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Relativistic Mean Field (RMF) theory is used for an investigation or
nuclei in the vicinity of the drip-lines Pairing correlations are taken into ac-
count by Hartree-Bogoliubov theory based on pp-interaction of finite range.
Phenomena as neutron skin and neutron halo are discussed within a self-
consistent framework.

PACS numbers: 25.40.Ve

1. Introduction

In recent years Relativistic Mean-Field (RMF) models have been success-
fully applied in calculations of nuclear matter and properties of finite nuclei
throughout the periodic table [1]. Using only six or seven parameters they
allow a fully self-consistent description of many nuclear properties with high
accuracy. As compared to other non-relativistic mean field approximations
such as density dependent Hartree–Fock calculations these models have the
advantage to provide a consistent description of the spin–orbit term and its
isospin dependence.

An essential problem in the theoretical description of drip-line nuclei
arises from the closeness of the Fermi level to the particle continuum: particle-
hole and pair excitations reach the continuum. The coupling between bound
states and the particle continuum has to be explicitly taken into account.
The Relativistic Hartree Bogoliubov (RHB) theory [2, 3], which is a rela-
tivistic extension of the Hartree Fock Bogoliubov theory, provides a unified
description of mean-field and pairing correlations. A fully self-consistent
RHB theory in coordinate space [4, 5] correctly describes the coupling be-
tween bound and continuum states. The theory provides a framework for
describing the nuclear many-body problem as a relativistic system of baryons
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and mesons not only in the valley of β-stability but also in regions with large
neutron of proton excess even close to the drip-lines.

2. The relativistic Hartree–Bogoliubov model

In comparison with conventional non-relativistic approaches, relativistic
models explicitly include mesonic degrees of freedom and describe the nucle-
ons as Dirac particles. Nucleons interact in a relativistic covariant manner
through the exchange of virtual mesons: the isoscalar scalar σ-meson, the
isoscalar vector ω-meson and the isovector vector ρ-meson. The model is
based on the one boson exchange description of the nucleon-nucleon inter-
action. We start from the effective Lagrangian density
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The lowest order of the quantum field theory is the mean-field approxima-
tion. The Dirac equation reads
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ψi = εiψi (2)

The effective mass m∗(r) is defined as

m∗(r) = m+ gσ σ(r), (3)

and the potential V (r) as

V (r) = gω ω
0(r) + gρ τ3 ρ

0

3(r) + e
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2
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In order to describe ground-state properties of spherical open-shell nuclei,
pairing correlations have to be taken into account. For nuclei close to the β-
stability line, pairing has been included in the relativistic mean-field model
in the form of a simple BCS approximation [6]. However, for nuclei far from
stability the BCS model presents only a poor approximation. In particular,
in drip-line nuclei the Fermi level is found close to the particle continuum.
The lowest particle-hole or particle-particle modes are often embedded in
the continuum, and the coupling between bound and continuum states has
to be taken into account explicitly. The BCS model does not provide a
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correct description of the scattering of nucleonic pairs from bound states
to the positive energy continuum. It leads to an unbound system, because
levels in the continuum are partially occupied. Including the system in a
box of finite size leads to unreliable predictions for nuclear radii depending
on the size of this box. In the non-relativistic case, a unified description
of mean-field and pairing correlations is obtained in the framework of the
Hartree–Fock–Bogoliubov (HFB) theory in coordinate space [7].
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HFB-theory, being a variational approximation, results in a violation of basic
symmetries of the nuclear system, among which the most important is the
non conservation of the number of particles. In order that the expectation
value of the particle number operator in the ground state equals the number
of nucleons, equations (5) contain a chemical potential λ which has to be
determined by the particle number subsidiary condition. The column vec-
tors denote the quasi-particle wave functions, and Ek are the quasi-particle
energies.

In the coordinate space representation of the pairing field ∆̂ is

∆ab(r, r
′) =

1

2

∑

c,d

Vabcd(r, r
′)κcd(r, r

′). (6)

where a, b, c, d denote all quantum numbers, apart from the coordinate r,
that specify the single-nucleon states. Vabcd(r, r

′) are matrix elements of a
general two-body pairing interaction, and the pairing tensor is defined as

κcd(r, r
′) =

∑

Ek>0

U∗

ck(r)Vdk(r′). (7)

