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A definition of quantum chaos is given in terms of entropy production
rates for a quantum system coupled weakly to a reservoir. This allows
the treatment of classical and quantum chaos on the same footing. In the
quantum theory the entropy considered is the von Neumann entropy and in
classical systems it is the Gibbs entropy. The rate of change of the coarse-
grained Gibbs entropy of the classical system with time is given by the
Kolmogorov–Sinai (KS) entropy. The relation between KS entropy and the
rate of change of von Neumann entropy is investigated for the kicked rota-
tor. For a system which is classically chaotic there is a linear relationship
between these two entropies. Moreover it is possible to construct contour
plots for the local KS entropy and compare it with the corresponding plots
for the rate of change of von Neumann entropy. The quantative and quali-
tative similarities of these plots are discussed for the standard map (kicked
rotor) and the generalised cat maps.

PACS numbers: 03.65.–w, 05.40.+j, 05.45.+b

1. Introduction

It is now well-known that non-linearity in classical systems generically
leads to chaotic behaviour. This is usually defined as sensitive dependence
on initial conditions for orbits. Within this context the quantum analogue
does not exist. We will summarise our approach to this problem and then
expand on the issues as we proceed. Classical and quantum mechanics,
however, are not very different when the dynamics of classical systems is
rephrased in terms of the linear Liouville equation for phase space distri-
butions. The sensitive dependence on initial conditions is mirrored, in this
formulation, by the linear increase with time of the coarse-grained Gibbs
entropy which is also known as the Shannon entropy. A highly artificial but
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simple model illustrates this point effectively. The tent map is a chaotic
map and a geometrically related map is the modulus map:

xn+1 = 2xn mod 1 . (1)

The action of this map is most easily seen in the binary representation. Given
a binary representation of an initial condition, the map moves the “decimal”
point at each iteration one point to the right and drops all digits to the left of
the point. Clearly if two initial points differed first at the nth “decimal” digit,
then after n iterations there is a large difference between the iterates. To
retain a certain accuracy the number of digits required for the specification
of the initial state increases as n. Missing information is Shannon entropy
and it increases linearly with n or time. More formally we can partition
phase space into cells {C} = {C1, C2, · · · , Cp}. Iterates of a map can be
expressed as symbol sequences j0, j1, · · · , jn−1 say. If the probability of such
a sequence is p (j0, j1, · · · , jn−1) then the dynamical Shannon entropy per
unit time H ({C}) is defined to be

H ({C}) = − Lim
n→∞

1

n

∑

j0,···,jn−1

p (j0, · · · , jn−1) log p (j0, · · · , jn−1) . (2)

In terms of H ({C}) the Kolmogorov–Sinai entropy hKS is defined as

hKS = sup
{C}

H ({C}) . (3)

hKS measures the average information per iteration needed concerning the
input in order to maintain the accuracy of the output. This sensitivity
to initial conditions can be reexpressed in terms of entropy through the
Alekseev–Brudno theorem:

hKS =
∑

Λ+, (4)

where the Λ+s are the positive Lyapunov exponents. The von Neumann
entropy S is defined by

S = −Tr (ρ log ρ) , (5)

ρ being the density matrix of the system. For a Hamiltonian system unitary
evolution implies

d

dt
S = 0 (6)

and so S is not a dynamical entropy. An ingredient which is crucial in quan-
tum mechanics is measurement. Classically measurement on a system can
be made such that there is an arbitrarily small disturbance on the system.
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In quantum mechanics this is not the case as can be appreciated from
the Heisenberg uncertainty relations. Already a decade ago, Sarkar and
Satchell [26] discussed the possible role of environment in the quantum evo-
lution of chaotic systems. This line of thought suggests that a more natural
way to restore the quantum classical correspondence is to consider physical
systems not as being isolated from the rest of the universe but as under-
going constant and varied interactions with it. This is an inescapable fact
of life and must be accounted for, at least approximately, in any attempt
to describe the real quantum behaviour of microscopic and macroscopic ob-
jects [11, 12, 15].

The destruction of phase coherence in a quantum system because of the
continuous monitoring of its state by internal [16] and external [11,12,15,17,
18] degrees of freedom is a process known as decoherence. Correlations are
established when initially noninteracting subsystems — the system and its
environment — begin to interact. The subsequent loss of information from
the system to the environment results in a reduction in the interference
effects present in the system. Exactly the same situation arises if we try to
determine the slit through which a photon or a particle travels in a double-
slit experiment: interference effects on the screen are lost if we, the observers,
acquire information about which slit is used at any one time.

