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The interpretation of the low energy orbital magnetic dipole excita-
tions of nonspherical nuclei, commonly called scissors modes, is examined.
It is demonstrated that the “fluid dynamical model” which evolves from
the Bohr–Mottelson collective model when the nuclear fluid is treated in
Thomas–Fermi approximation, agrees much closer with microscopic cal-
culations than other semiclassical models. This allows to interpret the
microscopic results in more detail than usually done, and sheds light on
the origin of the apparent discrepancies between semiclassical theory and
experiment.

PACS numbers: 21.10.Re, 21.60.Ev, 21.60.Jz

The Random Phase Approximation (RPA) is appropriate for the cal-
culation of low energy small amplitude collective excitations and has been
widely used. Starting from a well adjusted shell model potential and em-
ploying a realistic effective interaction, good agreement with experimental
data can be reached. Therefore an analysis of the RPA state vectors should
supply their correct physical interpretation. In most cases, e.g. in collective
electric excitations of nonspherical nuclei, the nature of the excitations is
clearly seen in the transition densities [1].

However, in the case of the low energy isovector magnetic dipole exci-
tations of deformed nuclei which are called scissors modes, the discussion
about their true nature was not ended when good microscopic results were
available.

∗ Presented at the MESON ’98 and Conference on the Structure of Meson, Baryon and

Nuclei, Cracow, Poland, May 26–June 2, 1998.

(3515)



3516 D. Zawischa

One quantity which has been widely used in favour of a “scissors” inter-
pretation is the squared overlap with the so-called synthetic or pure scissors
state which has been obtained from the RPA state vectors. But the squared
overlaps are of the order of 20% or less which makes it difficult to draw
definite conclusions.

Let us look at the competing models for isovector rotational vibrations.
Different current distributions producing a change in the orientation of the
nuclear surface or, in the case of isovector modes, the orientation of the pro-
ton and neutron bodies, are shown in Fig. 1. Rigid rotation (Fig. 1 b) has
been assumed in early predictions of scissors modes in the Two Rigid Rotors
Model (TRRM) [2, 3], irrotational quadrupole flow (Fig. 1 c) in generaliza-
tions of the collective model to isovector oscillations (Extended Collective
Model (ECM) [4] or Neutron-Proton-Deformation model (NPD) [5]). Both
the TRRM and the ECM (or NPD) lead to the following expressions for the
frequency and magnetic dipole transition strength:

ω2 =
δ2C

I1

B(M1)↑ =
3µ2

N

16π~2
~ωI1 . (1)

Here δ is the deformation parameter, C the restoring force constant, and I1

the moment of inertia around the x-axis, rigid or irrotational, respectively.

(a) (b) (c) (d)

z

y

z

y

z

y

z

y

Fig. 1. (a) — Scissors-like isovector rotational oscillation of protons (solid line)

against neutrons (broken line) at the classical turning point. It can originate from

rigid rotation (b) — from irrotational quadrupole flow (c) — or from a superposition

of both. There is a special superposition of both modes (d) — which does not lead

to a change of the surfaces’ orientation, thus satisfying boundary conditions of

Steinwedel–Jensen type. In the drawings (b) to (d), only the proton current is

shown, the neutron current going in the opposite direction.

As both models with parameters C and I1 derived from the liquid drop
model badly fail to reproduce the experimental data (see Table I), the pa-
rameters have been adjusted to the data. Then, of course, the results of both
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TABLE I

Comparison of semiclassical models for 156Gd with parameters as derived from the

liquid drop model. The experimental data are from [6, 7].

Ex (MeV) B(M1) (µ2

N
) B(E2) (e2fm4)

Rigid Rotors 6.18 21.31 404
Irrotational Flow 20.5 6.43 1338
Fixed Surface 3.90 10.34 0
Experiment 3.07 1.30(20) 40(6)

models coincide, the models have been considered to be equivalent, though
in their basic assumptions they are contradictory.

