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Effective Hamiltonians for phonon and spin polarons are obtainedby ap-
plying a sequence of displacement and squeezing transformations to electron–
phonon, or electron–magnon, interacting Hamiltonians. The basic tech-
niques of calculation are shown in details, with explicit applications to the
case of two- and four-sites systems.
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1. Introduction

An interacting fermion–boson Hamiltonian is generally composed of pure-
ly fermionic and bosonic parts, plus a term expressing the interaction be-
tween the two types of particles. It is often convenient to try to transform the
interacting Hamiltonian into another one, from which the interaction term
has been eliminated or expressed in a physically more significant way. In
some cases, it is possible to obtain an equivalent Hailtonian from which one
type of particle is completely absent. These lecture notes will show how,
in the case of electrons interacting with phonons or with spin waves, one
can build effective Hamiltonians, where the Bose operators do not appear,
and the fermions interact through renormalized interactions, whose values
depend of the phononic properties of the system. Such fermions, dressed
by bosons, are called polarons. The general technique to eliminate bosonic
operators consists in applying to the interacting Hamiltonian a sequence of
unitary transformations determined by the fermion- boson interaction term,
usually called displacement transformations. They will be followed by the
evaluation of the displaced Hamiltonian over a so-called squeezed bosonic
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wavefunction, which is a generalization of the harmonic oscillator wavefunc-
tion. We shall consider two types of bosons: the phonons and the antiferro-
magnetic spin waves (or magnons). Their physical effects are quite different,
but the formalism is the same in both cases. Therefore we shall first treat in
some details the phonon polarons, to establish the procedure. When dealing
with the spin waves case, we shall take advantage of many results obtained
for the phonon case. As these notes are intended for didactical purposes, we
shall not deal with the phenomenology of polarons in real materials.

2. The electron–phonon Hamiltonian

Our starting point will be the so called Hubbard–Holstein Hamiltonian:

H = Hel + Hph + Hel−ph , (1)

where, in standard notation, the electronic term in the lattice site represen-
tation reads:

Hel =
∑

iσ

εiniσ +
∑

i〈j〉σ
tijc

†
iσcjσ + U

∑

i

ni↑ni↓ +
∑

i〈j〉
Vijninj , (2)

εi is the atomic on-site energy; U is the Hubbard on-site repulsion energy
acting between two particles with opposite spins occupying the same lattice
site i, while Vij is the inter-site charge interaction, and ni =

∑

σ niσ. We
shall use, according to conveniency, both the sum over sites

∑

i〈j〉, meaning

summing over the z nearest neighbours 〈j〉 of each site i (i = 1...N), and the
sum over 〈i, j〉 bonds

∑

〈ij〉.
The free phonon term is a harmonic oscillator for the deformations ui of

the sites. In terms of the eigenmodes uq = 1/
√

N
∑

j uj exp(iqRj) and the
associated momenta Pq of the vibrating mass M at frequency Ωq it reads

Hph =
∑

q

PqP−q

2M
+

M

2

∑

q

Ω2
ququ−q . (3)

We shall quantize the deformations and momenta introducing Bose operators

bq, b
†
qaccording to the standard rules, yielding:

uq =

√

~

2MΩq

(

b†−q + bq

)

, Pq = i

√

~Ωq

2M

(

b†−q − bq

)

. (4)

Notice the characteristic length Lq =
√

~/2MΩq . The local phonon opera-

tors b†j, bj are derived from bq, b
†
q by Fourier transform:

b†j = 1/
√

N
∑

q

b†q exp (−iqRj) .
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The phonon Hamiltonian is then diagonalized as:

Hph =
∑

q

~Ωq

(

b†qbq + 1
2

)

. (5)

In the following we shall also consider the case of dispersionless phonons,
which model the optical phonons, implying Ωq → Ω, Lq → L.

The interacting Hamiltonian will be assumed of the Holstein type [1],
i.e. a local interaction of strength G betwen the site charge density nj and
its deformation uj :

Hel−ph = G
∑

j

ujnj = g
∑

j

(

b†j + bj

)

nj = ~Ωγ
∑

j

(

b†j + bj

)

nj , (6)

where g = GL and γ = g/~Ω. The mixed form, where only the Bose opera-
tors are Fourier transformed, will also be used, yielding:

Hel−ph = ~Ωγ
∑

q

(

b†−q + bq

)





1√
N

∑

j

nje
iqRj



 = ~Ωγ
∑

q

(

b†−q + bq

)

nq .

(7)

Let us remark that nq introduced above equals
√

N times the true Fourier
tranform of nj. To have a physical understanding of the formalism, let us
consider simple cases: the dimer [2], consisting of two ions at the sites Rj

(j = 1, 2) spaced by a. Its Brillouin zone consists of two points: q = 0, π/a.
Then b0 = (b1 + b2) /

√
2 and bπ/a = (b1 − b2) /

√
2 while the interaction term

becomes:

Hel−ph =
~Ωγ√

2

[

(n1 + n2)
(

b†0 + b0

)

+ (n1 − n2)
(

b†π/a + bπ/a

)]

. (8)

We see that the zone center mode (q = 0) couples to the total charge, while
the zone boundary one (q = π/a) couples to the charge transfer between
the sites. The reader might work out the corresponding expressions for the
four-site closed chain.

Our goal is to tranform H into a physically equivalent effective Hamil-
tonian H∗ whose operatorial part is expected to have the same shape as Hel

but with renormalized interaction parameters, and possibly the addition of
fermionic interaction terms Hnew which were not present in Hel:

H∗ = Hel

(

ε∗i , t
∗
ij , U

∗, V ∗
ij

)

+ Hnew + c − number . (9)

The renormalized interactions will contain the effect of the coupling with
the phonons:

ε∗i =ε∗i (εi, Ω, g) , t∗ij = t∗ij (tij , Ω, g) , U∗=U∗ (U,Ω, g) , V ∗
ij =V ∗

ij (Vij , Ω, g) .
(10)
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Thus the final polaronic Hamiltonian will describe fermions “dressed” by
bosons, and therefore interacting between themselves with different strengths
than in the absence of bosons.

3. The displacement transformation

The first reasonable step in our program might seem to be the diag-
onalization of H, by eliminating Hel−ph. Actually, we shall see that this
procedure has serious physical drawbacks. However, let’s follow it for the
moment. The materials where polarons are supposed to exist, like high
temperature superconductors [4] (HTS) or colossal magnetoresistance com-
pounds [5] (CMR) have strong electron–phonon interactions. Therefore
Hel−ph can not be dealt with perturbatively. One can instead try to get rid

of it by applying to H a unitary transformation eR such that eR†
eR = 1

(implying that the generator R is anti-Hermitian: R† = −R). We hope
that a proper choice of R will produce a transformed HT = eRHe−R from
where Hel−ph has been removed. A comprehensive treatment of unitary
transformations can be found in Ref. [3].

To devise the form of R we learn from the perturbative limit. Suppose
we want to diagonalize the general Hamiltonian H = H0+xH1 where x ≪ 1.
We guess R = xR and we develop exR. in series of commutators:

HT = eRHe−R = H + [xR,H] +
1

2
[xR, [xR,H]] + O

(

x3
)

. (11)

In the perturbative limit, we neglect O
(

x3
)

and we eliminate the terms

in HT linear in x by imposing H1 + [R,H0] = 0. Then HT = H0 −
(

x2/2
)

[R, [R,H0]]. If {|p〉} and {|n〉} are complete sets of eigenstates
of H0 with eigenvalues Ep, En, then from:

∑

p,n

|p〉〈p|{H1 + [R,H0]}|n〉〈n| = 0 (12)

it follows
∑

p,n

|p〉 [〈p|H1|n〉 − (Ep − En) 〈p|R|n〉] 〈n| = 0 (13)

yielding the condition:

〈p|R|n〉 =
〈p|H1|n〉

(Ep − En)
(14)

which tells us that R has the same operatorial form as the perturbative
term H1, only with different coefficients, because R has to obey the anti-
Hermiticity condition.
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In order to get rid of the Holstein term, then, let us apply to the Hamil-
tonian the unitary transformation generated by:

R =
∑

q

Rq = γ
∑

qσ

δq

(

b†−q − bq

)

nq , (15)

where the wavevector-dependent parameters {δq} are, for the moment, un-
determined. We have therefore as many generators as there are sites in
the Bravais lattice, or as many points in the Brillouin zone. All generators
commute among themselves. In the case of the dimer we have:

R0 = δ0
γ√
2

(n1+n2)
(

b†0−b0

)

, Rπ/a = δπ/a
γ√
2

(n1−n2)
(

b†π/a−bπ/a

)

.

(16)
We shall try to perform the transformation rigorously, i.e. without any trun-
cation in the development of eR.

To transform each term of the Hamiltonian, we have to know how the

individual Bose and Fermi operators are transformed. Let us consider B
(†)
p =

eRb
(†)
p e−R, or

B(†)
p = {exp[

∑

jqσ

γqδq

(

b†−q − bq

)

nq]}b(†)
p {exp[

∑

jqσ

γqδq

(

bq − b†−q

)

nq]} .

(17)
By using the relation exp(X + Y ) = exp(X) exp(Y ) exp(−1

2 [X,Y ]), valid if
[X,Y ] = c−number, we can reduce Eq. (17) for, say, Bp to:

Bp = [exp(γpδpb
†
pn−p)]bp[exp(−γpδpb

†
pn−p)] . (18)

If we develop the exponentials in series, Eq. (18) becomes a series of commu-

tators Bp = bp +[r, bp]+
1
2 [r, [r, bp]]+

1
3! [r, [r, [r, bp]]]+ .... with r = γδpb

†
pn−p.

Now, [r, bp] = γpδpn−p i.e. a boson-independent term, so that all higher

order commutators vanish, and we obtain (with a similar procedure for B†
p):

Bp = bp − γpδpn−p , B†
p = b†p − γpδpnp . (19)

The B
(†)
p ’s are displaced Bose operators: they describe an oscillator whose

equilibrium position has been displaced under the action of an external force.
Here the force is due the coupling with the electronic charge. A textbook
example is a harmonically oscillating charge acted upon by the electric field,
while here the force is due to the coupling with the electronic charge. In the
case of the dimer with dispersionless phonons we would obtain:

(B0, B
†
0) = (b†0, b0) −

γ√
2
δ0(n1 + n2),

(Bπ/a, B
†
π/a) = (b†π/a, bπ/a) −

γ√
2
δπ/a(n1 − n2) . (20)
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When transforming the Fermi operators it is more convenient to use the
real space representation for nq yielding

R = N−1/2
∑

jqσ

γqδq

(

b†−q − bq

)

njσ exp (iqRj) .

The displaced Fermi operators C
(†)
jσ = eRc

(†)
jσ e−R are easily obtained by

noting that the n-th order commutator in the development of Cjσ yields

[(−1)N−1/2
∑

q δqγq

(

b†−q−bq

)

exp (iqRj)]
ncjσ i.e. the n-th power of a bosonic

operator [...]n times the same Fermi operator cjσ to be transformed. The

case for the creation operator C†
jσ is similar, but for lacking the factor (−1)

inside [...]n and having c†jσ in place of cjσ. Therefore the series of commuta-
tors can be summed to an exponential of the bosonic operator, yielding

C†
jσ = c†jσ exp[

1√
N

∑

q

δqγq

(

b†−q − bq

)

eiqRj ]

Cjσ = cjσ exp[− 1√
N

∑

q

δqγq

(

b†−q − bq

)

eiqRj ] . (21)

We can now use the above results to transform the whole electron–phonon
Hamiltonian.

4. The “displaced” Hamiltonian

Equation (21) implies that the number operators njσ are unaffected by
the displacement transformation. The only term in Hel affected by the
transformation is therefore the hopping term, yielding:

eR
∑

l〈j〉σ
tljc

†
lσcjσe−R =

∑

l〈j〉σ
tlj(e

Rc†lσe−R)(eRcjσe−R)

=
∑

l〈j〉σ
c†lσcjσtlj exp

[

1√
N

∑

q

δqγq

(

b†−q − bq

)

(eiqRl − eiqRj

]

. (22)

A strong non-linear interaction with the phonons, which affects the hopping
of the electrons, has been introduced by the transformation.

To see how the terms containing phononic operators are transformed, let
us start from the free oscillator term:

eR

[

∑

q

~Ωq

(

b†qbq +
1

2

)

]

e−R =
∑

q

~Ωq

[

(b†q − γqδqnq)(bq − γqδqn−q) +
1

2

]

=
∑

q

~Ωq

[

b†qbq +
1

2
− γqδqnq

(

b†−q + bq

)

+ γ2
q δ2

qnqn−q

]

. (23)
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The Holstein term yields:

eR

[

∑

q

~Ωqγq

(

b†−q + bq

)

nq

]

e−R =
∑

q

~Ωq

[

γq

(

b†−q + bq

)

nq − 2γ2
q δqnqn−q

]

.

(24)
By reordering the terms in Eqs. (23) and (24) we can write the total trans-
formed phononic Hamiltonian HT

ph = eR [Hph + Hel−ph] e
−R as:

HT
ph =

∑

q

~Ωq

(

b†qbq +
1

2

)

+
∑

q

~Ωqγq

(

b†−q + bq

)

nq (1 − δq)

−
∑

q

~Ωqγ
2
q δq (2 − δq)nqn−q . (25)

We see that HT
ph has a pure fermionic term in addition to the free oscil-

lator and Holstein terms. The Holstein term might be cancelled if we chose
δq = 1 for any q. This was indeed the historic reason for which Lang and
Firsov, who first introduced [6] the displacement transformation, made that
choice for δq, realising the complete displacement transformation (CDT).
We shall follow a different approach, by letting, for the moment, δq undeter-
mined. The most interesting term in HT

ph is the last one, which, going back
to the real space representation, reads:
∑

q

~Ωqγ
2
q δq (2 − δq) nqn−q =

∑

j

(nj + 2nj↑nj↓)

[

1

N

∑

q

~Ωqγ
2
q δq (2 − δq)

]

+
∑

j

∑

l 6=j

njnl

[

1

N

∑

q

~Ωqγ
2
q δq (2 − δq) eiq(Rj−Rl)

]

. (26)

We find phonon-induced contributions to the on- site atomic energy
(≈ nj), to the on-site Hubbard interaction (≈ nj↑nj↓), and to the inter-
site Coulomb interaction (≈ njnl) . Collecting all contributions, we write
the displaced Hamiltonian HT ≡ eR (Hel + Hph + Hel−ph) e−R as:

HT =
∑

jσ

ε∗jnjσ +
∑

i<j>σ

t∗ijc
†
iσcjσ + U∗∑

j

nj↑nj↓ +
∑

i<j>

V ∗
ijninj

+
∑

q

~Ωq

(

b†qbq +
1

2

)

+
∑

q

~Ωqγq

(

b†−q + bq

)

nq (1 − δq) (27)

where the phonon-renormalized interactions read:

ε∗j = εj −
1

N

∑

q

~Ωqγ
2
q δq (2 − δq) , (28)
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U∗
j = Uj − 2

(

1

N

)

∑

q

~Ωqγ
2
q δq (2 − δq) , (29)

V ∗
jl = Vjl −

1

N

∑

q

~Ωqγ
2
q δq (2 − δq) eiq(Rj−Rl) . (30)

As the physical values of δq are between 0 and 1, the additional terms
decrease the values of the bare interactions. The effect might be so large as
to change the sign of U and Vjl from positive to negative, with drastic ef-
fects on the physics. Moreover, while the bare Vjl vanishes if j and l are not
first neighbours, in the additional contribution there is no constraint on j
and l : the phonons produce an undamped long range oscillating interaction
between the charges on the various sites. Here one can appreciate the im-
portance of not adopting the Lang–Firsov choice δq → 1 for any q. Indeed,
in that case one would have (recalling γq = g/~Ωq and defining ∆jl =0 if
j 6= l):

V ∗
jl =⇒ Vjl −

1

N

∑

q

~Ωqγ
2
q eiq(Rj−Rl) = Vjl − g2∆jl = Vjl . (31)

Namely, the long range interaction disappears in the CDT case. For hystor-
ical reasons, a number of characteristic quantities in the polaron literature
has been introduced just for CDT where:

ε∗j =⇒ εj − ~Ωγ2 = εj −
g2

~Ω
, U∗

j =⇒ Uj − 2
g2

~Ω
. (32)

The quantity g2/~Ω is called polaronic shift or polaron binding energy, being
the phonon-induced shift of the atomic energy, i.e. the additional attractive
energy which each site acquires due to the phonons. Given this interpretation
of g2/~Ω one can ask how many phonons dress a polaron. An intuitive
answer is provided by dividing the polaron binding energy by the energy ~Ω
of each phonon. The result (g/~Ω)2 is called the Huang–Rhys factor. Its
evaluation for arbitrary δq will be given later on (see Eq. (57)).