As an example let us consider a system coupled to an environment
through its position coordinate. It will be influenced in the following way
[17]: if the self-Hamiltonian of the system is ignored the eigenstates of posi-
tion will not evolve at all and will not be influenced directly by the environ-
ment. The position eigenstates are then known as pointer states. However,
superpositions of these pointer states can be shown to decay rapidly into mix-
tures of position eigenstates. So, even though the superposition principle of
quantum mechanics states that every state in the Hilbert space spanned by
these pointer states can exist in principle, interaction with an environment
effectively selects certain states — the pointer states — as being the most
stable and reduces all coherent superpositions of these states to incoherent
mixtures.

This process, an environment-induced superselection rule [17], can be
generalised to more realistic situations in which the self-Hamiltonian of the
system is important. It is, of course, then unlikely that any state will ever be
absolutely free from environmental influence and the criteria for the pointer
states changes from absolute stability to the greatest stability instead, i.e.
pointer states will be defined as those least prone to deterioration into a
mixture. This can be quantified using the von Neumann entropy of the
reduced density matrix of the system [17, 19]. A set of preferred states is
then defined as the set of states which are most stable, i.e. those for which
the entropy increases most slowly, in a procedure known as the predictability
sieve [17, 19].
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2. Inverted harmonic oscillator

In a rigorous examination of the entropy approach to the correspondence
problem Zurek and Paz [11] have considered the completely tractable model
of an inverted harmonic oscillator coupled to a high temperature (harmonic)
bath. The inverted oscillator Hamiltonian takes the form

H(p, q) =
p2

2
− Λq2

2
, (7)

so the potential energy function is an inverted parabola with its apex at the
origin. It is a model of instability in classical mechanics and the phase space
dynamics governed by this Hamiltonian is an excellent model of a hyperbolic
fixed point [8]. It is certainly not a chaotic system — it lacks the folding
required — but the parameter Λ is analagous to a Lyapunov exponent in a
genuinely chaotic system. This is because it induces the exponential rate of
divergence (convergence) of nearby points on the unstable (stable) manifold
in its 2-dimensional phase space. These linear manifolds intersect at the
origin, i.e. at the only fixed point of the dynamics.

Let us consider the time evolution of a particle moving in the inverted
oscillator potential V (q) = −Λq2/2, but now let us also consider it to be
coupled through its position q to the position variables of each oscillator
in the infinite set which we use as a model of a thermal bath at a high
temperature. Further choosing the distribution of frequencies of this set to
be of an Ohmic type [18] it is possible to derive a master equation for the
reduced density matrix, ρq, which describes the state of the particle at any
time. In the position representation it reads [12, 20]

∂ρq

∂t
=

1

i~
[H, ρq] − γ(x− y)

(

∂

∂x
− ∂

∂y

)

ρq −
D

~2
(x− y)2ρq, (8)

with D := 2mγkBT and where γ both describes the strength of coupling
to the environment and serves as a dissipation parameter. Upon making
the weak coupling assumption of γ ≪ 1, Zurek and Paz [11] have solved
the equation corresponding to the above for the Wigner function. This task
is made considerably easier by the fact that the form of the potential for
the inverted oscillator implies that all the quantum correction terms vanish
identically and the equation becomes

∂W

∂t
= −Λq∂W

∂p
− p

∂W

∂q
+D

∂2W

∂p2
. (9)

Here D = 2γkBT now, since m = 1 is chosen for the particle in the inverted
oscillator potential. More generally, 3rd or higher order derivatives of V (q)
would appear in Eq. (9).
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On calculating the rate of change of von Neumann entropy it can be
shown that [11]

dS

dt
≈ Λ

(

1 + ae−2Λt
)−1 → Λ, (10)

as t → ∞. Here a is a constant dependant on the initial choice of density
matrix.

2.1. The Zurek and Paz conjecture

Zurek and Paz [11,12,15] noticed the strikingly different rates of entropy
increase between positive and zero Λ. They proposed to solve the corre-
spondence problem and conjectured that the rate of entropy production in a
quantum system weakly coupled to a high temperature environment can be
used as a test to determine the nature of the Hamiltonian evolution of that
system — quantum and classical. Quantitatively, Eq. (10) becomes the con-
jecture when Λ is replaced by the sum of the positive Lyapunov exponents.
Classical unpredictability would then imply unpredictability in its weakly
perturbed quantum counterpart.

This conjecture is supported by the fact that hyperbolic points, such as
that exhibited at the origin in the inverted oscillator model, are ubiquitous
in the phase space of a chaotic system [4]. (Resonant tori become alter-
nating sequences of elliptic and hyperbolic points upon the introduction of
slight perturbations.) The inverted oscillator model is, therefore, a possible
representation of the local behaviour in chaotic classical evolution.