A still different semiclassical model has been proposed by Lipparini and
Stringari [8]: They assume Steinwedel-Jensen boundary conditions (i.e. a
fixed surface) which force the flow in the interior to be a superposition of
irrotational and rotational flow. This mode (depicted in Fig. 1 d) is very
interesting: for a classical nonviscous fluid there would be no restoring force
at all, it thus would have zero frequency. However, if there is some nuclear
elasticity as postulated by Bertsch [9], due to the deformation of the volume
elements a restoring force arises.

Now there are already three different flow patterns which may correspond
to the low energy M1 states. Having an RPA state vector, can we decide
which pattern comes closest?

Irrotational flow can be ruled out by the form factor [10]. It occurs (to
a good approximation) in the |K| = 1 component of the giant quadrupole
resonance but not in a low energy state. It has turned out that the form
factors are not sensitive to differentiate between the models of Fig. 1 (b)
and (d) [10]. Let us therefore look at the transition current densities from
which the form factors are calculated. Considering the linear combination
of K = 1 and K = −1 modes which corresponds to a rotation around the
x-axis, it is not too difficult to visualize the transition current distribution:
Consider a point labelled by the cylindrical coordinates ρ, φ, and z, and
decompose the vector of the local current density ~j in its components jρ, jφ,
and jz . The dependence of these quantities on the azimuthal angle φ is very
simple:

jρ(ρ, φ, z) = jρ(ρ, π
2
, z) sin(φ) jz(ρ, φ, z) = jz(ρ, π

2
, z) sin(φ)

jφ(ρ, φ, z) = jφ(ρ, 0, z) cos(φ) .
(2)

We need to know jφ only in the x-z-plane and jρ, jz in the y-z-plane to

know ~j everywhere. Moreover, the pattern in the x-z-plane is symmetric
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with respect to the z- and antisymmetric with respect to the x-axis, while
in the y-z-plane jρ and jz are antisymmetric with respect to both axes.
Therefore we show only one quadrant of both planes.

Fig. 2 shows the result for the most prominent low energy state of 164Dy
with theoretical Borb(M1)↑= 1.13µ2

N
. It is clearly seen that there is a certain

amount of isovector rotational motion present, but there is additional small-
scale vorticity superimposed which makes it difficult to decide whether it is
more similar to Fig. 1 (b) or (d). Only when a larger number of scissors
states of different nuclei is examined, one realizes that there is the general
tendency of the flow to be more or less parallel to the surface in the outer
region, thus favouring the “fixed surface” model (Fig. 1 d).

Fig. 2. Flow pattern of the M1 excitation at 3.2 MeV of 164Dy (in arbitrary units).

Left hand side: protons, right hand side: neutrons.

The merit of the TRRM has been the introduction of the rotational
degree of freedom, and the microscopic transition currents confirm that this
degree of freedom does exist in nuclei. We also see in other states (Fig. 3),
that (almost) irrotational quadrupole flow is possible, too. This is the kind
of flow assumed in the collective model and its extensions. If both modes
are treated simultaneously assuming a classical fluid, the rotational degree
of freedom is absorbed in a zero energy mode and only irrotational flow
survives. This should not be taken as an argument in favour of the ECM.
Actually, with parameters extracted from the liquid drop model, the ECM
describes the quadrupole giant resonance quite well, but not the low energy
states, as Table I shows.
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Fig. 3. Neutron transition current distribution of the |K| = 1 component of the

giant quadrupole resonance of 165Gd, an example of a highly collective state.

In Table I also quadrupole transition strengths are shown. The quadru-
pole strength comes out to be proportional to ω−1, which means that chang-
ing parameters to lower the energy to 3 MeV would increase the quadrupole
strength dramatically. This would never escape experimental detection.