4.1. Applications to two- and four-site systems

Let us see now how this general formalism reads when applied to the
dimer case [2] with Ωq → Ω (γq → γ). The transformed Bose operators are
now:

B
(†)
0 = b

(†)
0 − δ0γ0√

2
(n1 + n2) , B

(†)
π/a = b

(†)
π/a −

δπ/aγπ/a√
2

(n1 − n2) (33)
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so that the phonon-depending part of the transformed Hamiltonian, HT
ph, is:

HT
ph = e(R0+Rπ/a) (Hph+Hel−ph) e−(R0+Rπ/a) = ~Ω

(

B†
0B0+B†

π/aBπ/a+1
)

+
~Ωγ√

2

[

(1 − δ0)
(

B†
0 + B0

)

(n1 + n2) +
(

1 − δπ/a

)

(

B†
π/a

− Bπ/a

)

(n1 − n2)
]

−~Ωγ2

2

[

δ0 (2 − δ0) (n1 + n2)
2 + δ

π/a

(

2 − δπ/a

)

(n1 − n2)
2
]

. (34)

As [Hel, (n1 + n2)] = 0, then eR0Hele
−R0 = Hel, and we can choose δ0 = 1

which minimizes the q = 0 contribution to HT
ph. This can not be done for

δπ/a because the Fermi operators are transformed into

C†
1σ = c†1σe

δπ/aγ
“

b†
π/a

−bπ/a

”

/
√

2
, C1σ = c1σe

−δπ/aγ
“

b†
π/a

−bπ/a

”

/
√

2
,

C†
2σ = c†2σe

δπ/aγ
“

b†
π/a

−bπ/a

”

/
√

2
, C2σ = c2σe

δπ/aγ
“

b†
π/a

−bπ/a

”

/
√

2
. (35)

After these transformations, the hopping term reads:

t
∑

σ

(

C†
1σC2σ + C†

2σC1σ

)

= tcosh
[√

2γδπ/a

(

b†π/a−bπ/a

)]

∑

σ

(

c†1σc2σ+c†2σc1σ

)

+ t sinh
[√

2γδπ/a

(

b†π/a − bπ/a

)]

∑

σ

(

c†1σc2σ − c†2σc1σ

)

(36)

while the renormalized Coulomb interactions are:

ε∗j = εj −
~Ωγ2

2

[

1 + δ
π/a

(

2 − δπ/a

)

]

,

U∗
j = Uj − ~Ωγ2

[

1 + δ
π/a

(

2 − δπ/a

)

]

,

V ∗
ij = Vij −

~Ωγ2

2

[

1 − δ
π/a

(

2 − δπ/a

)

]

. (37)

Notice that, consistently with Eq. (2) one has to write the total inter-
site Coulomb term for the dimer as

∑

j〈l〉 Vjlnjnl = V12n1n2 + V21n2n1 =
2V12n1n2.

To see in a concrete example the long range nature of V ∗
ij let us consider

the four-site chain with Ωq → Ω. There are two orders of neighbours: for
nearest neighbours |Rj − Rl| = a and:

V ∗
i,i+1 = Vi,i+1 −

~Ωγ2

4

[

δ0 (2 − δ0) − δ
π/a

(

2 − δπ/a

)

]

. (38)

For second neighbours |Rj − Rl| = 2a and V ∗
ij has only the long range part,

reading:

V ∗
i,i+2 = −~Ωγ2

4

[

δ0 (2 − δ0) − 2δ
π/2a

(

2 − δπ/2a

)

+ δ
π/a

(

2 − δπ/a

)

]

. (39)
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Due to the periodic boundary conditions imposed on the chain, the third
neighbours coincide with the first ones.

4.2. The phonon subsystem

Before continuing to study how the electrons are influenced by the pho-
nons, it is interesting to consider briefly the inverse problem, i.e. how the
phonons respond to the electrons [7]. Let us select from Eq. (27) the phonon-
depending terms:

HT
ph =

∑

q

~Ωq

(

b†qbq +
1

2

)

+
1√
N

∑

jqσ

~Ωqγq (1 − δq)
(

b†−q − bq

)

njσeiqRj

+
∑

〈jl〉σ
tjl cosh

[

1√
N

∑

q

δqγq

(

b†−q − bq

)

(eiqRj − eiqRl

]

(c†jσclσ + c†lσcjσ)

+
∑

〈jl〉σ
tjl sinh

[

1√
N

∑

q

δqγq

(

b†−q − bq

)

(eiqRj − eiqRl

]

(c†jσclσ − c†lσcjσ) .

(40)

In the hopping term we have switched from site to bond sum. We shall
develop HT

ph in mean field approximation (MFA:AB≈A〈B〉+B〈A〉−〈A〉〈B〉),
under the assumption that there are no spontaneous currents (〈c†jσclσ −
c†lσcjσ〉 = 0) and that translational invariance holds (〈c†jσclσ〉 = 〈c†lσcjσ〉).
Let us define

τjl ({δq}) ≡
〈

cosh

[

1√
N

∑

q

δqγq

(

b†−q − bq

)

(eiqRj − eiqRl

]〉

, (41)

where the expectation value is to be taken over an appropriate phonon state.
If we take the phonon vacuum, as shown in the equation (82) later on,

τ ≡ exp
{

−N−1
∑

q γ2
q δ2

q [1 − cos (qa)]
}

independently of j, l. The MFA form

of the displaced hopping term HT
hop reads:

HT
hop = −

∑

j〈l〉σ
tjlτjl〈c†jσclσ〉 +

∑

j〈l〉σ
tjlτjlc

†
jσclσ

+2
∑

j〈l〉σ
tjl〈c†jσclσ〉 cosh

[

1√
N

∑

q

δqγq

(

b†−q − bq

)

(eiqRj − eiqRl

]

. (42)

The first line of Eq. (42) contributes to the effective electronic Hamilto-
nian, while the second one to its phononic counterpart. Indeed, the purely
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phononic MFA Hamiltonian now reads:

HT
ph =

∑

q

~Ωq

(

b†qbq +
1

2

)

+
∑

jqσ

~Ωqγq (1 − δq)
(

b†−q − bq

)

〈nq〉

+2
∑

j〈l〉σ
tjl〈c†jσclσ〉 cosh

[

1√
N

∑

q

δqγq

(

b†−q − bq

)

(eiqRj − eiqRl)

]

.(43)

We see that the phonon subsystem is apparently influenced by both

the density (〈nq〉) and the hopping (tjl〈c†jσclσ〉) of the electrons. To better

understand what happens, let us evaluate the phonon Green’s Function (GF)

〈〈bq ; b†q〉〉 which obeys the equation of motion (EOM):

~ωq〈〈bq; b
†
q〉〉 =

1

2π

〈[

bq, b
†
q

]〉

+
〈〈

[

bq,H
T
ph

]

; b†q
〉〉

, (44)

where ωq is the renormalized frequency, in principle different from the bare

one Ωq. Defining for short Tjlσ = tjl〈c†jσclσ〉 and Xqlj =
(

1/
√

N
)

δqγ

q(e
iqRj − eiqRl) we obtain the first order EOM in the form:

(~ωp − ~Ωp)〈〈bp; b
†
p〉〉 =

1

2π
+
∑

j〈l〉σ
TjlσX−plj (45)

×
{

〈〈

exp
[

∑

q

Xqlj

(

b†−q−bq

)]

; b†p
〉〉

−
〈〈

exp
[

−
∑

q

Xqlj

(

b†−q−bq

)]

; b†p
〉〉

}

.

Notice that no contribution to the EOM comes from the Holstein term
≈ 〈nq〉. Its role is to put into contact the electron and phonon subsys-
tems, but only the hopping of the electrons influences quantitatively the
phonons. The new GF’s obey the second order EOM:

~ωp

〈〈

exp
[

±
∑

q

Xqlj

(

b†−q − bq

) ]

; b†p
〉〉

=
1

2π

〈[

exp
[

±
∑

q

Xqlj

(

b†−q − bq

) ]

; b†p
]〉

+
〈〈[

exp
[

±
∑

q

Xqlj

(

b†−q − bq

) ]

;HT
ph

]

; b†p
〉〉

. (46)

To break the chain of EOM’s we shall assume that the GF’s of phonons

of different modes 〈〈bq; b
†
p〉〉 vanish (harmonic approximation), and develop

in MFA terms like b†p exp
[

±∑q Xqlj

(

b†−q − bq

)]

. The expectation values
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will be taken over the undisplaced phonon states, so that
〈

b†p
〉

= 0 and
〈

exp
[

±∑q Xqlj

(

b†−q − bq

)]〉

=τlj. The Eq. (46) then reduces to:

[

~ωp +
∑

q

~ΩqXqljX−qlj

]〈〈

exp
[

±
∑

q

Xqlj

(

b†−q − bq

) ]

; b†p
〉〉

= ∓
[Xplj

2π
+ ~ΩpXplj〈〈bp; b

†
p〉〉
]

exp
[

− 1

2

∑

q

XqljX−qlj

]

. (47)

Finally, by evaluating Xqlj for |Rj −Rl| = a, we obtain that the phonon
GF obeys:

〈〈bp; b
†
p〉〉
{

~ωp − ~Ωp

[

1 −
4δ2

pγ2
p [1 − cos (pa)] (1/N)

∑

〈lj〉σ Tljστlj

~ωp − (2/N)
∑

q ~Ωqδ2
qγ2

q [1 − cos (qa)]

]}

=

(

1

2π

)

{

1 −
[

1

N

∑

〈lj〉σ
Tljστlj

]

4δ2
pγ

2
p [1 − cos (pa)]

~ωp − (2/N)
∑

q ~Ωqδ2
qγ

2
q [1 − cos (qa)]

}

.

(48)

The above results show that the electron hopping modifies both the
phonon frequency and the spectral weight. The renormalized frequency fol-
lows from the poles of the GF. By defining for short ∆q = δ2

qγ
2
q [1 − cos (qa)]

and T = (1/N)
∑

〈lj〉σ Tljστlj, we obtain:

~ωp =
1

2



~Ωp +
2

N

∑

q

~Ωq∆q ±

√

√

√

√

(

~Ωp−
2

N

∑

q

~Ωq∆q

)2

−16~Ωp∆pT



 .

(49)
The correct choice of the sign follows from imposing limT→0 ωp = Ωp. The
softening or hardening of the phonons then depends on the sign in front
of the square root, in turn determined by the ratio ~Ωp /

(

2
N

)
∑

q ~Ωq∆q.

Notice that, even if the bare phonons were dispersionless (Ωp → Ω), the
dressed phonons acquire dispersion, due to the itineracy of the electrons,
through the T - depending term under the square root. In the case of the
dimer, ∆π/a = 2γ2δ2

π/a
and the renormalized frequency is:

ωπ/a =
Ω

2






1 + 2γ2δ2

π/a
±

√

√

√

√

(

1 − 2γ2δ2
π/a

)2

− 32γ2δ2
π/a

T

~Ω






. (50)

The phonon gets softened if γ2δ2
π/a

≥ 1/2, a condition easily met when

the displacement δ
π/a

is not negligible and the Huang–Rhys factor (g/~Ω)2
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is appreciable. The possibility that the phonon gets hardened might be
an artifact of our approximations. A more rigorous treatment [7] yields a
softening in all cases.

5. Displaced phonon states

To recall where we are before proceeding, let us write down the total
displaced Hamiltonian HT in the general case of dispersive bare phonons:

HT = eR (Hel + Hph + Hel=ph) e−R =
∑

jσ

ε∗jnjσ

+
∑

j<l>σ

tjl exp

[

1√
N

∑

q

δqγq

(

b†−q − bq

)

(eiqRj − eiqRl

]

c†jσclσ

+U∗∑

j

nj↑nj↓ +
∑

j<l>

V ∗
jlnjnl +

∑

q

~Ωq

(

b†qbq +
1

2

)

+
1√
N

∑

jqσ

~Ωqγq (1 − δq)
(

b†−q − bq

)

njσeiqRj . (51)

Phonon operators are still present in HT . To obtain the purely electronic
effective Hamiltonian we shall evaluate the expectation value of HT over
some appropriate phonon wavefunction. This will substitute the terms
containing phonon operators with c−numbers, leaving the Fermi operators
unaffected. We shall proceed in two ways, one more traditional, one more
modern.

To start with the traditional treatment, let us consider two sites in our
lattice: on one, labeled l, there is no charge to interact with its deforma-

tion ul, described by local phonon operators b†j, bj . The other one, j, has a

local charge ρl and a charge-induced deformation eRuje
−R = Uj = uj −Qj,

where Qj = 2γδρlL. On site j the phonons are displaced and described

by B
(†)
j = b

(†)
j − Qj/2L. Undisplaced n−phonon states on l will be indi-

cated as |nl〉, while displaced ones on j by |nj). The vacuum wave function

|0l〉 = (Mω/π~)1/4 exp
[

− (Mω/2~) u2
l

]

is the one for the harmonic oscilla-
tor. For the displaced vacuum |0j) we have instead:

|0j) =

(

Mω

π~

)1/4

e−(Mω
2~

)U2

j =

(

Mω

π~

)1/4

e−(Mω
2~

)(uj−Qj)
2

= e−(Mω
2~

)Q2

l e(
Mω

~
)Qluj |0j〉 . (52)

To rewrite |0j) in terms of undisplaced phonon operators, we exploit the

definition of Qj and the quantization of uj, yielding
(

Mω
2~

)

Q2
j = (γδρj)

2 and
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(

Mω
~

)

Qjuj =
(

b†j + bj

)

γδρj . Then, by disentangling eX+Y :

|0j) = e−(γδρj )2e
γδρj

“

b†j+bj

”

|0j〉 = e−
1

2
(γδρj )2eγδρjb†j

eγδρjbj |0j〉
= e−

1

2
(γδρj)

2

eγδρjb†j |0j〉 , (53)

where we have used exp (γδρjbj)|0j〉 =
∑

m
(γδρjbj)m

m! |0j〉 = |0j〉 because only

the m = 0 term gives a non-vanishing contribution. In a similar way one
can build the other excited displaced states, yielding:

|n) =
1√
N !