An important appeal of this conjecture is the identification of the av-
eraged sum of the positive Lyapunov exponents in a d-dimensional system
with the Kolmogorov–Sinai (KS) or metric entropy, hKS, (cf. Eq. (4)) of
classical chaos theory [5,60,64]. hKS is commonly used as a means to define
a system as being classically chaotic. If hKS > 0 we say the system is chaotic
and if hKS = 0 we say it is regular.

3. Criticisms of the Zurek and Paz approach

The Zurek and Paz conjecture as expressed in equation (10) has been
arrived at with the help of various simplifying assumptions. In this section
we will endeavour to catalogue these assumptions. We will also make some
general criticisms of the Zurek and Paz approach.

3.1. A catalogue of assumptions

There are a number of reasons why we should question any conjecture
regarding the entropy production of an open quantum analogue of a gen-
uinely chaotic system based on so simple a picture as that presented above.
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The quantitative framing of the conjecture in equation (10) would, one sus-
pects, be the first casualty in any real system. Moreover, a more qualitative
version of the conjecture, i.e. the conclusion that open quantum systems will
produce entropy at a rate which is merely an increasing function of some
measure of the chaos in their classical analogue, could also be in jeopardy.

3.1.1. Model-dependent assumptions

The first criticism has to do with the fact that although the quantum
corrections to the classical Liouville term in the evolution equation for the
Wigner function may be limited upon the introduction of the environmental
diffusion term, they are, nonetheless, always present. The quadratic nature
of the inverted oscillator potential cannot take this effect into account since
derivatives of third and higher order vanish, and with them the quantum
corrections. To illustrate the relevance of this fact we note that Farini et
al. [22] have shown that the presence of even small quantum corrections can
lead to increasing differences between quantum and classical phase space
distributions as they evolve in time.

In addition, the conjecture was made on the basis of a partial differential
equation for the Wigner function, an equation from which the dissipation
term was dropped. The mathematical justification for this procedure was
to let the dissipation parameter γ → 0 while keeping D = 2mγkBT con-
stant. This means, essentially, increasing the environmental temperature
and/or the mass of the particle. But here, as with the first point, we must
stress that the dissipation term can never be dropped completely since this
would entail setting γ = 0 identically, implying decoupling from the envi-
ronment and hence D = 0 too. Thus, there will always be some dissipation
in the system, however small. We will directly address this problem below
and will present an exact expression for the rate of entropy increase of an
open inverted oscillator when this approximation is not made. The result
generalises equation (10) in that it explicitly reveals the influence of the
dissipation parameter on the entropy production rate.

A third and related model-dependence centres on the choice of a thermal
bath as an environment. Assumed are such features as a very large or
even infinite number of degrees of freedom in the bath, the special choice
of the density of frequencies of the oscillators which comprise it and the
independent, non-interacting nature of these oscillators.

3.1.2. Phase space considerations

How well does the inverted oscillator model the phase space dynamics of
a genuine chaotic system? Zurek and Paz [11] contend that it is a faithful
representation of the local dynamics seen by an evolving trajectory in phase
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space. However, the inverted oscillator model is not chaotic. It has fixed
stable and unstable directions which intersect at the origin of phase space,
the only fixed point of the dynamics. Thus, it does not take into account the
effect of elliptic points, homoclinic points, heteroclinic points, stable islands
or cantori on the open quantum dynamics [1, 4]. In short, it is not a good
model of the extremely complex mixed phase spaces in which trajectories of
generic Hamiltonian systems evolve.

Importantly, too, the inverted oscillator model does not take into account
the folding mechanism which, along with stretching, characterises classical
chaos [1, 4]. Indeed, the fixed direction of the stable and unstable mani-
folds are quite inadequate to represent the rapid change in the direction of
the local stable and unstable manifolds typically seen in genuinely chaotic
systems. In ignoring this essential ingredient of chaos one is, in effect, ignor-
ing the fact that the directions of squeezing and contraction change rapidly
along a typical trajectory.

