investigation of possi-
ble quark-confining potentials is called for. For free nucleons and mesons
(excluding the Goldstone pion) bag-type Lorentz-scalar confining potentials
with additional Lorentz-vector components (due to the residual one-gluon
exchange (OGE) interaction) have been widely discussed. Effects of Lorentz-
vector quark confinement in extensions of the NJL model for mesons have
been discussed [32]. In the baryon sector a peculiarity of Lorentz-vector con-
finement of Dirac- particles in the form of the “Klein paradox” has to be taken
into account : spin-1

2 particles (quarks) can not be confined by a dominant

Lorentz-vector confining potential. For an arbitrary scalar confinement there
exists, therefore, an upper limit on the strength of a vector confinement po-
tential, so that the combination of both still allows for quark bound states.
This is unlike the situation in the qq sector which does not constrain the
strength of the Lorentz-vector component. We note here also, that a sizeable
Lorentz-vector potential in the Dirac-equation for the 3 quarks is necessary
to avoid a large spin-orbit force in the baryon spectrum. For a combination
of Lorentz-scalar confinement M(r) = c2r

2 (with c2 = 1.0239GeV fm−2

so that the quark core size is 0.6 fm [33]) and Lorentz-vector confinement

Fig. 4. gA/gV , µ
quark
p in units of µN , 〈r2q 〉

1

2 [fm] and E0 [GeV], the quark eigen en-

ergy, as a function of κ. Here we have used M(r) = c2r
2, see text.
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V (r) = αs ln(r/r0) or V (r) = κre−µr we have obtained gA/gV , 〈r2q〉
1
2 , E0,

and µquark
p as a function of κ in Fig. 4 (a similar tendency is found for

αs variations, see Ref. [33]). A full calculation of nucleon form factors (as
in [28]), including the quark core, will limit the range of possible parameters
κ or αs in V (r) and cn in M(r) = cnr

n. Again, medium effects will have
an influence on κ, αs and cn, on one hand, and on the meson cloud, on the
other hand.

4. Outlook

We plan to include the kaon cloud in our new approach [16, 28] and
study m−1

K , log mκ-terms in the isoscalar nucleon radii. The coefficients of
those terms depend on OZI-rule violating couplings gΛKN and gΣKN . The
strangeness content of the nucleon will be influenced by the magnitude of
these couplings. We hope to report soon on our findings.
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