[

b†j − γδρj

]n
|0) =

1√
N !

0...n
∑

k

(

n

k

)

(−γδρj)
k
(

b†j

)n−k
|0) . (54)

One has to be careful in interpreting the notational relation between
bare and displaced states: for instance, the displaced vacuum state |0j) is
far from being empty of phonons. Indeed, let us evaluate the number of
undisplaced phonons in |0j) :

(0j |b†jbj |0j)

e−(γδρj )2
= 〈0j |e

γδρj bj
b†jbje

γδρjb
†
j |0j〉

= 〈0j |
∑

k,p

(γδρj)
k+p

k!p!
bk
j

(

b†jbj

)(

b†j

)k
|0j〉

=
∑

k

(γδρj)
2k

(k!)2
〈0j |bk

j

(

bjb
†
j − 1

)(

b†j

)k
|0j〉

=
∑

k

(γδρj)
2k

(k!)2

[

〈0j |bk+1
j

(

b†j

)k+1
− bk

j

(

b†j

)k
|0j〉
]

. (55)

By recalling that normalized phonon states (〈k|k〉 = 1) obey
(

b†j

)k
|0j〉 =

√
k!|kj〉 and bk

j |kj〉 =
√

k!|0j〉 we can write

(0j |b†jbj |0j) = e−(γδρj )2

{ ∞
∑

k=0

(γδρj)
2k

k!
(k + 1) −

∞
∑

k=0

(γδρj)
2k

k!

}

= e−(γδρj )2

{ ∞
∑

k=1

(γδρj)
2k

(k − 1)!
+

∞
∑

k=0

(γδρj)
2k

k!
− e(γδρj)

2

}

= e−(γδρj )2
∞
∑

k=1

(γδρj)
2k

(k − 1)!
. (56)
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Now, by changing from k to p = k − 1 in the series, we have:

(0j |b†jbj |0j) = e−(γδρj )2
∞
∑

p=0

(γδρj)
2p+2

p!

= e−(γδρj )2
[

(γδρj)
2 e(γδρj)

2
]

= (γδρj)
2 . (57)

(0j |b†jbj |0j) is nothing else that the Huang–Rhys factor in the general case
of arbitrary δ value and electron density ρj, which measures rigorously the
non-vanishing number of bare phonons in the state obtained by displacing
their vacuum.

We can go further, showing that, while 〈0j |bj|0j〉 = 0 (which is the
definition of the vacuum state |0j〉 of the bare phonons) on the contrary
(0j |bj|0j) = γδρj , so that |0) is an eigenstate of the bare destruction opera-
tor bj. States satisfying b|0) 6= 0 are called coherent states in the literature.
By using Eq. (53),defining for short x = γδρj with the site index understood,
we have:

(0|b|0) = e−x2〈0|exbbexb† |0〉 . (58)

Developing the exponentials yields:

(0|b|0) = e−x2〈0|
∑

p,q

xpxq

p!q!
bp+1

(

b†
)q

|0〉 . (59)

Using the properies of the normalized phonon states yields:

〈0|bp+1
(

b†
)q

|0〉 = 〈0|
√

q! bp+1|q〉 = q!∆p+1,q . (60)

Then, after changing the sum index to n = q − 1 , Eq. (59) yields:

(0|b|0) = e−x2
∑

n

x2n+1

n!
= e−x2

(

xex2
)

= x . (61)

Therefore in the displaced (or coherent) state even a single phonon operator
has a non-vanishing expectation value.

We saw that only the hopping term was modified in the displacement
transformation. Now we can evaluate its value over the displaced phonon
states. Let us suppose that initially we have one σ−electron on site j and
none on site l: the electronic state can be described by |0l; 1jσ}. Corre-
spondingly, the phonon vacuum states will be |0l〉 and |0j). The hopping

term tjlc
†
lσcjσ transfers the electron, causing the system to pass from an
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initial state |I〉 = |0l; 1jσ}|0l〉|0j) to a final one |F 〉 = |1lσ ; 0j}|0l)|0j〉. We

want to evaluate the matrix element 〈F |tjlc†lσcjσ |I〉, that is:

〈F |tjlc†lσcjσ|I〉 = {1lσ; 0j |tjlc†lσcjσ|0l; 1jσ}(0l|〈0j |0l〉|0j) = tjl(0l|0l〉〈0j |0j) .
(62)

The kinetic energy depends on the degree of overlap between the undis-
placed, and the displaced, phonon wavefunctions on each site. By using
Eq. (53) we evaluate the Franck–Condon integrals 〈0j |0j) as:

〈0j |0j) = 〈0j |e−(γδρj)
2/2eγδρjb†j |0j〉 = e−(γδρj)

2/2 . (63)

It is easy to show that 〈0j |nj) =
[

(γδρj)
n /

√
n!
]

〈0j |0j). Therefore

〈F |tjlc†lσcjσ|I〉 = tjle
−(γδρj )2 . (64)

This result tells us that the phonons are expected to reduce strongly the
hopping amplitude due to the reduced overlap between |n〉 and |n) on each
site. We shall comment on the physical implications of this effect later on.

6. The squeezed state

The discussion given above follows a traditional line of argument. More
recently, a new approach has been applied [8], based on the concept of
Squeezing transformation and of Squeezed wavefunction. We shall devote
some space to describe squeezing in general, as applied to condensed matter:
the lectures by Prof. Bialinicky–Birula also deal with squeezing, but mainly
in electromagnetism. Further literature is listed under Ref. [9]. Squeezing
can also apply to fermions, but we shall limit ourselves to squeezing of
bosons.

Given Bose operators
{

b†p, bp

}

, one can define different squeezing trans-

formations according to conveniency. If the Hamiltonian couples different
modes (e.g. q and −q in the Holstein case), then the squeezing operator is
generally written as:

eS = exp

[

−
∑

p

αp

(

b†pb
†
−p − bpb−p

)

]

,
(

eSeS†

= 1
)

, (65)

where αp ≥ 0 is a real number, to be determined according to conveniency.
When discussing the spin polarons we shall meet a situation where a different
sign for the exponent has to be adopted. Given the phonon vacuum |0〉 (such
that bp|0〉 = 0) we shall define the squeezed wavefunction |ΨSQ〉 as:

|ΨSQ〉 = e−S |0〉 = e
P

p αp

“

b†pb†−p−bpb−p

”

|0〉 . (66)
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If only a single mode q is of interest (e.g. in the dimer case, where only

q = π/a influences the electron hopping) then S = −αp

(

b†qb
†
q − bqbq

)

. One

can use the squeezing also in the real space representation, where p will be a
site label. By definition, if αp → 0 the SQ states go over continuously to the
usual harmonic oscillator state, so that they can be considered as extensions
of the standard bosonic states.

Let us work out the squeezed form of b†p, bp defined as B(†)
p = eSb

(†)
p e−S , by

using the equation of motion technique, i.e. by considering B(†)
p a function

of αp and trying to set up a differential equation for B(†)
p (αp) . The first

derivative yields:

dB†
p

dαp
= eS

[

−(b†pb
†
−p − bpb−p), b

†
p

]

e−S = B−p ,
dBp

dαp
= B†

−p . (67)

The two equations are coupled, so we go to the second derivatives, yielding
decoupled relations:

d2B†
p

dα2
p

= B†
p ,

d2Bp

dα2
p

= Bp (68)

whose solution, taking into account the initial conditions B(†)
p (αp = 0) = b

(†)
p

together with dB†
p/dαp|0 = b−p and dBp/dαp|0 = b†−p, are:

B†
p = b†p cosh (αp) + b−p sinh (αp) , Bp = b†−p sinh (αp) + bp cosh (αp) .

(69)
In the case of a single mode, q say, the result has 2αq in place of αp. The
deformation and momentum operators then transform as:

eS(b†−p+bp)e
−S = eαp(b†−p+bp) eS(b†−p−bp)e

−S = e−αp(b†−p−bp) . (70)

To understand the reason why such states are called squeezed (SQ), let
us evaluate the Heisenberg uncertainty relation

〈ΨSQ|
√

upu−p|ΨSQ〉〈ΨSQ|
√

PpP−p|ΨSQ〉 ≥ ~/2

by using Eq. (70). By definition:

upu−p =

(

~

2MΩp

)

(b†−p + bp)(b
†
p + b−p) ,

PpP−p = −
(

~ΩpM

2

)

(b†−p − bp)(b
†
p − b−p) . (71)
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In the SQ state, by using Eq. (70):

〈ΨSQ|(b†−p−bp)(b
†
p−b−p)|ΨSQ〉 = e−2αp〈0|(b†−p−bp)(b

†
p−b−p)|0〉=−e−2αp ,

〈ΨSQ|(b†−p+bp)(b
†
p+b−p)|ΨSQ〉 = e2αp〈0|(b†−p+bp)(b

†
p+b−p)|0〉=e2αp , (72)

so that:

〈ΨSQ|
√

upu−p|ΨSQ〉〈ΨSQ|
√

PpP−p|ΨSQ〉=
√

−
(

~2

4

)

(e2αp) (−e−2αp) =
~

2
.

(73)
The SQ states are minimal uncertainty states, just like the usual harmonic
oscillator states, as they verify the Heisenberg relation with the equality
sign. However, the indeterminacy on either the deformation, or the mo-
mentum, is reduced (squeezed) in amplitude, or correspondingly enhanced
(anti-squeezed), according to the sign in front of αp in Eq. (65).

To better understand the physical meaning of the SQ states, let us con-
sider the inverse problem [7]: given a Hamiltonian for SQ states which has

a diagonal form i.e. HSQ =
∑

q ~Ωq

(

B†
pBp + 1/2

)

, we want to determine

which is the non-diagonal phonon Hamiltonian Hnd ≡ e−SHSQeS which is
diagonalized by the squeezing transformation. By substituting Eq. (69) in
HSQ we easily find:

Hnd =
∑

q

~Ωq sinh2(α) +
∑

q

~Ωq cosh (2αq)

[

b†qbq +
1

2

]

+
∑

q

~Ωq

[

sinh (2αq)

2

]

(

b†qb
†
−q + bqb−q

)

. (74)

The original Hamiltonian has a harmonic part, with an enhanced frequency
ωq = Ωq cosh (2αq) with respect to HSQ and also has an anharmonic term.
We can say that the squeezing is a way to treat the simplest (quadratic)
anharmonicity, which produces a softening of the phonon frequencies. We
shall deal with Eq. (74) again when discussing the spin polarons.

It is also interesting to study how the shape of the SQ wavefunction
differs from the unsqueezed one. Let us consider a single q mode squeezing,
and write its generator as:

S = αq

[

b2
q −

(

b†q
)2
]

= αq

[

1 + (b†q + bq)(b
†
q − bq)

]

= αq

[

1 +

(

√

2MΩ

~
uq

)(

−
√

2

~MΩ

d

duq

)]

,

S = αq

(

1 + 2uq
d

duq

)

. (75)
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This form of S allows to prove that the squeezing transformation acts on
functions of uq as a scaling transformation i.e. that:

e−SF (uq) = e
−αq

“

1+2uq
d

duq

”

F (uq) = e−αqF
(

e−2αquq

)

. (76)

The proof is in the Appendix. The consequences of Eq. (76), e.g. in the
case F (uq) is the Gaussian harmonic oscillator wavefunction, are that the
SQ function at uq = 0 is smaller (for αq > 0) by a factor e−αq than the
unsqueezed function, but, for increasing |uq|, it decreases much less quickly
than the latter.

Let us now continue our study of SQ operators by considering the boson
number operator:

〈ΨSQ|b†pbp|ΨSQ〉 = 〈0|
(

eSb†pe
−S
)

(

eSbpe
−S
)

|0〉 = sinh2 (αp) . (77)

Any appreciable squeezing (αp 6= 0) creates an exponentially large number
of phonons.

The hopping term in the displaced Hamiltonian contains an exponential
function of Bose operators, whose squeezed form we shall now obtain. Con-

sider the general exponential operator Y = exp
[

∑

q Aq

(

b†−q − bq

)]

where

Aq = A∗
−q are c-numbers. By using standard tricks [10] for exponential

operators, one has:

〈ΨSQ|Y |ΨSQ〉 =
〈

0
∣

∣

∣
exp

[

eS
∑

q

Aq

(

b†−q − bq

)

e−S
]
∣

∣

∣
0
〉

=
〈

0
∣

∣

∣
exp

[

∑

q

Aqe
−αq

(

b†−q − bq

) ]
∣

∣

∣
0
〉

. (78)

By rearranging
∑

q Aqe
−αq

(

b†−q−bq

)

=
∑

q e−αq

(

A∗
qb

†
q−Aqbq

)

we can write:

〈

0
∣

∣

∣
exp

[

∑

q

e−αq

(

A∗
qb

†
q−Aqbq

) ]∣

∣

∣
0
〉

=
∏

q

〈

0
∣

∣

∣
exp

[

e−αq

(

A∗
qb

†
q−Aqbq

)]∣

∣

∣
0
〉

.

(79)
Let us consider each q mode separately. Disentangling the exponential yields:
〈

0
∣

∣

∣
exp

[

e−αq

(

A∗
qb

†
q − Aqbq

)]
∣

∣

∣
0
〉

=
〈

0
∣

∣

∣
exp

[

e−αqA∗
qb

†
q

]

exp
[

−e−αqAqbq

]

× exp
[

−e−2αq |Aq|2 /2
]
∣

∣

∣
0
〉

. (80)

The only non-vanishing contributions from the series expansions of the expo-

nentials of b†q, bq acting on |0〉 comes from the zeroth-order term, and equals 1.
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Therefore,
〈

0
∣

∣

∣
exp
[

e−αq

(

A∗
qb

†
q−Aqbq

)]∣

∣

∣
0
〉

=exp
[

−e−2αq |Aq|2 /2
]

and:

〈ΨSQ|
∑

q

Aq

(

b†−q − bq

)

|ΨSQ〉 =
∏

q

exp
[

−e−2αq |Aq|2 /2
]

= exp

[

−
∑

q

e−2αq |Aq|2 /2

]

. (81)

One important feature of this result is that the argument of the exponential
carries a minus sign, irrespective of the sign of Aq.