Farini et al. [22] have illustrated the dangers of ignoring the folding ef-
fect by studying a driven particle in a quartic double well potential in the
absence of an environment (see [13] for a study with an environment). By
focusing on a chaotic parameter regime in which the directions of the stable
and unstable manifold change rapidly they have defined a new timescale,
τtwist, as the inverse of the average twisting frequency of these changes in
direction. Moreover Zurek and Paz [11,12] have defined a timescale on which
the quantum corrections can be expected to become at least as significant as
the classical term in the evolution of the Wigner function where the quan-
tum corrections involve spatial derivatives of the potential. The quantum
evolution of an initial coherent state can be compared to an initial classical
Gaussian distribution of points in phase space. At every point in a chaotic
region of phase space there are are local stable and unstable directions along
which neighbouring trajectories will either exponentially contract or expand,
respectively. In addition, the exponential rate at which both these processes
occur is governed by the local Lyapunov exponents. Conservation of vol-
ume in phase space, however, requires that for every positive exponent, Λ,
corresponding to an unstable direction there is a negative exponent, −Λ, cor-
responding to a stable direction. Thus, for a “small” ~ the initial quantum
state will evolve in this classical manner: exponentially expanding in the
unstable directions but exponentially contracting in the stable ones. Now at
any point in phase space there will exist directions corresponding to stable
and unstable evolution. In general these directions will always have nonzero
projections onto the coordinate axes. If we consider any stable direction
associated with a Lyapunov exponent −Λ, then a wave packet will contract
along the momentum coordinate, p say, according to

∆p(t) = ∆p(0) exp(−Λt), (11)
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where ∆p(t) defines the variance in that momentum direction at a time t.
Of course, the uncertainty ∆q(t) in the position q conjugate to p must obey

∆q(t)∆p(t) ≥ ~

2
(12)

and so

∆q(t) ≥ ~

2∆p(0)
exp(Λt). (13)

If the potential V (q) is sufficiently nonpathological it should always be
possible to make a harmonic approximation to it locally. So, if the ex-
tent of the Wigner function in every direction q remains sufficiently small
we will always have negligible quantum corrections since ∂mV (q)/∂qm = 0
∀m≥3 when the harmonic approximation to V (q) applies. However, when
the wavepacket spreads coherently in position until the harmonic approxi-
mation no longer applies this picture is changed irrevocably.

We define first a lengthscale on which the potential is no longer quadratic,

χ :=

√

∂qV

∂3
qV

, (14)

i.e. χ2 is the ratio of the usual classical force and a term in the first significant
nonlinear correction to appear in the evolution equation for the Wigner
function. Note that χ → ∞ as ∂3

qV → 0. From equation (13) we see that
∆q(t) reaches this scale at certain time t~ given by

t~ :=
1

Λ
ln

(

2∆p(0)χ

~

)

. (15)

This is approximately the time at which the quantum corrections will become
nonnegligible, for any value of ~. They then proceed to classify the chaotic
dynamics in the following way: if t~ ≤ τtwist it means that the directions of
the stable and unstable manifolds remain constant for long enough to allow
the quantum correction terms to become as large as the classical Liouville
term. The dynamics will then be flagrantly quantum. If, on the other hand,
t~ ≫ τtwist, one expects that the rapid change in the directions of expansion
and contraction will curtail the growth of the quantum correction terms. The
dynamics should then mimic the classical Liouville flow for times in excess
of t~. Indeed, this is what they have found [22]: when t~ ≫ τtwist they find
the quantum correction terms to be very much smaller than the Liouville
terms, even when t > t~. They warn, however, against defining quantum-
classical correspondence as a small ratio of the former to the latter. For,
even when this is the case, they still find an appreciable difference between
the quantum and classical distributions, one, indeed, which grows in time.
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We shall later address these issues by examining the effect that a mixed
phase space, complete with all the complexity and folding we might expect,
has on the rate of entropy increase.

Finally, we note that the inverted oscillator model cannot account for the
special dynamical localisation behaviour seen in many studies of quantum
chaos since its inception [7, 9].

4. A reexamination of the inverted oscillator

4.1. Generalised approach

So far we have given an outline of the reasons for an environmental
approach to the study of classically chaotic quantum systems. In particular
we concentrated on the central thesis of Zurek and Paz that the behaviour
of a quantum system in contact with an environment can provide a good
indication as to the nature of the analagous classical, Hamiltonian evolution.

The appeal of equation (10) is great, as we have discussed, since, through
the classical KS entropy, it directly relates the rate of information production
in an open quantum system to that in its classically chaotic counterpart. It
indicates that the more chaotic a classical system is then the more quickly
will we lose information about the state of the quantised system to a (weakly)
perturbing environment. We previously pointed out some weaknesses of this
model. By implication, therefore, there is no a priori reason to believe in
the direct applicability of the quantitative conjecture of equation (10) to a
typical classically chaotic quantum system.

We have [23] generalised the calculation to thermal baths with arbitrary
temperatures and obtained

dS

dt

t→∞
= κ− γ

= κ′ , (16)

where the shorthand definition

κ =
√

Λ2 + γ2 (17)

has been used here. This result gives the asymptotic rate of entropy increase
in situations where energy dissipation is important and cannot be neglected.
As γ determines the strength of the coupling to the environment we can
now see that the rate at which an unstable, possibly chaotic system will
lose information to the environment can in fact depend on the coupling
strength [15]. Note, however, that this asymptotic rate does reduce to the
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asymptotic rate found previously in the weakly coupled regime

dS

dt

κt→∞
=

√

Λ2 + γ2 − γ

≈ Λ, when γ ≪ Λ, (18)

as required.