3. Surface diffuseness and spin–orbit reduction at the drip-line

The spin–orbit interaction plays a central role in the physics of nuclear
structure. It is rooted in the basis of the nuclear shell model, where its
inclusion is essential in order to reproduce the experimentally established
magic numbers. In non-relativistic models based on the mean field approx-
imation, the spin–orbit potential is included in a phenomenological way. Of
course such an ansatz introduces an additional parameter, the strength of
the spin–orbit interaction. The value of this parameter is usually adjusted
to the experimental spin–orbit splittings in spherical nuclei, for example
16O. On the other hand, in the relativistic framework the nucleons are de-
scribed as Dirac spinors. This means that in the relativistic description of
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the nuclear many-body problem, the spin–orbit interaction arises naturally
from the Dirac-Lorenz structure of the effective Lagrangian. No additional
strength parameter is necessary, and relativistic models reproduce the em-
pirical spin–orbit splittings.

Many properties of nuclei along the line of beta stability have been suc-
cessfully described in the framework of models based on the mean-field
approximation. Conventional non-relativistic models that include density
dependent interactions with finite range (Gogny) or zero-range (Skyrme)
forces, have been extensively used to describe the structure of stable nu-
clei. More recently, it has been shown that models based on the relativis-
tic mean-field theory [9] provide an elegant and economical framework, in
which properties of nuclear matter and finite nuclei, as well as the dynamics
of heavy-ion collisions, can be calculated (for a recent review see [1]). In
comparison with conventional non-relativistic approaches, relativistic mod-
els explicitly include mesonic degrees of freedom and describe the nucleons
as Dirac particles. Non-relativistic models and the relativistic mean-field
theory predict very similar results for many properties of beta stable nu-
clei. However, cases have been found where the non-relativistic description
of nuclear structure fails. An example is the anomalous kink in the isotope
shifts of Pb nuclei [10]. This phenomenon could not be explained neither by
the Skyrme model, nor by the Gogny approach. Nevertheless, it is repro-
duced very naturally in relativistic mean-field calculations. A more careful
analysis [11] has shown that the origin of this discrepancy is the isospin
dependence of the spin–orbit term.

In the following we present results for the chain of Li and Zr isotopes. We
find that in the framework of relativistic mean field theory, the magnitude
of the spin–orbit potential is considerably reduced in light drip line nuclei.
With the increase of the neutron number, the effective one-body spin–orbit
interaction becomes weaker. This result in a reduction of the energy split-
tings between spin–orbit partners. The reduction of the spin–orbit potential
is especially pronounced in the surface region, and does not depend on a
particular parameter set used for the effective Lagrangian. These results are
at variance with those calculated with the non-relativistic Skyrme model. It
has been shown that the differences have their origin in the isospin depen-
dence of the spin–orbit terms in the two models. If the spin–orbit term of the
Skyrme model is modified in such a way that it does not depend so strongly
on the isospin, the reduction of the spin–orbit potential is comparable to
that observed in relativistic mean-field calculations.
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4. Halo-phenomena at the neutron drip-line

In Fig. 1 we show she calculated density distribution for the neutrons in
the isotopes 9Li and 11Li. It is clearly seen that the increase of the matter
radius is caused by a large neutron halo in the nucleus 11Li. Its density
distribution is in very good agreement with the experimental density of this
isotope show with its error bars by the shaded area.
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Fig. 1. The density distribution of the halo nucleus 11Li as compared to that of

the core 9Li. The shaded area corresponds to the experimental error bars.

The microscopic structure of this halo can be understood by the fact
that the Fermi level for the neutrons is very close to the continuum limit
in close vicinity to the ν1p1/2 below the continuum and to the ν2s1/2 level
in the continuum. Pairing correlations cause a partial occupation of both
the ν1p1/2 and the ν2s1/2 level, i.e. a scattering of Cooper pairs into the
continuum. This is in contrast to earlier calculations using Skyrme forces
and relativistic mean field without pairing, where the last occupied ν1p1/2

level had to be shifted artificially very close to the continuum limit by a
adjustment of the potential. In contrast to these investigations the halo
is not formed by two neutrons occupying the 1p1/2 level very close to the
continuum limit, but is is formed by Cooper-pairs scattered mainly in the
two levels 1p1/2 and 2s1/2. This is made possible by the fact that the 2s1/2

comes down close to the Fermi level in this nucleus and by the density
dependent pairing interaction coupling the levels below the Fermi surface
to the continuum. In contrast to the previous explanation which use the
accidental coincidence that one single particle level is so close to continuum
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threshold so that the tail of its wave function forms a halo, this is a much
more general mechanism, which could possibly be observed in other halo
nuclei also. One needs only several single particle levels with small orbital
angular momenta and correspondingly small centrifugal barrier close, but
not directly at, the continuum limit.