Now we can write down the expectation value of the displaced Hamilto-
nian, Eq. (51), taken over the SQ wavefunction. The Holstein term yields

a vanishing contribution (≈
〈

0
∣

∣

∣
b†−q + bq

∣

∣

∣
0
〉

), whatever the value of δq. The

free oscillator term is given by Eq. (77). The bosonic function in the hopping
term, by using Eq. (81), yields:

〈ΨSQ| exp

[

1√
N

∑

q

γqδq

(

eiqRj − eiqRl
)

(

b†−q − bq

)

]

|ΨSQ〉 ≡ τ ({δq} {αq})

= exp

[

− 1

2N

∑

q

γ2
q δ2

q

∣

∣eiqRj − eiqRl
∣

∣

2
e−2αq

]

= exp

{

− 1

N

∑

q

γ2
q δ2

q [1 − cos (qa)] e−2αq

}

, (82)

where we defined a = |Rj − Rl|. For a single-mode case, one would obtain
exp (−4α) in the exponent. In the limit of no squeezing (αq → 0), this
τ ({δq} {αq}) coincides with the quantity τ introduced in Eq. (41). One
sees that the effect of the squeezing is to introduce a factor e−2αq into the
exponent. This reduces its absolute value, so that, for given coupling γq and
displacement δq, τ ({αq}) is larger the stronger is the squeezing.

Now we can write down the effective Hamiltonian for phonon polarons
H∗:

H∗ =
∑

jσ

ε∗jnjσ +
∑

j〈l〉σ
t∗jlc

†
jσclσ + U∗∑

j

nj↑nj↓ +
∑

j〈l〉
V ∗

jlnjnl

+
∑

q

~Ωq

[

sinh2 (αp) +
1

2

]

, (83)

where we defined t∗jl = τ ({αq}) tij as the effective hopping, and now in the
V ∗

jl term the sum over the l sites is not restricted to the nearest neighbours
of site j. While ε∗j , U∗and V ∗

jl are renormalized only by the displacement,
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in the case of t∗ij both displacement and squeezing have an effect , but in
opposite direction. Displacement, tending to reduce t∗ij, is counteracted by
squeezing. The two effects manifest themselves separately in other physical
observables. To have a clear example, let us consider in details the case of
the dimer, where the calculations can be made in explicit form.

7. Correlation functions in the dimer case

The dimer sites are labeled i, j = 1, 2, and, for a non-degenerate orbital,
the filling is limited to N = 1, 2 due to electron–hole symmetry.

The effective Hamiltonian, which contains only fermionic terms, is anal-
ogous to Eq. (2). It can be exactly diagonalized, yielding the eigenvalues
and eigenvectors listed in Table I.

TABLE I

Eigenvalues and eigenvectors of the Hamiltonian of Eq. (2) for N = 1, 2. D is the

degeneracy of the state. The labels a, b indicate bonding and antibonding character.

For N = 2 we have defined EU = 2ε+ U , EV = 2ε+ V , r =
√

(EU − EV )2 + 16t2,

tan θ = −4t/(EU − EV + r).

Filling and energy D S, Sz Eigenvectors

N = 1 E1 = ε − t 2 1
2 , 1

2 |1b, ↑〉 = 1√
2
[c†1↑ + c†2↑]|0〉

1
2 ,− 1

2 |1b, ↓〉 = 1√
2
[c†1↓ + c†2↓]|0〉

N = 1 E2 = ε + t 2 1
2 , 1

2 |1a, ↑〉 = 1√
2
[c†1↑ − c†2↑]|0〉

1
2 ,− 1

2 |1a, ↓〉 = 1√
2
[c†1↓ − c†2↓]|0〉

N = 2 E3 = 1
2 (EU +EV −r) 1 0, 0 |3〉 = 1√

2
[sin θ

(

c†1↓c
†
1↑ + c†2↓c

†
2↑

)

-cos θ
(

c†1↓c
†
2↑ + c†2↓c

†
1↑

)

]|0〉
N = 2 E4,±1 = 2ε + V 2 1, 1 (−1) |4,±1〉 = c†1↑(↓)c

†
2↑(↓)|0〉

N = 2 E4,0 = 2ε + V 1 1, 0 |4, 0〉 = 1√
2

[

c†2↓c
†
1↑ − c†1↓c

†
2↑

]

|0〉
N = 2 E5 = 2ε + U 1 0, 0 |5, 0〉 = 1√

2

[

c†1↓c
†
1↑ − c†2↓c

†
2↑

]

|0〉
N = 2 E6 = 1

2 (EU +EV +r) 1 0, 0 |6〉 = 1√
2
[cos θ

(

c†1↓c
†
1↑ + c†2↓c

†
2↑

)

+sin θ
(

c†1↓c
†
2↑ + c†2↓c

†
1↑

)

]|0〉

The value 〈〈X〉〉|k〉 of the correlation function (CF) related to a operator
X in one of the eigenstates |k〉 of the effective Hamiltonian has to be defined
as follows:

〈〈X〉〉|k〉 ≡ 〈k|〈ΨSQ|eRXe−R|ΨSQ〉|k〉 , |ΨSQ〉 = exp[−α(b†b† − bb)]|0〉ph ,
(84)
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where |0〉ph is the phonon vacuum, and |ΨSQ〉 is the squeezed state, where
α ≡ απ/a is the only non-vanishing αq. The notation 〈〈X〉〉 here indicates a
sequence of two transformations performed on X, and should not be confused
with the Green’s function notation. If X is a product of operators, then
one isolates each operator by inserting 1 =

∑ |k〉〈k|. We need the matrix
elements of niσ, ni, n

2
i and n2

1 −n2
2 over the electronic eigenstates, which are

listed below.
N = 1 (quarter filled orbital).

The states are the bonding and antibonding combinations labelled
|1bσ〉, |1aσ〉 in the Table. The spin- resolved matrix elements are:

〈kσ|niσ|kσ〉 = 1
2 , 〈k,−σ|niσ|k,−σ〉 = 0 , (k = 1b, 1a) ,

〈1σ|n1σ |2σ〉 = 1
2 , 〈1σ|n2σ |2σ〉 = −1

2 , (85)

〈kσ|n2
1σ |kσ〉 = 〈kσ|n2

2σ |kσ〉 = 1
2 , (k = 1b, 1a) ,

〈1σ|n2
1σ |2σ〉 = 1

2 , 〈1σ|n2
2σ |2σ〉 = −1

2 ,

〈kσ|n1σn2σ|kσ〉 = 0 , (k = 1b, 1a) , 〈1σ|n1σn2σ|2σ〉 = 0 . (86)

Summing over spins yields:

〈kσ|ni|kσ〉 = 1
2 , 〈k,−σ|ni|k,−σ〉 = 1

2 , (k = 1, 2; i = 1, 2) ,

〈1σ|n1|2σ〉 = 1
2 , 〈1σ|n2|2σ〉 = −1

2 , (87)

〈kσ|n2
1|kσ〉 = 〈kσ|n2

2|kσ〉 = 1
2 , (k = 1b, 1a) ,

〈1σ|n2
1|2σ〉 = 1

2 , 〈1σ|n2
2|2σ〉 = −1

2 ,

〈kσ|n1n2|kσ〉 = 0 , (k = 1b, 1a) , 〈1σ|n1n2|2σ〉 = 0 , (88)

〈kσ|n2
1n2|kσ〉 = 〈kσ|n1n

2
2|kσ〉 = 0 , 〈kσ|n3

1|kσ〉 = 1 (k = 1, 2) . (89)

N = 2 (half filled orbital).

For the spin-resolved niσ we have:

〈3|n1σ |3〉 =
1

2
, 〈3|n1σ |5〉 =

sin θ

2
, 〈3|n1σ |6〉 = 0 ,

〈3|n1σ |4, σ〉 = 0 , 〈3|n1↑|4, 0〉 = −cos θ

2
〈3|n1↓|4, 0〉 =

cos θ

2
, (90)

〈3|n2σ |3〉 =
1

2
, 〈3|n2σ |5〉 = −sin θ

2
〈3|n2σ |6〉 = 0 ,

〈3|n2σ |4, σ〉 = 0 , 〈3|n2↑|4, 0〉 =
cos θ

2
, 〈3|n2↓|4, 0〉 = −cos θ

2
, (91)

〈4, σ|niσ |4, σ〉=1 , 〈4,−σ|niσ |4,−σ〉=0 , 〈4, σ|niσ |5〉=0 〈4, σ|niσ |6〉=0 ,
(92)
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〈4, 0|niσ |4, 0〉 =
1

2
, 〈4, 0|niσ |4,±σ〉 = 0 ,

〈4, 0|n1↑|6〉 =
sin θ

2
, 〈4, 0|n1↓|6〉 = −sin θ

2
,

〈4, 0|n2↑|6〉 = −sin θ

2
, 〈4, 0|n2↓|6〉 =

sin θ

2
, (93)

〈5|niσ |5〉 =
1

2
〈5|n1σ |6〉 =

cos θ

2
〈5|n2σ |6〉 = −cos θ

2
.

For the total charges on the sites ni = ni↑ + ni↓ we have:

〈3|n1|3〉 = 1 , 〈3|n1|4〉 = 0 , 〈3|n1|5〉 = sin θ , 〈3|n1|6〉 = 0 , (94)

〈3|n2|3〉 = 1 , 〈3|n2|4〉 = 0 , 〈3|n2|5〉 = − sin θ , 〈3|n2|6〉 = 0 , (95)

〈4, σ|ni|4, σ〉 = 1 , 〈4, σ|ni|5〉 = 0 , 〈4, σ|ni|6〉 = 0 ,

〈4, 0|ni|4, 0〉 = 1 , 〈4, 0|ni|5〉 = 0 , 〈4, 0|ni|6〉 = 0 , (96)

〈5|ni|5〉 = 1 , 〈5|n1|6〉 = cos θ , 〈5|n2|6〉 = − cos θ . (97)

To evaluate the matrix elements of n2
j we use the decomposition of the

identity, i.e. 〈i|n2
j |i〉 ≡ 〈i|∑k nj|k〉〈k|nj |i〉, yielding:

〈3|n2
1|3〉 = 1 + sin2 θ , 〈3|n2

1|4, σ, 0〉 = 0 , 〈3|n2
1|5〉 = 2 sin θ , 〈3|n2

1|6〉 = 0 ,
(98)

〈3|n2
2|3〉 = 1 + sin2 θ , 〈3|n2

2|4, σ, 0〉 = 0 , 〈3|n2
2|5〉 = −2 sin θ , 〈3|n2

2|6〉 = 0 ,
(99)

〈4, σ|n2
i |4, σ〉 = 1 , 〈4, σ|n2

i |5〉 = 0 , 〈4, σ|n2
i |6〉 = 0

〈4, 0|n2
i |4, 0〉 = 1 , 〈4, 0|n2

i |5〉 = 0 , 〈4, 0|n2
i |6〉 = 0 , (100)

〈5|n2
i |5〉 = 2 , 〈5|n2

1|6〉 = 2cos θ , 〈5|n2
2|6〉 = −2 cos θ . (101)

The correlation functions are the quantities accessible to experimental
measurement. We shall show that some of them depend only on the dis-
placement, and other ones only on the squeezing.

7.1. Correlation between site deformations

The correlation between the site deformations is a quantity depending
only on the displacement parametrs. Its evaluation will show that the com-
plete Lang–Firsov transformation (δ = 1) leads to wrong results. To study
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that problem in our general case of incomplete (δ 6= 1) transformation, we
shall evaluate

〈〈u2(t)u1(0)〉〉|k〉=〈k|〈ΨSQ|eR+RseiHt/~u2e
−iHt/~u1e

−(R+Rs)|ΨSQ〉|k〉 .
(102)

It is convenient to write:

〈〈u2(t)u1(0)〉〉|k〉=〈k|
∑

p

〈ΨSQ|uT
2 |ΨSQ〉|p〉〈p|〈ΨSQ|uT

1 |ΨSQ〉ei(E∗
p−E∗

k)t/~|k〉 ,

(103)
where {|p〉} is the set of eigenstates of H∗. By expressing u1, u2 in terms of

b†0, b0 and b†π/a, bπ/a as:

u1 = L
2 (b†

0 + b0 + b†
π/a + bπ/a) u2 = L

2 (b†
0 + b0 − b†

π/a − bπ/a) (104)

transforming u1,2 by exp
(

R0 + Rπ/a

)

and applying the squeezing we find:

〈ΨSQ|e(R0+Rπ/a)u1e
−(R0+Rπ/a)|ΨSQ〉 = −Lγ0

[

n1 + n2 + δπ/a(n1 − n2)
]

,

〈ΨSQ|e(R0+Rπ/a)u2e
−(R0+Rπ/a)|ΨSQ〉 = −Lγ0

[

n1 + n2 − δπ/a(n1 − n2)
]

(105)

whence it follows 〈u1〉 = 〈u2〉 for any |k〉 as 〈k|n1 −n2|k〉 = 0. For N = 1 in
the ground state |1bσ〉 we have:

〈〈u2(t)u1(0)〉〉|1bσ〉 = L2γ2
0

[

1 − δ2
π/ae

−i(2t∗)t/~

]

(106)

while for N = 2 and in the different eigenstates which can be the ground
state, we get:

〈〈u2(t)u1(0)〉〉|3〉 = 4L2γ2
0

(

1 − δ2
π/a sin2 θe−i(E∗

CT −E∗
Sb)t/~

)

,

〈〈u2(t)u1(0)〉〉|4〉 = 4L2γ2
0 ,

〈〈u2(t)u1(0)〉〉|5〉 = 4L2γ2
0

×
[

−δ2
π/a sin2 θe−i(E∗

Sb−E∗
CT )t/~ − δ2

π/a cos2 θe−i(E∗
Sa−E∗

CT )t/~

]

. (107)

Notice that forcing δπ/a = 1 does not describe correctly the correlated dy-
namics of the site deformations. In particular, at t = 0, both for N = 1 and
N = 2, the correlation functions, when δ-depending, either vanish, or are
minimal, if δπ/a = 1.

To make more explicit the role of δπ/a in coherently propagating the
deformation between the sites, one can look at the equal-time quantity
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〈〈u2(0)u1(0)〉〉|k〉−〈〈u2(0)〉〉〈〈u1(0)〉〉|k〉 which vanishes in the state |4〉, while
in the other ones reads:

〈〈u2(0)u1(0)〉〉|1b〉 − 〈〈u2(0)〉〉〈〈u1(0)〉〉|1b〉 = −L2γ2
0δ2

π/a

〈〈u2(0)u1(0)〉〉|3〉 − 〈〈u2(0)〉〉〈〈u1(0)〉〉|3〉 = −4L2γ2
0δ2

π/a sin2 θ

〈〈u2(0)u1(0)〉〉|5〉 − 〈〈u2(0)〉〉〈〈u1(0)〉〉|5〉 = −4L2γ2
0δ2

π/a . (108)

7.2. Electron–phonon correlation functions

Those functions were introduced in Ref. [11] for the case of one electron
in the lattice. Besides having an intuitive meaning, these CF’s enter the
evaluation of the optical conductivity due to charges on the i sites σxx ≈
∑

i〈〈ni
∏

q
Y (b†qbq)〉〉, where Y (b†qbq) is a function of the phonon q-mode

occupation numbers, whose explicit form can be found in Ref. [12]. For the
dimer, the only wavector yielding a non-vanishing contribution is q = π/a

so that the above expression reduces to σxx ≈ 〈〈n1(b
†
1b1 − b†2b2〉〉.