4.2. Concluding remarks

We have used the inverted harmonic oscillator to model instability in
open quantum systems and have found that the rate of increase of the von
Neumann entropy depends, for large times, on the degree of instability in
the system and on the strength of interaction with the environment in a
simple way. In fact, in deriving equation (16) we have generalised the result
of Zurek and Paz to the case of finite dissipation. The purpose of studying
such an elementary system is to build up some degree of intuition concern-
ing the behaviour of quantum chaotic systems coupled to an environment.
However, and as we have already discussed, a priori claims as to the ap-
plicability of predictions based on an analysis of the inverted oscillator to
classically chaotic quantum systems should be treated with caution. Sim-
ilarly, the result of equation (16) which, we recall, has been derived for
arbitrary temperatures, does not mean that we can expect the von Neu-
mann entropy of a genuinely chaotic system to increase at the given rate
at all temperatures. This is because the quadratic nature of the inverted
oscillator potential implies that the quantum corrections which arise in the
evolution of the Wigner function, vanish identically. In general, however,
they do not vanish for genuinely chaotic systems. It is precisely these cor-
rections which lead to the breakdown in phase space correspondence at the
time t~ given by equation (15). If the temperature is not high enough then
the phase space behaviour will be flagrantly quantum after t~ and equation
(16) will then not hold. Once again, therefore, the quadratic nature of the
inverted oscillator potential makes it dangerous to extrapolate to genuinely
chaotic systems.

5. Model chaotic systems

It seems, therefore, that taking the effect of an environment into account
helps to re-establish the correspondence between quantum and classical me-
chanics [17, 18]. It is entirely natural, then, to apply it to situations where
the problem is most evident; namely, the quantum behaviour of classically
chaotic systems [11, 12].

Before we can continue with our discussion we need to consider mod-
els which will generically embody the features of classical chaos. We will
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consider first the large class comprising Hamiltonian systems. The orbits in
chaos are very complicated and so it is natural to diminish the complexity
of the description of orbits by considering Poincaré sections. This naturally
leads onto area-preserving maps. An important class of such maps are twist
maps which arise for integrable tori and are deformed by non-integrable
perturbations. In action-angle variables

φ′ = φ+ ∂I′S0

(

I ′
)

+ ε∂I′S1

(

I ′, φ
)

,

I ′ = I + ε∂φS1 (I, φ) . (19)

An important example of such a twist is the so called standard map:

φ′ = φ+ I ′ mod 1

I ′ = I − K

2π
sin (2πφ) . (20)

This map can also be thought of as Hamilton’s equations for the following
time-dependent Hamiltonian:

H (I, φ, t) =
I2

2
− K

4π2
cos (2πφ)

∞
∑

n=−∞

δ (t− nT ) . (21)

The quantisation of this Hamiltonian follows by making φ and I op-
erators with canonical commutation relations. The δ-function kick is not
strictly necessary although we find it a convenient formalism. In fact it is
possible to consider a related Hamiltonian which leads to the same one step
dynamics, viz.

H (I, φ, t) =

{

I2

2γ
0 < t < γT

K
4(γ−1)π2 cos (2πφ) γT < t < T

(22)

for 0 < γ < 1. It is now important to characterise classical chaos in such
models in some detail. The (I, φ) notation is now replaced by (p, q) to
highlight the momentum (p) and position (q) variables in classical phase
space.

5.1. The onset of chaos

We will employ the standard map (21) to describe, in terms of orbits,
the onset of chaos and to elucidate the range of phenomena which occur
as a result. The following subsections are organised by increasing levels of
chaotic behaviour with figure 1 showing the sequence of phase space plots
for increasing K.
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(a) K =0.0 (b) K =0.2

(c) K=0.5 (d) K =0.97

(e) K =1.5 (f) K=4.0

Fig. 1. Phase space of the classical standard map with varying K values bounded

on the interval [− 1

2
, 1

2
) for both q and p.
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5.1.1. The integrable case

We begin at K = 0 when the standard map becomes pn+1 = pn, qn+1 =
qn + pn+1, (mod q = 1). Thus pn is a constant of the motion, and qn grows
at a constant rate depending on pn. The solution is pn = p0; qn = q0 + np0

and thus the map is integrable. The frequency is defined, if it exists, as the
limit

ω = lim
n→∞

qn − q0
n

. (23)

Trivially, when K = 0, ω = p0, for any initial condition. For each rational
ω, p0 = n/m (where n,m are positive integers) and the (n,m) orbit is
periodic with period m. Rational values of ω occur as a dense set of values
of p0 = n/m.