It is, therefore, clear that in the isovector rotational degree of freedom
the situation is similar to the isoscalar case in that the motion is neither rigid
rotation nor irrotational. By adjusting parameters to the experimental data
one implicitely admits more complex flow patterns than initially assumed.
Thus from the TRRM one goes to the Two Rotor Model, (TRM). One should
be aware of the fact that, when changing the restoring force parameter and
the moment of inertia, also the variables may change their meaning [11].

This is easily demonstrated comparing the different flow patterns shown
in Fig. 1. They all are special cases of the TRM, when the condition of
rigidity is relaxed. (Restricting to small oscillation amplitudes, we need not
bother about the problems connected with multiple-valuedness of the angle.)
In the TRRM we have rigid rotation, and the variable canonically conjugate
to the angular momentum of one of the bodies is just the geometrical angle
of rotation, visible as rotation of the shape. In the fixed surface model,
there is also rotational motion and therefore an angular momentum, but the
variable conjugate to angular momentum certainly is not the geometrical
angle of rotation of the shape which remains zero.

To improve the semiclassical description all relevant degrees of freedom
and all possible sources of restoring force should be included from the very
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beginning. One then arrives at nuclear fluid dynamics (NFD) as proposed
by Holzwarth and Eckart [12, 13], which incorporates nuclear elasticity [9]
and has no free parameter.

Details of the calculation have already been published [10,11], here only
the results are presented: Considering two degrees of freedom (rotational
and |K| = 1 quadrupole) we get two eigenmodes of the system. While
the higher energy mode looks very similar to the quadrupole mode itself
(Fig. 1 c), the low energy mode is clearly a superposition of rotational and
quadrupole motion. It is shown in a drawing to scale in Fig. 4, which
illustrates the situation at the classical turning point. It is not exactly equal
to the result obtained with Steinwedel-Jensen boundary conditions, but very
similar. Certainly, this also is one of the possible modes encompassed by the
TRM.

zpzn

Fig. 4. The low-energy isovector rotational vibration at the classical turning point.

The surface and symmetry axis of the proton fluid is drawn as full line, those

of the neutron fluid are dashed. Two volume elements of the protons (neutrons)

are marked by full circles (open circles). At rest, the full and open circles would

coincide. It is seen that the angles of rotation of the volume elements are larger than

those of the symmetry axes. The drawing is to scale, with parameters corresponding

to 164Dy.

It is instructive to compare the semiclassical NFD results with micro-
scopic RPA. The RPA does not yield a single collective low energy orbital
M1 state but rather a group of states which, in the rare earths, ranges up
to ≈ 10 MeV (see [11] and references cited there). An other concentration
of orbital magnetic dipole strength is found above 20 MeV. As is seen from
Table II, there is very good agreement between the summed RPA and semi-
classical results (and both, in fact, are very close to the sum-rule estimates
of Lipparini and Stringari 1983 [14]). The only slight discrepancy, namely
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TABLE II

Comparison of RPA with Migdal force (average excitation energy and summed

strengths), NFD and rigid rotors model for the example 164Dy. The table is taken

from [11].

Eave
x

∑
B(M1)orb

∑
ExB(M1)orb

∑
B(E2)

MeV µ2

N
µ2

N
MeV e2fm4

RPA 0–10 MeV 5.6 7.28 40.6 103
NFD low energy 3.26 11.6 37.8 71.6
TRRM 6.15 22.9 141 439

RPA high energy 21.2 3.2 67.6 1148
NFD high energy 23.8 4.36 103.8 1234

the somewhat low exitation energy of the semiclassical model, is explained
by the fact that pairing has not been included, which would shift the energy
up while conserving the energy weighted sum rule.

From the agreement of the RPA with experimental data on one hand,
with the semiclassical Fermi-fluid model on the other hand, we conclude
that the experimentally detected low energy M1-strength corresponds to the
low energy wing of the collective mode which, due to quantum mechanical
effects, is spread in the range up to ≈ 10 MeV in the rare earths [11], and
that the closest possible semiclassical visualization of the mode is given by
the Fermi-fluid (or NFD) model.
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