In our case the inter-site electron–phonon correlation function is defined
as (i, j = 1, 2):

F ep
ij|k〉 ≡ 〈k|〈ΨSQ|eRnib

†
jbje

−R|ΨSQ〉|k〉

= 〈k|〈ΨSQ|(eRnie
−R)(eRb†jbje

−R)|ΨSQ〉|i〉 . (109)

We need the phonon operators for each site, which are obtained by inverting

the definitions of b†q, bq. Then

b†1b1 = 1
4 [b†0b0 + b†π/abπ/a + (b†0bπ/a + b†π/ab0)]

b†2b2 = 1
4 [b†0b0 + b†π/abπ/a − (b†0bπ/a + b†π/ab0)] . (110)

Applying the displacement transformation yields:

eRπ/ab†
π/a

bπ/ae
−Rπ/a = b†

π/a
bπ/a − δπ/aγ0(b

†
π/a

+ bπ/a)(n1 − n2)

+δ2
π/aγ

2
0(n1 − n2)

2 , (111)

eR0b†0b0e
−R0 = b†0b0−γ0(b

†
0+b0)(n1+n2)+γ2

0(n1 + n2)
2 , (112)

eR0b†0e
−R0eRbπ/ae

−R = b†0bπ/a − γ0bπ/a(n1 + n2) − δπ/aγ0b
†
0(n1 − n2)

+δπ/aγ
2
0(n1 − n2)

2 , (113)

eR0b†π/ae
−R0eRb0e

−R = b†π/ab0 − γ0b
†
π/a(n1 + n2) − δπ/aγ0b0(n1 − n2)

+δπ/aγ
2
0(n1 − n2)

2 . (114)
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When evaluated in the squeezed state, the above results reduce to:

〈ΨSQ|eRπ/ab†π/abπ/ae
−Rπ/a |ΨSQ〉 = Sh2(2α) + δ2

π/aγ
2
0(n1 − n2)

2

〈ΨSQ|eR0b†0b0e
−R0 |ΨSQ〉 = γ2

0(n1 + n2)
2

〈ΨSQ|eR0eRπ/a(b†π/abπ/ab
†
0b0e

−Rπ/ae−R0 |ΨSQ〉 = 2δπ/aγ
2
0(n2

1 − n2
2) . (115)

The local deformations in the squeezed state therefore result in:

〈ΨSQ|b†1b1|ΨSQ〉 =
Sh2(2α)

4
+

γ2
0

4

[

n2
1(1+δπ/a)

2+n2
2(1−δπ/a)

2+2n1n2(1−δ2
π/a)
]

,

〈ΨSQ|b†2b2|ΨSQ〉 =
Sh2(2α)

4
+

γ2
0

4

[

n2
1(1−δπ/a)

2+n2
2(1+δ)2+2n1n2(1−δ2

π/a)
]

,

(116)

We can now evaluate the correlation function in each eigenstate |i〉.
N = 1

As the state |1aσ〉 is always higher in energy than |1bσ〉, we shall consider
only the latter.

F ep
12|1bσ〉 ≡ Sh2(2α)

4
〈1bσ|n1|1bσ〉

+
γ2
0

4

[

(1 − δπ/a)
2〈1bσ|

∑

i=1b,1a

∑

τ

n1|iτ〉〈iτ |n2
1|1bσ〉

+(1 + δπ/a)
2〈1bσ|

∑

i=b1,1a

∑

τ

n1|iτ〉〈iτ |n2
2|1bσ〉

+2(1 − δ2
π/a)〈1bσ|

∑

i=1b,1a

∑

τ

n2
1|iτ〉〈iτ |n2|1bσ〉

]

, (117)

F ep
12|1bσ〉 ≡ Sh2(2α)

4
+

γ2
0

4
(1 − δπ/a)

2 . (118)

N = 2

In the state |3〉 we have:

F ep
12|3〉 ≡

Sh2(2α)

4
〈3|n1|3〉 +

γ2

4

[

(1 − δπ/a)
2〈3|

∑

i=3,5

n1|i〉〈i|n2
1|3〉

+(1+δπ/a)
2〈3|

∑

i=3,5

n1|i〉〈i|n2
2|3〉+2(1−δ2

π/a)〈3|
∑

i=3,5

n2
1|i〉〈i|n2|3〉

]

.(119)

Only the states |3〉 and |5〉 appear in the decomposition of the identity
because |4, σ〉, |4, 0〉 and |6〉 have vanishing matrix elements with |3〉. By
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using the matrix elements as evaluated above we obtain:

F ep
12|3〉 =

Sh2(2α)

4
+

γ2

4

[

(1 − δπ/a)
2(1 + 3 sin2 θ)

+(1 + δπ/a)
2(1 − sin2 θ) + 2(1 − δ2

π/a)(1 − sin2 θ)
]

,

F ep
12|3〉 =

Sh2(2α)

4
+ γ2

[

1 − δπ/a(2 − δπ/a) sin2 θ
]

. (120)

One can verify that F ep
21|3〉 = F ep

12|3〉, so that one can drop the site indexes.

By analogous calculations one finds for the degenerate |4〉 eigenstates:

F ep
12|4,σ〉 = F ep

12|4,0〉 =
Sh2(2α)

4
+ γ2 (121)

while for the state |5〉 one has to evaluate:

F ep
12|5〉 ≡ Sh2(2α)

4
〈5|n1|5〉

+
γ2

4

[

(1 − δπ/a)
2〈5|

∑

i=3,5,6

n1|i〉〈i|n2
1|5〉

+(1 + δπ/a)
2〈5|

∑

i=3,5,6

n1|i〉〈i|n2
2|5〉

+2(1 − δ2
π/a)〈5|

∑

i=3,5,6

n2
1|i〉〈i|n2|5〉

]

(122)

yielding

F ep
12|5〉 =

Sh2(2α)

4
+ γ2(1 − δπ/a)

2 . (123)

Notice that, in evaluating F ep
12|5〉 one must include in the decomposition of

the identity also the states |6〉, because |5〉, differently from |3〉, is connected
to |6〉 by ni, n

2
i .

The on-site electron–phonon CF F ep
11|k〉 ≡ 〈n1b

†
1b1〉 is evaluated in the

same way, with the site-independent results:

N = 1

F ep
11|1bσ〉 =

Sh2(2α)

4
+

γ2
0

4
(1 + δπ/a)

2 (124)
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N = 2

F ep
11|3〉 =

Sh2(2α)

4
+ γ2

0

[

1 + δπ/a(2 + δπ/a) sin2 θ
]

, (125)

F ep
11|4,σ〉 = F ep

11|4,0〉 =
Sh2(2α)

4
+ γ2

0 , (126)

F ep
11|5〉 =

Sh2(2α)

4
+ γ2

0(1 + δ2
π/a) . (127)

From the results above, the optical conductivity is linear in δπ/a and inde-
pendent from squeezing.

7.3. The Debye–Waller factor

Let us now consider an important quantity depending only on the squeez-
ing. Following Ref. [13] we define the Debye–Waller factor FDW as FDW ≡
〈〈u2

i 〉〉− 〈〈ui〉〉2. It is actually a site-independent quantity, as we shall show.

We shall define for short the characteristic length L ≡
√

~/2MΩ so that:

ui = (L/2)
[

b†0 + b0 + (−1)i+1(b†π/a + bπ/a)
]

, (i = 1, 2) . (128)

Then one finds:

〈〈u1〉〉 = −γ0L
[

(1 + δπ/a)〈
∑

s

n1σ〉 + (1 − δπ/a)〈
∑

s

n2σ〉
]

〈〈u2〉〉 = −γ0L
[

(1 − δπ/a)〈
∑

s

n1σ〉 + (1 + δπ/a)〈
∑

s

n2σ〉
]

. (129)

The expression of 〈〈u2
i 〉〉 can be worked out by noting that

〈ΨSQ|b†b†|ΨSQ〉 = 〈ΨSQ|bb|ΨSQ〉 = Sh(4α)/2

yielding, for i = 1, 2:

〈ΨSQ|u2
i |ΨSQ〉 = L2[Sh(4α) + Sh2(2α) + 1]/2

+L2γ2

[

〈

∑

σ

(n1σ + n2σ)
〉2

+ δ2
π/a

〈

∑

σ

(n1σ − n2σ)
〉2
]

(130)

so that:

〈〈u2
1〉〉|k〉 − 〈〈ui〉〉2|k〉 =

L2

2

[

e2αSh(2α) + 1
]

+(−1)iL2

[

〈k|
∑

s

(n1σ − n2σ)|k〉〈k|
∑

s

(n1σ + n2σ)|k〉
]

, (131)
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where |k〉 is an eigenstate of H∗. As 〈k|∑s(n1σ−n2σ)|k〉 vanishes identically,
we finally obtain the site-independent result:

FDW =
L2

4
[1 + e4α] . (132)

7.4. Average vibrational energy

The average vibrational energy 〈EΩ〉 is related to the Debye–Waller fac-
tor, and, following [13] can be defined as:

〈EΩ〉 ≡
M

2

〈〈

(

duHı(t)

dt

)2
〉〉

, (133)

where ui(t) = eiHt/~uie
−iHt/~ is the Heisenberg representation of the lo-

cal deformation. Its equation of motion is actually governed by only the
phononic part Hph + Hel−ph of the total bare Hamiltonian of Eq. (1)

i~
dui(t)

dt
= [ui(t),H] = [ui(t),Hph + Hel−ph] . (134)

By writing ui as in Eq. (128) one finds:

[

dui(t)

dt

]2

=

(

LΩ

2

)2
[

e−iHt/~(b†0 − b0 + b†π/a − bπ/a)
2e−iHt/~

]

. (135)

The transformation exp(R0 +Rπ/a) changes H into HT with displaced Bose
operators, so that the Eq. (135) reads:

(

2

LΩ

)2

e(R0+Rπ/a)

[

dui(t)

dt

]2

e−(R0+Rπ/a)

= e−iHT t/~ [ b†0b
†
0 + b0b0 − 2b†0b0 − 1 + b†π/ab

†
π/a + bπ/abπ/a

−2b†π/abπ/a − 1 + 2(b†0 − b0)(b
†
π/a − bπ/a) ] e−iHT t/~ . (136)

Finally, when evaluated over the combined squeezed- phonon and electronic
state defined by HT |ΨSQ〉|k〉 = E∗

k |ΨSQ〉|k〉 the Eq. (136) yields, after ex-
plicitating L:

〈EΩ〉 =
~Ω

16

[

1 + e4α
]

(137)

which is proportional to the Debye–Waller factor.
Let us now consider quantities depending on both the displacement and

the squeezing.
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7.5. The longitudinal and transverse magnetic correlation functions

The longitudinal magnetic CF 〈〈Sz
1Sz

2〉〉 vanishes for N = 1, while for
N = 2 by writing Sz

i = (ni↑ − ni↓) /2 we get, for the state |3〉

〈〈Sz
1Sz

2〉〉|3〉 =
1

4
〈3| (n1↑ − n1↓) |4, 0〉〈4, 0| (n2↑ − n2↓) |3〉 = −cos2 θ

4
(138)

while

〈〈Sz
1Sz

2〉〉|4σ〉 =
1

4
, 〈〈Sz

1Sz
2〉〉|40〉 = −cos2 θ

4
, 〈〈Sz

1Sz
2〉〉|5〉 = 0 . (139)

The transverse magnetic CF 〈〈S−
1 S+

2 〉〉for N = 1 vanishes. For N = 2 it
also vanishes in the states |4, σ〉 and |5〉 while

〈3|S−
1 S+

2 |3〉 = −cos2 θ

2
, 〈4, 0|S−

1 S+
2 |4, 0〉 =

1

2
.

Those functions depend on the combined effect of displacement and squeez-
ing, which is contained in the parameter θ, defined as in Table I.

7.6. The charge transfer correlation function

Following Ref. [8] the charge transfer CF is conveniently defined as:

F ct
|i〉 ≡

〈i|〈ΨSQ|eR(n1 − n2)(u1 − u2)e
−R|ΨSQ〉|i〉

√

〈i|〈ΨSQ|eR(u1 − u2)
2e−R|ΨSQ〉|i〉

(140)

or, expressing u1 − u2 throughthe b†π/a, bπ/a operators :

F ct
|i〉 ≡

〈i|〈ΨSQ|eRπ/a(n1 − n2)(b
†
π/a + b

π/a
)e−Rπ/a |ΨSQ〉|i〉

√

〈i|〈ΨSQ|eRπ/a(b†
π/a

+ bπ/a)2e
−Rπ/a |ΨSQ〉|i〉

. (141)

Substituting eRπ/a(b†π/a + bπ/a)e
−Rπ/a = b†π/a + bπ/a − 2δπ/aγ (n1 − n2)in the

numerator of F ct we have:

〈ΨSQ|(n1−n2)[e
Rπ/a(b†π/a+bπ/a)e

−Rπ/a ]|ΨSQ〉 = −2δπ/aγ0(n1−n2)
2 . (142)

In the denominator we develop (b† + b)2 = (b†)2 + (b)2 + 2b†b + 1, so that:

eRπ/a(b†π/a + bπ/a)
2e−Rπ/a = (b†π/a + bπ/a)

2 − 4δπ/aG(b†π/a + bπ/a) + 4δ2
π/aG

2 .

(143)
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In the squeezed state Eq. (143) yields

〈ΨSQ|eRπ/a(b†π/a + bπ/a)
2e−Rπ/a |ΨSQ〉 = 2Sh2(2α) + 1 + 4δ2

π/aG
2 . (144)

Now we can re- write the CF of Eq. (141) as

F ct
|i〉 ≡

−
√

2δπ/aγ0〈i|(n1 − n2)
2|i〉

√

Sh2(2α) + 1/2 + 2δ2
π/aγ

2
0〈i|(n1 − n2)2|i〉

. (145)

The evaluation of F ct requires therefore the knowledge of the matrix ele-
ments of (n1−n2)

2. By the usual decomposition of the identity one obtains:

for N = 1

〈iσ|(n1 − n2)
2|iσ〉 = 1 (i = 1, 2) (146)

so that

F ct
|1σ〉 ≡

−
√

2δπ/aγ
√

Sh2(2α) + 1/2 + 2δ2
π/aγ

2
=

−2δπ/aγ
√

Ch(4α) + 4δ2
π/aγ

2
. (147)

for N = 2

〈3|(n1−n2)
2|3〉 = 4 sin2 θ , 〈4|(n1−n2)

2|4〉 = 0 , 〈5|(n1−n2)
2|5〉 = 4 .