However, almost all points have an irrational ω so that the orbit never
returns to its initial condition. Thus when K = 0, the standard map is
termed quasiperiodic because even when ω is irrational the orbit is recurrent,
i.e. it returns arbitrarily close to its initial condition with the q co-ordinate
densely covering the line p =constant on the unit square in phase space. On
the other hand, the orbit for a rational ω forms a finite set of periodic points.
The phase space of this integrable map is shown in figure 1(a). Since the
standard map is periodic in q, these lines across the phase space actually
represent circles. Both the continuous circle of points associated with an
irrational ω orbit and the discrete circle of points associated with a rational
ω orbit are called rotational invariant circles. It is “rotational” because
it encircles the unit phase space in the q direction. More generally, these
rotational invariant circles become (N -dimensional) rotational invariant tori
in an integrable system with an N -dimensional phase space.

5.1.2. Nearly integrable case

Figure 1(b) shows how much of the structure of the integrable map per-
sists as K is increased from zero. The fact that most of the irrational ω
orbits still seem to lie on (densely filled) rotational invariant tori is a pre-
diction of the Kolmogorov–Arnol’d-Moser theorem [55], thus they are called
KAM tori.

However, there are clearly another class of orbits which we see by focusing
on the points of rational frequency. For example, near p = 0, where there
is a circle of points of frequency 0/1, figure 1(b) shows an “island.” This
consists of a family of curves that are circles, but do not span unit phase
space. These are librational, as opposed to rotational, circles and as before
become N -tori in higher dimensions. The island is bounded by a separatrix,
which is a curve separating the librational and rotational tori. The region of
phase space bounded by the separatrix is called a “resonance zone” or simply
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a resonance. The island is not reflection symmetric about the p axis, and be
begins to distort as K is increased.

There are also resonances for other rational values of p, corresponding
to the periodic orbits with frequencies n/m. Each resonance consists of a
chain of m islands, several of which are shown in figure 1(c). At the centre
of each island, and at the cusp of the separatrix, there are periodic orbits
with frequency n/m. Orbits trapped in an island move successively from one
island to another, following the periodic orbit, skipping over n − 1 islands
with each iteration of the mapping. There are thus entire regions of phase
space each having a different frequency n/m. These are segregated by the
KAM tori. Chaotic trajectories make up the narrow (fuzzy) bands at the
resonance borders.

5.1.3. Transition to chaos

As K increases, the resonances grow in size, and the region of phase
space occupied by rotational invariant KAM tori necessarily shrinks. KAM
tori are destroyed when resonances engulf the region of phase space they
once occupied. Figure 1(d) shows the standard map at a chaos parameter
value for which many of the KAM tori are destroyed. All the resonances are
becoming increasingly distorted by the large central resonance.

It has been shown that when K is large enough there can be no KAM tori
[56]. Greene [57] discovered that for the standard map, the last KAM torus
to be destroyed has frequency equal to the golden mean (ωlast = (1+

√
5)/2)

and occurs for Klast ≈ 0.97. We show the phase space for the standard map
with this chaos parameter in figure 1(e).

The islands are fractal in that around each one are smaller similar islands
and around each of these are even smaller similar islands [58]. The fact
that all islands have satellite islands on ever smaller scales testifies to the
complexity or fractality of the phase space.

5.1.4. Global chaos

In figure 1(e) the last remaining KAM torus, which stretches horizontally
across the unit phase space, is broken. When K ≤ 0.97 it is not possible for
any trajectories to diffuse vertically through this line and reach arbitrarily
large values of p. But beyond this K value the map becomes globally chaotic
in that chaotic trajectories can reach all regions of phase space. The remain-
ing resonances contain small stable islands in a chaotic sea of trajectories.
Figure 1(f) shows the standard map for K = 4 when most of the structure
is wiped out.
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5.2. A classical entropy measure

The Kolmogorov–Sinai (KS) entropy, hKS, is a measure of the rate of
information production in the system [62]. Thus hKS = 0 only for completely
regular dynamics. Pesin [63] showed that KS entropy is equal to the sum of
the positive Lyapunov exponents of a chaotic system i.e.,

hKS =

N
∑

i=1

σ+
(i). (24)