In fact going along the neutron drip line there are several such regions,
in particular the region where the 2p and the 3p levels come close to the
continuum limit. In the first case a multi-particle halo in the region of
heavy Ne-isotopes has been predicted [5]. Here we discuss in more detail
the region where the 3p orbits are in the vicinity of the continuum limit.
Here he have predicted a giant halo with up to 6 neutrons in the halo.
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Fig. 2. Upper part: rms-radii for neutrons and protons in Zr isotopes close to the

neutron drip line as a function of the mass number A. Lower part: single particle

energies for neutrons in the canonical basis as a function of the mass number. The

dashed line indicates the chemical potential.

In the upper panel of Fig. 2 we show the rms radii of the protons and
neutrons for the Zirconium isotopes with mass numbers A = 110 to A = 140,
the drip line nucleus. To guide the eye we also give a dashed line with a
N1/3-dependence. It clearly shows a kink for the neutron rms-radius at the
magic neutron number N = 82.

These results can be understood more clearly by considering the micro-
scopic structure of the underlying wave functions and the single particle
energies in the canonical basis [8]. Therefore, in the lower panel of Fig. 1 we
show the single particle levels in the canonical basis for the isotopes with an
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even neutron number as a function of the mass number. Going from N = 70
to N = 100 we observe a big gap above the 1h11/2 orbit. For neutron num-
bers larger than the magic number N = 82, the neutrons are filled to the
levels in the continuum or weakly bound states in the order of 3p3/2, 2f7/2,
3p1/2, 2f5/2 and 1h9/2.

The neutron chemical potential is given in this Figure by a dashed line.
It approaches rapidly the continuum already shortly after the magic neutron
number N = 82 and it crosses the continuum at N = 100 for the nucleus
to 140Zr. In this region the chemical potential is very small and almost
parallel to the continuum limit. This means that the additional neutrons
are added with a very small, nearly vanishing binding energy at the edge of
the continuum. The total binding energies E for the isotopes above 122Zr
are therefore almost identical. This has been recognized already in Ref. [12]
in RMF calculations using the BCS approximation.

The kink in the neutron rms-radii shown in Fig. 2 can be understood by
the negative parity levels close to the continuum limit. They are responsible
for the rapid increase of the neutron radius. Neutrons above the closed neu-
tron core N = 82 are filled into these orbits. As more and more neutron are
added, 3p3/2 and 2f7/2 ( after N > 88 ), 3p1/2 ( after N > 92 ) respectively
become weakly bound, then the contribution of further continuum 2f5/2 and
1h9/2 become more and more important. Going from A = 122 to A = 140
we observe an almost constant contribution of all the channels to the total
rms matter radius except a sudden increase in the contribution of the 3p3/2,

2f7/2, 3p1/2 and 2f5/2 channels. This means that the giant halo in 124−140Zr
are formed by the occupation of all these levels in the respective nucleus.

5. Conclusions

Summarizing we can conclude that we have to go beyond the simple
relativistic mean field model in order to describe halo nuclei properly. We
have to take into account pairing correlations and the coupling to the contin-
uum in the framework of relativistic Hartree Bogoliubov theory. A density
dependent force of zero range has been used in the pairing channel, whose
strength is adjusted for the isotope 7Li to a similar calculation with Gogny’s
force D1S. Good agreement with experimental values is found for the to-
tal binding energies and the radii of the isotope chain from 6Li to 11Li. In
excellent agreement with the experiment we obtain a neutron halo for 11Li
without any artificial adjustment of the potential, as it was necessary in
earlier calculations.

In contrast to these investigations the halo is not formed by two neutrons
occupying the 1p1/2 level very close to the continuum limit, but is is formed
by Cooper-pairs scattered mainly in the two two levels 1p1/2 and 2s1/2. This
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is made possible by the fact that the 2s1/2 comes close down close to the
Fermi level in this nucleus and by the density dependent pairing interaction
coupling the levels below the Fermi surface to the continuum. In contrast
to the very accidental fact that one single particle level is such close to
continuum threshold, that the tail of its wave function forms a halo, this is
a much more general mechanism, which could possibly be observed also in
other halo nuclei. One only needs several single particle levels with small
orbital angular momenta and correspondingly small centrifugal barrier close,
but not directly at, the to the continuum limit.
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