(148)
Finally we obtain the explicit form of the charge transfer CF:

F ct
|3〉 ≡ −4

√
2δπ/aγ0

sin2 θ
√

Sh2(2α) + 1/2 + 8δ2
π/aγ

2
0 sin2 θ

= −
16δπ/aγ0 sin2 θ

√

Ch(4α) + (4δπ/aγ0 sin θ)2
, (149)

F ct
|5〉 ≡ −4

√
2δπ/aγ0

1
√

Sh2(2α) + 1/2 + 8δ2
π/aγ

2
0

= −
16δπ/aγ0

√

Ch(4α) + (4δπ/aγ0)2
(150)

while F ct
|4〉 = 0. Once more, this quantity depends on both displacement and

squeezing through ϑ.
The quantitative behaviour of the CF’s evaluated above is discussed in

Ref. [2].
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8. Summary of phonon polaron discussion
and introduction to the spin polarons

Let us summarize the main points of this first part of the Lectures. We
have introduced a sequence of displacement and squeezing transformations
(in this order) as a general non-perturbative way to transform an interacting
boson-fermion Hamiltonian into an effective one with only fermionic opera-
tors. The effect of the bosons results in a renormalization of the electronic
interactions, and possibly in the presence of electronic terms which where
absent in the electron–only part of the original Hamiltonian. From the for-
mal point of view we have stressed two points: first, the dependance of
the parameters characterizing the transformations on the wavevectors of the
bosonic modes is a basic feature of the physics of the problem, and its ne-
glect is likely to lead to questionable results. Second, whenever feasible, the
parameters values have to be determined variationally, instead of being set
by some diagonalization requirement. By way of application we have consid-
ered the case where the bosons are phonons. We have produced an effective
polaronic Hamiltonian, containing a long range Coulomb interaction term
which was absent from electronic part of the original Hamiltonian. Finally,
we have taken the dimer and the four-site chain as simple concrete systems
where to apply the general formalism, showing how one gets quantities which
can be experimentally tested.

Besides the phonons, electrons in solids can couple to other bosonic exci-
tations: we shall now consider the case of coupling to magnetic fluctuations,
which, in the spin wave formalism, can be described as a special kind of
boson. If the magnetic properties can be described by a Heisenberg term

JH
∑

i,〈j〉 Si · Sj = JH
∑

i,〈j〉

[

Sz
i Sz

j + 1
2

(

S+
i S−

j + S−
i S+

j

)]

one calls lon-

gitudinal the fluctuations related to Sz
i Sz

j and transverse those related to

S+
i S−

j . Spin polarons due to longitudinal fluctuations have been considered

in the Spin Bag model [14] in connection with the high Tc superconductors,
but we shall not discuss them. Our interest will be centred on the spin po-
larons due to transverse fluctuations. There are two main families of models,
i.e. double band and single band ones, and we shall deal with them in turn.



Effective Hamiltonians for Phonon and Spin Polarons 3623

9. Two-band (Kondo–Heisenberg) model for spin polarons

This model is based on the electronic structure of the High-Tc Supercon-
ductors (HTS) but it applies also to other systems, e.g. the Heavy Fermion
(HF ) and the Colossal Magnetoresistance (CMR) Systems. In all those ma-
terials, there are moment-bearing ions (respectively, Cu2+, rare earth ions,
and Mn3+) and itinerant electrons hopping in hybridized bands. The dy-
namics of the electrons is conditioned by the magnetic excitations, which,
if the local moments have long range order, are spin waves. In the case of
CMR there are also very important phononic interactions, which by them-
selves may create phononic polarons, but we shall consider here only the
magnetic polarons for sake of simplicity.

Two are the basic ingredients for the Heisenberg–Kondo Hamiltonian:
first, a set of magnetic ions whose local moments, of length S, interact-
ing between themselves through a Heisenberg term and, second, itinerant

fermions (represented by c†iσ , ciσ operators) whose spin si = [c†i↑ci↓, c
†
i↓ci↑, (

ni↑ − ni↓)/2] interacts with a local moment through a Kondo-type term
JK
∑

i si ·Si. The Heisenberg term is due to superexchange involving bridg-
ing Oxygen anions in HTS and CMR , and due to the indirect RKKY in-
teraction in HF. The fermion band arises through hybridization of cation 3d
with anion 2p orbitals (in the case of HTS and CMR) or of 3d and 4f or 5f
orbitals (for HF). The total Kondo–Heisenberg (or two-band) Hamiltonian
is:

H =
∑

iσ

εiniσ +
∑

i,〈j〉σ
tijc

†
iσcjσ + U

∑

i

ni↑ni↓

+
∑

i,〈j〉
Vi,jnini + JK

∑

i

si · Si + JH

∑

i,〈j〉
Si·Sj , (151)

where
∑

i,〈j〉 means summing over the z sites labelled by j which are nearest
neighbours of i, and then summing over all i’s. The spin polaron physics
comes from the Kondo term. The type of coupling can be either antiferro-
magnetic (AF), as in HTSC and HF, or ferromagnetic, as in CMR. In both
cases, this term forces the electron spin si to have a well defined direction
with respect to the local moment Si. Consider now the case where the lo-
cal moments have a long range antiferromagnetic (AF) order of the Ne’el
type, i.e. such that up and down moments occupy two interpenetrating sub-
lattices, each up moment on sublattice A having as nearest neighbours only
down moments on sublattice B. Here ”long range” includes also the situation
of finite size, long lived AF fluctuation where the order extends over many
lattice spacings, and the lifetime of such an “AF droplet” is long compared
with the bare electron hopping time ≈ t−1

ij . If the moments are frozen, an
electron on site i, where local moments are up, can hop to site j, where they
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are down, only if allowed by the Kondo term on j EK
j = JKsj · Sj , which

implies reversing Sj at the cost of the Heisenberg energy JHSi·Sj . If the
magnetic energy cost exceeds the energy gain on delocalization, the electron
is trapped at site i. Conversely, if the amplitude of the local moment on j
is reduced, at least partially, by effect of a spin wave, the magnetic energy
cost decreases and the hopping may become allowed. The reciprocal picture,
emphasizing the itineracy of the fermions, is that the electron, on moving,
forces the local moments to assume, with respect to its spin si, the direction
imposed by the Kondo term, thereby frustrating the AF arrangement at the
price of the Heisenberg energy. In both cases, the fermion motion, if any,
happens by creating a stream of spin waves, in close analogy to the phonon
case, where the fermion creates a stream of phonons when hopping around
in a deformable lattice.

The case of the Kondo-Heisenberg Hamiltonian in the absence of long
range magnetic order is very interesting, giving rise to much of the HF and
CMR physics but we shall not discuss it.

As a first step to formalize the spin polarons in the case of AF order of
the local moments, let us diagonalize the Heisenberg term, by representing
the local moments operators in the Holstein–Primakoff approximation. We
have to distinguish between up (i-sites) and down (j-sites) sublattice, so

that the operators bi,(j)b
†
i,(j) are then defined through:

S+
i ≡

√
2S

√

1 − b†i bibi ∼
√

2Sbi , S+
j ≡

√
2Sb†j

√

1 − b†jbj ∼
√

2Sb†j ,

S−
i ≡

√
2Sb†i

√

1 − b†ibi ∼
√

2Sb†i , S−
j ≡

√
2S
√

1 − b†jbjbj ∼
√

2Sbj ,

Sz
i = S − b†ibi , Sz

j = −(S − b†jbj) . (152)

We then write Sz
i Sz

j + 1
2

(

S+
i S−

j + S−
i S+

j

)

in terms of bi,(j)b
†
i,(j), yielding:

Si·Sj = −S2 + S
(

b†ibi + b†jbj

)

+ S
(

bibj + b†i b
†
j

)

− b†ibib
†
jbj . (153)

The last term represents interactions of moment deviations on different sites,
and will be neglected. Passing to the spin wave operators in the reciprocal

space through bj = N−1/2
∑

q bqe
iqRj and b†j = N−1/2

∑

q b†qe−iqRj yields:

∑

i〈j〉
Si·Sj =−NzS2+

S

2

∑

q

(

b†qbq + b†−qb−q

)

+Sz
∑

q

(

b†qb
†
−q + bqb−q

)

cos (qδ) ,

(154)
where z is the number of nearest neighbours, and δ = |Ri −Rj | is the lat-
tice parameter. The last term in Eq. (154) is an old friend, i.e. the type of
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non-linear boson interaction which is diagonalized by a squeezing transfor-
mation (see Eq. (75)). Let us then follow the squeezing formalism, which
is of course equivalent to the textbook Bogolyubov transformation. The

appropriate squeezing operator is exp (T ) = exp
[

∑

q ϑq

(

b†qb
†
−q − bqb−q

)]

assuming ϑq ≥ 0. Notice the positive sign in the exponent, opposite to the
one in the phonon case. The reason is that the spin wave operators are not
true boson operators: the number of bosons which can “condense” is limited
by the length of the local moment, because the maximum number of spin
deviations on a site is such to reverse the local magnetic moment. Therefore
the squeezing can not expand the indeterminacy on the moment amplitude
indefinitely (as, at least in principle, can be done for deformations). The
present choice of sign for T enhances the indeterminacy on the conjugated

momentum b†q − b−q, which has no intrinsic limitations. The squeezed spin

wave operators a
(†)
q = eT b

(†)
q e−T can be evaluated by the equation of motion

technique, yielding:.

a†q = b†q cosh (ϑq) − b−q sinh (ϑq) , aq = bq cosh (ϑq) − b†−q sinh (ϑq) ,

b†q = a†q cosh (ϑq) + a−q sinh (ϑq) , bq = aq cosh (ϑq) + a†−q sinh (ϑq) .

(155)

Imposing the vanishing of all the anharmonic terms in the squeezed Hamilto-
nian, one arrives at the diagonalization condition tanh(2ϑq) = −2z cos (qδ).
The AF Heisenberg Hamiltonian diagonalized by squeezing reads:

JH

∑

i,〈j〉
eT Si·Sje

−T = −JHSN
(

1
2 + Sz

)

+JHS
∑

q

√

1 − 4z2 cos2 (qδ)
(

a†qaq + 1
2

)

. (156)

Eq. (156) identifies the AF spin wave frequency ~Ωq =JHS
√

1−4z2 cos2(qδ).
The diagonalization of the Heisenberg term in the reciprocal space sug-

gests to Fourier transform also the bosonic contributions in the Kondo term.
We first distinguish the parts referring to the up (A) and down (B) sublat-
tices: JK

∑

m sm ·Sm = JK
∑

i∈A si ·Si +JK
∑

j∈B sj ·Sj and then use the
Holstein–Primakoff representation for the local moments, yielding:

si · Si = 1
2

(

S − b†i bi

)

(ni↑ − ni↓) + 1
2

(

bic
†
i↓ci↑ + b†i c

†
i↑ci↓

)

,

sj · Sj = −1
2

(

S − b†jbj

)

(nj↑ − nj↓) + 1
2

(

b†jc
†
j↓cj↑ + bjc

†
j↑cj↓

)

. (157)

We have now to go to the reduced Brillouin zone (RBZ) in reciprocal space,
because each sublattice has only N/2 sites. If not explicitly stated otherwise,



3626 M. Acquarone

from now on the spin wave wavevectors will be restricted to the RBZ. Let us
consider first the longitudinal terms on A, yielding (with ni↑ − ni↓ = 2sz

i ):

∑

i∈A

(

S − b†i bi

)

sz
i = S

∑

i∈A

sz
i −

(

2

N

)

∑

p,q∈RBZ

b†qbpe
−i(q−p)Risz

i . (158)

Now, it is reasonable to assume that the itinerant particles do not create a
magnetic sublattice with a periodicity different from the one imposed by the
AF order of the local moments, so that one can approximate on the up (A)
sublattice sz

i = 〈s〉 independently of Ri. Then:
∑

i

(

S − b†i bi

)

sz
i =

N

2
S 〈s〉 − 〈s〉

∑

q

b†qbq . (159)

The evaluation of
∑

j

(

S − b†jbj

)

sz
j yields the same result because on the

down (B) sublattice sz
j = −〈s〉 . We get an additional contribution to the

local moment AF Hamiltonian, which modifies the diagonalization condition
and the effective frequency into:

tanh (2ϑq) = −2JHSz cos (qδ)

JHS − JK 〈s〉 ,

~Ωq = (JHS − JK 〈s〉)

√

1 −
[

2JHSz cos (qδ)

JHS − JK 〈s〉

]2

. (160)

One might also treat the term b†qbqs
z
i of Eq. (158) in mean field approxima-

tion, i.e. introducing a reciprocal influence of the local moment deviation
and sz

i . We are not interested here in developing this aspect of the problem.

Introducing the spin flip operators for the itinerant particles sσ
i ≡ c†iσci−σ

(σ = ± when used as in sσ
i ) we write the transverse part of the Kondo term

on the two sublattices as:

1

2

∑

i∈A,σ=±
sσ
i S−σ

i =
1

2

√

2

N

∑

q

[

b†q
∑

i

s+
i e−iqRi + b−q

∑

i

s−i e−iqRi

]

, (161)

1

2

∑

j∈B,σ=±
sσ
j S−σ

j =
1

2

√

2

N

∑

q



b†q
∑

j

s−j e−iqRj + b−q

∑

j

s+
j e−iqRj



 .

(162)
Introducing the AF spin wave operators and rearranging yields:

1

2

∑

i∈A,σ=±
sσ
i S−σ

i =
1

2

√

2

N

∑

q

a†q
∑

i

[

cosh (ϑq) s+
i + sinh (ϑq) s−i

]

e−iqRi
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+
1

2

√

2

N

∑

q

a−q

∑

i

[

sinh (ϑq) s+
i + cosh (ϑq) s−i

]

e−iqRi , (163)

1

2

∑

j∈B,σ=±
sσ
j S−σ

j =
1

2

√

2

N

∑

q

a†q
∑

j

[

sinh (ϑq) s+
j + cosh (ϑq) s−j

]

e−iqRj

+
1

2

√

2

N

∑

q

a−q

∑

j

[

cosh (ϑq) s+
j + sinh (ϑq) s−j

]

e−iqRj . (164)

Physically, these are the terms which we expect to control the dynamics
of the carriers. In analogy to what we did for the phonon case, we shall
try to get rid of this fermion- boson coupling terms by mean of a “displace-
ment” transformation, in principle different on each sublattice, but formally
identical. Let us introduce two generators DL(L = A,B and l ∈ L):

DL =

√

2

N

∑

q

δq

(

JK

~Ωq

)

(

a†q − a−q

)

∑

l

(

s+
l + s−l

)

e−iqRl . (165)

The displacement parameters {δq} should not to be confused with the lattice
parameter δ = |Ri − Rj |. The displaced Bose operators on each sublattice

A(†)
qL = eDL

a
(†)
q e−DL

(l = A,B) are obtained from the commutators
[

DL, a†q
]

= −δq

(

JK

~Ωq

)

√

2

N

∑

l

(

s+
l + s−l

)

eiqRl ,

[

DL, aq

]

= −δq

(

JK

~Ωq

)

√

2

N

∑

l

(

s+
l + s−l

)

e−iqRl (166)

in the form:

A†
qL = a†q − δq

(

JK

~Ωq

)

√

2

N

∑

l∈L

(

s+
l + s−l

)

eiqRl ,

A−qL = a−q − δq

(

JK

~Ωq

)

√

2

N

∑

l∈L

(

s+
l + s−l

)

eiqRl . (167)

We can now obtain the displaced free oscillator term:

eDL

[

∑

q

~Ωq

(

a†qaq +
1

2

)

]

e−DL
=
∑

q

~Ωq

(

A†
qAq +

1

2

)

=
∑

q

~Ωq

(

a†qaq +
1

2

)

−
∑

q

~Ωqδq

(

JK

~Ωq

)

√

2

N

∑

l

(

s+
l + s−l

)

[

a†qe
iqRl + aqe

−iqRl

]

+
∑

q

~Ωqδ
2
q

(

JK

~Ωq

)2( 2

N

)

∑

l,m

(

s+
l + s−l

) (

s+
m + s−m

)

eiq(Rl−Rm) . (168)
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Notice that Rl, Rm both belong to the same sublattice so that, if Rl 6= Rm,
they are next nearest, or more distant, neighbours. In the last line of
Eq. (168) the terms with l 6= m yield contributions like s±l s±m , which

we shall neglect, and terms s+
l s−m +h.c. = (c†l↑c

†
m↓)(cm↑cl↓)+h.c., which cor-

respond to inter-site, intra-sublattice singlets, possibly of interest for high
temperature superconductors. After those simplifications we can write:

eDL

[

∑

q

~Ωq

(

a†qaq +
1

2

)

]

e−DL
=⇒

∑

q

~Ωq

(

a†qaq +
1

2

)

+
∑

q

~Ωqδ
2
q

(

JK

~Ωq

)2( 1

N

)

∑

l,m

c†l↑c
†
m↓cm↑cl↓ cos [q (Rl − Rm)] .(169)

Notice that once more we find a long range interaction produced by the
displacement transformation connected to a local interaction, just as it hap-
pened for the long range intersite charge interaction in the case of electrons
and phonons coupled by the Holstein term.