The KS entropy (also called dynamical entropy or metric entropy) of a
chaotic mapping can be calculated using the formula

hKS = lim
t→∞

(

1

t

) t
∑

n=1

log2 ln, (25)

where

ln =

√

√

√

√

d
∑

a=1

(

δx
(a)
n

)2
(26)

is the changing distance between two initially close neighbouring points,

(x
(1)
0 , . . . , x

(d)
0 ) and (x

(1)
0 + δx

(1)
0 , . . . , x

(d)
0 + δx

(d)
0 ), on Σ. δx(1), . . . , δx(d)

are evolved by iterating a linearised form of the chaotic map. This tangent
map is rescaled after every iteration as follows: the nth iteration of the map

produces the values δx
(1)
n , . . . , δx

(d)
n from which ln is calculated. These values

are then rescaled to δx̄
(1)
n = δx

(d)
n /ln, . . . , δx̄

(d)
n = δx

(d)
n /ln which are fed back

into the tangent map for the next iteration [54]. Thus ln is dimensionless.
Use of the base-2 logarithm in Eq. (25) allows the entropy to be measured
in bits of information.

The generalised iterative map xn+1 = f(xn) can be linearised to give its
associated d-dimensional tangent map

δxn+1 = f(xn + δxn) − f(xn) = gδxn (27)

where g = (g(1), . . . , g(d)). This can be employed in Eq. (25) to calculate
hKS.

If g = g(xn) then the value of hKS will clearly depend on the initial

position (x
(1)
0 , . . . , x

(d)
0 ) on the coordinate space Σ. This is often not the

case. hKS is generally used as a global measure of the level of chaos in a given
system, but this is only valuable if all chaotic trajectories in the system can
reach into all regions of its coordinate space. Well known examples of such
systems include the cat and baker’s maps [64].



3658 P.A. Miller, S. Sarkar, R. Zarum

However for lower values of the chaos parameter K, maps such as the
standard map and kicked top map, have a predominantly mixed Σ in which
different chaotic regions are not connected. g is a function of xn and invari-
ant rotational tori act as boundaries so that trajectories originating in one
chaotic region cannot escape to another. This isolation inhibits the expo-
nential divergence of chaotic trajectories so that hKS will vary from region to
region. Thus Eq. (25) becomes a measure of localised KS entropy, hKS(x0).

To reveal a complete description of these maps at a specific K in terms
of KS entropy, many values of hKS corresponding to many initial positions
on Σ can be plotted as a contour map on Σ. Using (25) and (27), and
letting t → ∞, values for hKS can be calculated for each point on a large
grid of points spanning Σ. Setting t = 105 iterations, figure 2 shows the KS
entropy contour map for the standard map with three different K values.

(i) K=0.2 (ii) K=0.97

(iii) K=4.0

Fig. 2. KS entropy contour maps for the standard map in unit phase space.
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The values for hKS were calculated for each point on a 64 × 64 grid
spanning the same unit of phase space and the same K values as in figure
1(b),(d) and (f). Shading intensity reflects the relative sizes of the KS en-
tropy. hKS = 0 is shown as white on the maps while darker and darker
shades of grey reflect an increasing hKS. The black areas show the largest
hKS values corresponding to the most chaotic regions of the standard map.
The resemblance between figure 1 and figure 2 is striking. Stable islands
in the classical maps translate to stark white patches in the contour maps.
This is because hKS = 0 for all periods in non-chaotic dynamics. The chaotic
sea of trajectories in the phase space map are also faithfully reproduced as
very dark patches of similar shape and size in the contour map. All these
correlations indicate that hKS presented in this way can comprehensively
display all the essential features of the standard map as it becomes globally
chaotic.

6. Entropy and chaos in quantum mechanics

6.1. Suppression of chaos

It is clear from the last section that the study of classical chaos is a
mature and well understood discipline. On the other hand, the very existence
of quantum chaos has been plagued with controversy [44, 46, 47]. Classical
chaos refers to the dynamical behaviour as t → ∞. It has a fundamentally
asymptotic character. We have seen how chaos in classical Hamiltonian
dynamics arises because of unstable orbits which cause errors in the initial
data to grow exponentially. The situation seems to be very different in
quantum mechanics. Here the dynamical law is a unitary evolution of an
initial state ψa(0):

ψa(t) = Ûψa(0). (28)

Similarly, starting from a slightly different initial state ψb(0) yields ψb(t)

= Ûψb(0) with the same unitary operator Û . It follows that the scalar
product of the states ψa and ψb is constant,

〈ψa(t), ψb(t)〉 = 〈ψa(0), ψb(0)〉, (29)

so that small imperfections in the preparation of the initial state do not
grow. Accordingly, the classical notion of exponentially increasing distance
between initially nearby trajectories cannot be translated into quantum the-
ory and so this naive attempt to describe quantum chaos fails.