The terms with l = m yield:

∑

q

~Ωqδ
2
q

(

JK

~Ωq

)2( 2

N

)

∑

l

(

s+
l + s−l

)2

=
∑

q

δ2
q

(

J2
K

~Ωq

)(

2

N

)

∑

l

[−2nl↑nl↓ + nl↑ + nl↓] . (170)

We recognize contributions to the Hubbard and the atomic terms, in close
analogy to the phonon case. Summarizing our findings, by transforming the
free oscillator term we obtain not only a renormalization of the Hubbard
and atomic energy terms, but also a long range interaction between sites of
the same magnetic sublattice, which was absent in the starting electronic
Hamiltonian.

To transform the Fermi operators, we note that, for m = i, j, the relevant
commutators are:

[

∑

l

s+
l , c†mσ

]

= c†m−σδσ↓ ,

[

∑

l

s−l , c†mσ

]

= c†m−σδσ↑ ,

[

∑

l

s+
l , cmσ

]

= −cm−σδσ↑ ,

[

∑

l

s−l , cmσ

]

= −cm−σδσ↓ . (171)

Defining for short:

∆l =

√

2

N

∑

q

δq

(

JK

~Ωq

)

e−iqRl

(

a†q − a−q

)

(172)
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it follows that in the series development of f †
lσ = eDL

c†lσe−DL
the even-order

(2n) nested commutators of DL and c†lσ yield c†lσ∆2n
l , while those of odd order

(2n+1) yield c†l−σ∆2n+1
l . For the destruction operator flσ = eDL

clσe−DL
one

has the even-order nested commutators yielding clσ∆2n
l and the odd-order

ones −cl−σ∆2n+1
l . Summing the series then yields:

f †
lσ = c†lσ cosh (∆l) + c†l−σ sinh (∆l) , flσ = clσ cosh (∆l) − cl−σ sinh (∆l) .

(173)
Now we can transform the whole Kondo–Heisenberg Hamiltonian. The num-
ber operator transforms into:

f †
lσflσ = nlσ cosh2 (∆l) − nl−σ sinh2 (∆l) − σ

(

s+
l − s−l

)

2
sinh (2∆l) (174)

so that the total charge on each site
∑

σ f †
lσflσ is unaffected .

The Hubbard term, dropping terms odd in sinh (2∆l) (which will not
survive the average over the squeezed state to be introduced later on) is not

modified: f †
l↑fl↑f

†
l↓fl↓ = nl↑nl↓.

The hopping term has to be split into

∑

iA〈jB〉σ
tf †

iAσfjBσ +
∑

jB〈iA〉σ
tf †

jBσfiAσ

yielding:

∑

iA〈jB〉σ
tf †

iAσfjBσ =
∑

iA〈jB〉σ
tc†iAσcjBσ [cosh (∆i) cosh (∆j) − sinh (∆i) sinh (∆j)]

+
∑

iA〈jB〉σ
tc†iAσcjB−σ [sinh (∆i) cosh (∆j) − cosh (∆i) sinh (∆j)]

=⇒
∑

iA〈jB〉σ
tc†iAσcjBσ cosh (∆i) cosh (∆j) , (175)

∑

jB〈iA〉σ
tf †

jBσfiAσ =
∑

jB〈iA〉σ
tc†jBσciAσ [cosh (∆i) cosh (∆j) − sinh (∆i) sinh (∆j)]

−
∑

jB〈iA〉σ
tc†jBσciA−σ [sinh (∆i) cosh (∆j) − cosh (∆i) sinh (∆j)]

=⇒
∑

jB〈iA〉σ
tc†jBσciAσ cosh (∆i) cosh (∆j) , (176)

where the double arrow indicates the terms which will survive the squeezed
average.
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Let us now consider the itinerant electron moment. By using the number
operators its z- component transforms as:

eDL
sz
l e

−DL
=

1

2
sz
l cosh (2∆l) −

1

2

(

s+
l − s−l

)

sinh (2∆l) =⇒ 1

2
sz
l cosh (2∆l) .

(177)
The other components, the spin flip operators, are (l = i ∈ A or j ∈ B):

f †
l↑fl↓ = s+

l cosh2 (∆l) − s−l sinh2 (∆l) −
sz
l

4
sinh (2∆l) ,

f †
l↓fl↑ = s−l cosh2 (∆l) − s+

l sinh2 (∆l) +
sz
l

4
sinh (2∆l) . (178)

Introducing the displaced spin-wave operators and Eq. (178), we have for
the A sublattice:

eDA





JK

2

∑

i∈A,σ

sσ
i S−σ

i



 e−DA

=
JK

2

√

2

N

∑

q

[

a†q − δq

(

JK

~Ωq

)

√

2

N

∑

l∈A

(

s+
l + s−l

)

eiqRl

]

Cq

+
JK

2

√

2

N

∑

q

[

a−q − δq

(

JK

~Ωq

)

√

2

N

∑

l∈A

(

s+
l + s−l

)

eiqRl

]

Dq ,(179)

where:

Cq =
∑

i∈A

e−iqRi

{

s−i cosh (ϑq) + s+
i sinh (ϑq) +

(

s+
i − s−i

)

cosh2 (∆i) e−ϑq

−sz
i

4
sinh (2∆i) e−ϑq

}

, (180)

Dq =
∑

i∈A

e−iqRi

{

s−i sinh (ϑq) + s+
i cosh (ϑq) −

(

s+
i − s−i

)

cosh2 (∆i) e−ϑq

+
sz
i

4
sinh (2∆i) e−ϑq

}

. (181)

When developing the products in Eq. (179) the terms linear in a†q, aq can be
dropped, as they yield vanishing expectation values in the squeezed state.
The terms containing only the spin flip operators sum up to:

−JK

N

∑

q

δq

(

JK

~Ωq

)

∑

l∈A

(

s+
l + s−l

)

eiqRl
∑

i∈A

e−iqRi
(

s+
i + s−i

)

eϑq . (182)
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The calculation for the B sublattice is analogous, but for interchanging spin
raising and lowering operators, which leaves the above result unaffected.
Therefore, on both sublattices, the terms surviving the squeezing yield:

eDL

[

JK

2

∑

l∈L

(

s+
l S−

l + h.c.
)

]

e−DL

=⇒ −JK

N

∑

q

δq

(

JK

~Ωq

)

eϑq
∑

l,m∈L

(

s+
l + s−l

)(

s+
m + s−m

)

eiq(Rl−Rm) . (183)

Proceeding as we did in the transformation of the free oscillator term, if
l 6= m we have:

∑

l,m

(

s+
l + s−l

) (

s+
m + s−m

)

eiq(Rl−Rm) =⇒
∑

l,m

(

s+
l s−m + s−l s+

m

)

eiq(Rl−Rm)

=
∑

l,m

c†l↑c
†
m↓cm↑cl↓ {2 cos [q (Rl − Rm)]} (184)

while if l = m then
∑

l

(

s+
l + s−l

)2
=
∑

l (−2nl↑nl↓ + nl↑ + nl↓) and we
obtain a renormalization of the Hubbard and of the atomic terms. Therefore:

eDL

[

JK

2

∑

l

(

s+
l S−

l + h.c.
)

]

e−DL

=⇒ − 1

N

∑

q

δq

(

J2
K

~Ωq

)

eϑq
∑

l

(−2nl↑nl↓ + nl↑ + nl↓)

− 2

N

∑

q

δq

(

J2
K

~Ωq

)

eϑq
∑

l,m

c†l↑c
†
m↓cm↑cl↓ {2 cos [q (Rl − Rm)]} (185)

which is the same type of contributions produced by transforming the free
oscillator term. On the B sublattice the contributions turn out to be the
same as on A.

Written out in all its glory, the displaced Hamiltonian, dropping the

terms linear either in a†q,a−q or in sinh (n∆l) , which would not survive the
squeezed average to be performed next, reads:

eDi
eDj

He−Dj
e−Di

=⇒
∑

l

nl

[

εl +
JK

N

∑

q

(

JK

~Ωq

)

δq

(

2δq − eϑq

)

]

+
∑

i〈j〉σ
tc†iσcjσ cosh (∆i) cosh (∆j) + V

∑

i〈j〉
ninj
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+
∑

l

nl↑nl↓

[

U − 2JK

N

∑

q

(

JK

~Ωq

)

δq

(

2δq − eϑq

)

]

+
2

N

∑

q

(

J2
K

~Ωq

)

δq

(

2δq − eϑq

)

∑

l,m∈A

c†l↑c
†
m↓cm↑cl↓ cos [q (Rl − Rm)]

+
2

N

∑

q

(

J2
K

~Ωq

)

δq

(

2δq − eϑq

)

∑

l,m∈B

c†l↑c
†
m↓cm↑cl↓ cos [q (Rl − Rm)]

+
∑

q

~Ωq

(

a†qa−q +
1

2

)

− JHSN

(

1

2
+ Sz

)

+ NS 〈s〉JK . (186)

Of the electronic terms, only the hopping term contains non-linear func-
tions of spin wave operators.

We shall now proceed to evaluating the average of Eq. (186) over a
squeezed magnon wavefunction. By defining a squeezing operator:

eS = exp

[

−
∑

q

ηq

(

a†qa
†
−q − aqa−q

)

]

(187)

we obtain

〈

0|eS cosh (∆l) e−S |0
〉

= exp

[

−1

2

∑

q

e−2ηqδ2
q

(

JK

~Ωq

)2
]

,

〈

0|eS sinh (∆l) e−S |0
〉

= 0 (188)

which justifies the simplifications introduced in transforming the Hubbard
term. In the hopping terms we have to squeeze products like cosh (∆i) cosh (∆j),
which imply products of the form e±∆ie±∆j . Due to [∆i,∆j ] = 0 one has:

〈

ΨSQ|e±∆ie±∆j |ΨSQ

〉

=
〈

0|eSe±∆i±∆je−S |0
〉

=
〈

0| exp
[

eS (±∆i ± ∆j) e−S
]

|0
〉

=

〈

0| exp

[

∑

q

e−ηqδq

(

JK

~Ωq

)

(

a†q − a−q

)

(

e−iqRi + e−iqRj
)

]

|0
〉

(189)

which is a standard form we have already evaluated in the phonon case. By
setting as usual |Rj − Ri| = δ the final result can be written as:

〈

0|eS cosh (∆i) cosh (∆j) e−S |0
〉

= exp

[

−2
∑

q

e−2ηqδ2
q

(

JK

~Ωq

)2

cos2

(

qδ

2

)

]

(190)
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Notice that the above quantity, which we shall indicate by τ , is indepen-
dent of both site indexes. Squeezing sinh (∆i) sinh (∆j) yields zero. After
squeezing, the terms of the displaced Hamiltonian linear in the Bose oper-
ators disappear, and we finally obtain the effective Kondo–Heisenberg spin
polaron Hamiltonian:

〈

0|eSeDA
eDB

He−DB
e−DA

e−S |0
〉

=
∑

l

ε∗nl +
∑

i〈j〉σ
t∗c†iσcjσ +

∑

l

U∗nl↑nl↓ + V
∑

i〈j〉
ninj

+

(

2

N

)

∑

q







∑

l,m∈A

ΓA
lmqc

†
l↑c

†
m↓cm↑cl↓ +

∑

l,m∈B

ΓB
lmqc

†
l↑c

†
m↓cm↑cl↓







+
∑

q

~Ωq

[

sinh2 (ηq) +
1

2

]

− JHSN

(

1

2
+ Sz

)

+ NS 〈s〉JK , (191)

where the renormalized interactions are:

ε∗ = εl +
JK

N

∑

q

(

JK

~Ωq

)

δq

(

2δq − eϑq

)

, (192)

t∗ = t exp

[

− 2

N

∑

q

e−2ηqδ2
q

(

JK

~Ωq

)2

cos2

(

qδ

2

)

]

, (193)

U∗ = U − 2JK

N

∑

q

(

JK

~Ωq

)

δq

(

2δq − eϑq

)

, (194)

ΓL
lmq = JK

(

JK

~Ωq

)

δq

(

2δq − eϑq

)

cos [q (Rl − Rm)] . (195)

Besides the reduction of the hopping amplitude, the new physics evidenced
by the displacement transformation depends crucially on the sign of 2δq−eϑq .
If positive, then the “spin polaron shift” is positive and the Hubbard repul-
sion is reduced, while the sign of the intra-sublattice, long range singlet-
producing term depends on the product

(

2δq − eϑq
)

cos [q (Rl − Rm)]. From

the diagonalization condition Th(2ϑq) = −2z cos (qδ) the value of eϑq can
be easily worked out as:

eϑq = 4

√

√

√

√1 − 4z cos (qδ)

1 − JK〈s〉
JHS + 2z cos (qδ)

. (196)
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We have succeeded in reducing the problem of the itinerant charges in-
teracting with local magnetic moments in AF order, to a model of fermions
dressed by spin waves in strict analogy to what we did for the electron-
phonon problem. The way the spin waves renormalize the electronic in-
teractions is different from the phonon case, as one can see by noting the
opposite effects on the local energy εl and on the Hubbard interaction U , and
the insensitivity of the inter-site interaction V , but the conceptual picture
is the same.

10. Single-band (t–J) model for spin polarons

As Zhang and Rice [15] have shown, in the case of the HTS the low-
energy properties can still be well described if one reduces the many-band
model to a single-band one, where the latttice sites are substituted by the
CuO4 plaquettes, and the charge carriers are of two types. One, to be
associated to a plaquette (called the Zhang-Rice singlet) is composed by
the spin 1/2 hole on the central Cu2+ ion, and the doped hole residing
essentially on the four surrounding Oxygen ions. The carrier on the doped
plaquette has zero total spin (because the Kondo interaction of the two-
band model is AF in this case). To the undoped plaquettes we associate
the local Cu2+ hole, carrying a moment. Then we have spin zero entities
surrounded by local moments, which we assume to retain the AF Neel order,
even in the presence of the doping, at least over distances long with respect
to the lattice spacing, and times long with respect to the hole hopping time.
Experimental data show that this assumption is valid for doping smaller than
10%. As in the Kondo–Heisenberg picture, the motion of the singlet requires
frustrating the AF pattern. Now a single hop of the singlet is represented
as an exchange of site between the singlet and a neighbouring Cu2+ hole,
carrying its moment. This can be explained more clearly in terms of the
two-band language. Indeed, to hop from site i (spin up) to j (spin down),
the doped hole must either reverse the moment on j, or its own spin while
still on i. It is this second way which underlies the present picture: before
hopping, the doped hole reverses both its spin and the local moment on i.
Then it moves to j, where the singlet is rebuilt, leaving behind the reversed
Cu2+ moment on i.

Whatever the picture, after the singlet has moved, the situation is as
if it were the Cu2+on site j which has moved to site i, bodily carrying its
spin, which now points in the wrong direction. One can say that the Kondo–
Heisenberg model associates the frustration of the AF order to the site where
the hole goes (j), while the t–J model with the site from where it starts (i).
The overall physics is clearly the same, namely the itineracy of the fermion
is conditioned by the spin waves of the local moments lattice. To discuss
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in formal terms this model, Zhang and Rice have proved [15] that one can
describe the dynamics of the system composed of singlets and Cu2+ holes
by an effective Hamiltonian for Cu2+ holes only, where the singlets do not
appear explicitly. The motion of the Cu2+ holes is described by the t–J
model, i.e. the single-band Hubbard Hamiltonian in the U/t → ∞ limit. In
its simplest version it reads:

Ht−J =
∑

i〈j〉σ
tc†iσ (1 − ni−σ) cjσ (1 − nj−σ) +

∑

i〈j〉

J

2

(

Si·Sj −
νiνj

4

)

. (197)

The operators c†iσ, ciσ describe the Cu2+ holes, J = 4t2/U is the effective
AF exchange, and νi =

∑

σ niσ (1 − ni−σ) is non-vanishing only if the site i
is singly occupied. As before, the label i corresponds to sites with up local

moment Si =
(

c†i↑ci↓, c
†
i↓ci↑, 1/2(ni↑ − ni↓)

)

in the ground state, and the

label j to its down moment counterpart.
First of all we shall show that spin polarons are, in a sense, intrinsic to

the t–J model. If, from
[

c†lσ, clσ

]

+
= 1, we derive 1 − nl−σ = cl−σc†l−σ and

define the spin deviation operators Sσ
l = c†lσ cl−σ (with σ = ± when in Sσ

l )
then

∑

i〈j〉σ
c†iσ (1 − ni−σ) cjσ (1 − nj−σ) =

∑

i〈j〉σ
S−σ

i c†iσcjσSσ
j ,

νiνj =
∑

στ

Sσ
i S−σ

i Sτ
j S−τ

j . (198)

We can then conclude that the projected operators p
(†)
lσ = c†lσ (1 − nl−σ)

characterizing the t–J model are the product of a Fermi operator times a
spin deviation, namely:

p†l↑ = S+
l cl↓ , p†l↓ = S−

l cl↑ , pl↑ = cl↓S
−
l , pl↓ = cl↑S

+
l . (199)

We can go further, if we decouple Eq. (198) in mean field approximation:

S−σ
i c†iσcjσSσ

j =
〈

S−σ
i Sσ

j

〉

c†iσcjσ+
〈

c†iσcjσ

〉

S−σ
i Sσ

j −
〈

S−σ
i Sσ

j

〉

〈

c†iσcjσ

〉

, (200)

∑

στ

Sσ
i S−σ

i Sτ
j S−τ

j =4

[

∑

σ

〈

S−σ
i Sσ

j

〉

Sσ
i S−σ

j −
∑

σ

〈

S−σ
i Sσ

j

〉

〈

Sσ
i S−σ

j

〉

]

.(201)

Substituting into Eq. (197) and reordering yields:

Ht−J = t
∑

i〈j〉σ

〈

S−σ
i Sσ

j

〉

c†iσcjσ + J
∑

i〈j〉
Sz

i Sz
j
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+
J

2

∑

i〈j〉σ

[

1 +
2t

J

〈

c†iσcjσ

〉

−
〈

S−σ
i Sσ

j

〉

]

S−σ
i Sσ

j

−J

2

∑

i〈j〉σ

〈

S−σ
i Sσ

j

〉

〈

Sσ
i S−σ

j

〉

− t
∑

i〈j〉σ

〈

c†iσcjσ

〉

〈

S−σ
i Sσ

j

〉

.(202)

It is evident that the hopping is renormalized by the spin deviations and, at
the same time, the transverse exchange is renormalized by the hopping.

To make things more quantitative, let us introduce the spin deviation
operators for the local moments on the two magnetic sublattices as we did
for the Kondo–Heisenberg case, by Eq. (152). Following Ref. [16], let us
define spin independent Cu2+ hole operators hl on the two sublattices as
follows:

h†
i = ci↑ , hi = c†i↑ , h†

j = cj↓ , hj = c†j↓ . (203)

Actually, the hole operators have a hidden spin label, which depends
on the sublattice (up or down) to whose sites (i or j) they refer. One can
also think of them as describing not the Cu2+ holes , but the doped ones
composing the spinless Zhang–Rice singlet. Indeed, creating (destroying) a
hole on either sublattice eliminates (restores) the local moment, reproducing
the effect of the doped holes.

To express the projected operators in terms of hole operators we shall
now introduce two approximations. The first one is that the projected op-
erators for the majority- spin particles on each sublattice will be identified

with the non- projected ones: p
(†)
i↑ =⇒ c

(†)
i↑ and p

(†)
j↓ =⇒ c

(†)
j↓ . This amounts

to neglecting the itineracy-limiting effect that minority-spin particles, sup-
posedly very scarce because the AF order with almost saturated moments
is assumed, have on the majority- spin ones. The second approximation is
that, in the projected operators for the minority-spin particles, the spin de-
viation operators are represented in the Holstein–Primakoff approximation,
namely:

p†i↓=S−
i c†i↑=⇒b†ihi , pi↓=ci↑S

+
i =⇒bih

†
i , p†j↑=⇒b†jhj , pj↑=⇒h†

jbj .

(204)
Before substituting the projected operators through the relations just

obtained, we have to make sure that we are not violating the no-double-
occupancy constraint inherent to the t–J model. To that aim, we write

〈nl↑nl↓〉 = 0 by using the identity nl↓ = nl↑ − 2Sz
l = nl↑ − 1 + 2b†l bl from

which it follows:

nl↑nl↓ = n2
l↑−nl↑+2nl↑b

†
l bl = 2nl↑b

†
l bl = 2

(

1 − h†
l hl

)

b†l bl = 2hlh
†
l b

†
l bl =⇒ 0 .

(205)
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Therefore we shall discard all terms containing the product hlh
†
l b

†
l bl. The

physical meaning is that there can be either a hole or a spin deviation on
a site, not both. Now we can rewrite the t–J Hamiltonian in the new
representation. The hopping term yields:

∑

i〈j〉σ
tc†iσ (1 − ni−σ) cjσ (1 − nj−σ) =⇒

∑

i〈j〉
t
(

hih
†
j + hjh

†
i

)(

b†i + bj

)

(206)

expressing the possibilty of hopping conditioned to the presence of a spin
deviation on either i or j sites. The longitudinal part of the Heisenberg
term , by expressing νi↑ = ni↑ (1 − ni↓) = ni↑ (1 − 2Sz

i ) etc. so that νi =

2Sz
i

(

1 − 2h†
ihi

)

and νj = −2Sz
j

(

1 − 2h†
jhj

)

and taking into account the

condition of Eq. (205), becomes

Sz
i Sz

j − νiνj

4
= −1

2

[

1 − h†
ihi − h†

jhj + 2h†
ihih

†
jhj

]

+b†i bi

(

1 − h†
jhj

)

+ b†jbj

(

1 − h†
ihi

)

− 2b†jbjb
†
ibi . (207)

The last term is the interaction of spin deviations, and will be discarded.
Let us consider the purely fermionic part of the expression above, where we
treat the four-operator term in mean field, obtaining, with the definition of

the hole concentration ∆ =
〈

h†
l hl

〉

for l = i or j:

−1

2

∑

i〈j〉

[

1 − h†
ihi − h†

jhj + 2h†
ihih

†
jhj

]

=⇒ −Nz

2

[

1 − 2∆2
]

+ z (1 − 2∆)
∑

l

h†
l hl . (208)

The last term is analogous to the “polaron shift” we met when dealing with

phonon polarons. The terms b†jbj

(

1 − h†
ihi

)

create a spin deviation on j

provided no hole resides on j. Each site j over which the moment has been
reversed is a bridge to its z−1 neighbours, distinct from i, but belonging to
the same sublattice as i. On the whole such terms create a “ferromagnetic
drop” of z + 1 sites, freely accessible to the doped hole residing on i.

The tranverse part is simple:

1

2

∑

i〈j〉,σ=±
Sσ

i S−σ
j =

1

2

∑

i〈j〉

(

bibj + b†i b
†
j

)

=⇒ 1

2

∑

i〈j〉

(

1 − h†
ihi

)(

bibj + b†i b
†
j

)(

1 − h†
jhj

)

. (209)
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In the last expression the factors
(

1 − h†
i(j)hi(j)

)

≈ 1−∆ enforce the condi-

tion that both i and j have to be free of holes to allow for a spin deviation
on both sites. The resulting approximated Hamiltonian in the real space
reads (l = i or j):

H = t
∑

i〈j〉

(

hih
†
j + hjh

†
i

)(

b†i + bj

)

− JNz

4

[

1−2∆2
]

+ z
J

2
(1−2∆)

∑

l

h†
l hl

+
J

2
(1 − ∆)

∑

l

b†l bl +
J

4
(1 − ∆)2

∑

i〈j〉

(

bibj + b†ib
†
j

)

. (210)

Let us Fourier transform to the reciprocal space, taking care that, due to
the assumed AF ordering, we have to limit the wavevectors summations to

the reduced Brillouin zone, i.e. b†l = (2/N)1/2
∑′

q b†qe−iqRl . The final result,

by defining δ = |Ri − Rj | is the Spin Polaron Hamiltonian HSP

HSP = −
(

NzJ

4

)

[

1 − 2∆2
]

+
zJ

2
(1 − 2∆)

∑

k

h†
khk

−
√

2

N
(2zt)

∑

kq

cos [(k − q)δ]
[

b†qh
†
k−qhk + h†

khk−qbq

]

+zJ (1−∆)
∑

q

b†qbq+
zJ

4
(1−∆)2

∑

q

cos(qδ)
(

b†qb
†
−q + bqb−q

)

.(211)

The last line of HSP is the by now familiar Hamiltonian for spin waves in

an antiferromagnet, which can be diagonalized by transforming from b
(†)
q

to β
(†)
q as in Eq. (155), only now with the doping-dependent diagonalization

condition tanh (2ϑq) = − (1 − ∆) cos(qδ)/2 yielding

∑

q







zJ (1 − ∆)

√

1 −
[

(1 − ∆)
cos(qδ)

2

]2






(

β†
qβq +

1

2

)

− 2NzJ (1 − ∆) .

(212)
The renormalized frequency

~Ωq = zJ (1 − ∆)

√

1 −
[

(1 − ∆)
cos(qδ)

2

]2

(213)

is the product of the bare frequency zJ (1 − ∆) and the softening factor
√

1 − [(1 − ∆) cos(qδ)/2]2 in close analogy with the discussion following

Eq. (75) for the squeezed phonon case.
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Finally we can rewrite HSP in terms of the diagonalized AF spin wave

operators β†
q , βq as follows:

HSP = −zJ (1 − 2∆)
∑

k

h†
khk −

√

2

N
(2zt)

∑

kq

[

h†
k−qhk

(

β†
qBk,q + β−qCk,q

)]

+
∑

q

~Ωq

(

β†
qβq +

1

2

)

− N

2
zJ (1 − ∆) −

(

NzJ

4

)

[

1 − 2∆2
]

, (214)

where we define:

Bk,q = cos [(k − q)δ] cosh (ϑq) + cos(kδ) sinh (ϑq) ,

Ck,q = cos [(k − q)δ] sinh (ϑq) + cos(kδ) cosh (ϑq) . (215)

The effective Hamiltonian we have obtained is roughly similar to the
one for interacting electrons and phonons, leading to the phonon polarons.
Indeed, HSP features a sort of “Holstein term” coupling linearly spin waves
and hole density, in addition to the “polaronic shift” already mentioned.
However, there is one important difference, that is the absence of a hole
hopping term. The coefficient of the first term in Eq. (214), which should
do the job, has no dispersion, so that it does not describe the hopping of
the holes. To see that the holes dressed by spin waves can nevertheless hop
around as coherent quasi-particles, one has , for instance, to evaluate the
Green’s function. This has been done by several people, and we refer the
reader to the bibliography [17] for details. Let us, however, mention that a
general result [18] is that the the spin polaron exists over a wide range of
parameters as a coherent itinerant particle, whose bandwidth WSP goes as

WSP ≈ (t/J) exp
[

− (κt/J)2
]

where κ is a known constant. The bandwidth

vanishes both for t/J → 0 and for t/J → ∞. The first case has an obvious
meaning. In the opposite limit, realised by a “soft” magnetic structure, the
polaron uses all its energy to excite spin waves, and gets trapped in a kind
of “magnetic quicksand”.

We leave as an exercise for the patient reader to verify if it is possible to
transform Eq. (214) into an effective fermion-only Hamiltonian, as we did
for the phonon polaron problem.
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Appendix A

To prove Eq. (76) we follow [20]. Let us rewrite it, by dropping the state
label q, as:

exp

[

−2αu
d

du

]

F (u) = F (e−2αu) . (A.1)

By expanding both, the exponential

exp

[

−2αu
d

du

]

=
∑

m

(−2α)m

m!

(

u
d

du

)m

, (A.2)

and F (u) =
∑

n
un

n! F
(n) (0) with F (n) (0) = |dnF (u)/dun|0, yields:

exp

[

−2αu
d

du

]

F (u) =
∑

m,n

(−2α)m

m!

(

1

n!

)(

u
d

du

)m
[

unF (n) (0)
]

. (A.3)

Now, for any m one has
(

u d
du

)m [
unF (n) (0)

]

= nmunF (n) (0) so that:

exp

[

−2αu
d

du

]

F (u) =
∑

m,n

(−2α)m

m!n!
nmunF (n) (0)

=
∑

n

1

n!

[

∑

m

(−2αn)m

m!

]

unF (n) (0) =
∑

n

1

n!

[

e−2αn
]

unF (n) (0)

=
∑

n

(ue−2α)n

n!
F (n) (0) = F

(

ue−2α
)

. (A.4)

which proves Eq. (A.1).

Note added in proofs. After the conclusion of the School, a very inter-
esting paper [19] has been published, in which an analytical solution of the
problem of the spin polaron in the t − J model, obtained through displace-
ment transformations, is proposed.
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