It has been suggested [72] that the linear nature of the time-dependent
Schrödinger equation could be preventing the observation of chaos in quan-
tum mechanics. A classical Hamiltonian system has, however, in addition to
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its description in terms of trajectories governed by Hamilton’s equations of
motion, an equivalent description in terms of Liouville probability densities
governed by the Liouville equation. If the time-shift classical operator Û ,
determined from Hamilton’s equations, is defined by

(qt, pt) = Û(q0, p0) (30)

then Liouville’s equation represents the conservation of an arbitrary phase
volume Γ under the operator Û , i.e. [73]

Γt = ÛΓ0 = Γ0. (31)

Because it conserves phase space volumes, the linear Liouville equation
shares with the Schrödinger equation a lack of sensitivity to initial con-
ditions though it does preserve the chaos of the trajectories [74]. So the
argument that the linearity of the Schrödinger equation is responsible for
the absence of chaos in quantum mechanics is fallacious.

In fact the correct analogue of a quantum state vector is not a point in
classical phase space, but a Liouville probability density, ρ [75]. This sets
the stage for a straightforward generalisation to quantum mechanics.

6.2. Statistical mechanics perspective

The exact point a system occupies in phase space is not generally known
in statistical mechanics. The predictions of classical statistical mechanics are
derived from a Liouville probability density ρ(p, q) on phase space, which
describes incomplete knowledge of the system’s phase space position (p, q)
and which is the mathematical representation of a system state. The entropy
of a system state ρ(p, q), known as the Gibbs entropy or fine-grained entropy,
is defined as

hG = −
∫

dΓ (p, q)ρ(p, q) log2(ρ(p, q)), (32)

where the base-2 logarithm means that the entropy is measured in bits of
information. The fact that the Gibbs entropy is formally identical to Shan-
non’s statistical measure of information (i.e. Shannon entropy) means that
hG can be interpreted as the amount of information missing for a complete
specification of the system. Since an infinite amount of information would
be needed to give the exact location of a point in phase space, hG is defined
up to an arbitrary additive constant.

In quantum mechanics, states described by ρ can be represented either
by a Hilbert space vector |ψ〉 or, more generally, by a density operator ρ̂,
depending on the preparation procedure. The quantum parallel for Eq. (32),
known as the von Neumann (vN) entropy, is defined as
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hvN = −Tr(ρ̂ log2 ρ̂), (33)

and measures the information missing toward a complete specification of
the quantum system. Since no information beyond that contained in the
wave function exists about a quantum system, hvN = 0 for a pure state
ρ̂ = |ψ〉〈ψ|. As a consequence of Eq. (31), both hG and hvN remain constant
under Hamiltonian time evolution. Thus no information about the initial
state of the system is lost.

To make the connection with thermodynamics, we assume that there is
a heat reservoir at temperature T0, to which all energy in the form of heat
must eventually be transferred. In the presence of this reservoir, the free
energy i.e. the maximum average extractable work, for an equilibrium state
is given by

F = E − T0kBh ln 2, (34)

where E is the mean internal energy of the state, kB is Boltzman’s constant,
and h = hG classically and h = hvN quantum mechanically. The extractable
work is given by Eq. (34) for any state of the system, even outside equilibrium
[76]. This means that each bit of missing information “costs” T0kB ln 2 of
extractable work.

Since entropy is a measure of the state of knowledge about the system,
the only way that F can change (except for changes in the energy levels) is
via a change in the state of knowledge. However, Hamiltonian time evolution
of an isolated system does not lead to a change in the state of knowledge so
entropy and extractable work remain unchanged. As we have seen, this is
a consequence of Liouville’s theorem and is equally true for regular as for
chaotic systems. They are thus indistinguishable since neither gives rise to
an information loss.

6.3. Open systems

To use entropy for distinguishing chaotic from regular systems we need
a method for the information about the system to change. This is possible
in three ways:

6.3.1. Measurement

Extractable work can increase if a measurement is made on the system.
The accompanying decrease in entropy does not constitute a violation of the
sceond law of thermodynamics, however, because the physical state of the
observer changes in the course of the measurement. A simple quantitative
description of the change in the state of the observer was given by Landauer
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[77]. If the observer who performs the measurement wants to use additional
information about the system to increase the extractable work, they must
keep a physical record of the acquired information. According to Landauer’s
principle, the erasure of a bit of acquired information in the presence of
a T0 temperature reservoir is necessarily accompanied by a dissipation in
energy of at least T0kB ln 2. If this thermodynamic cost of erasing acquired
information is taken into account as a negative contribution to F , then,
on average, no measurement can increase the overall extractable work [78]
because it is determined by the sum of entropy and acquired information.

6.3.2. Discarding information

Extractable work can decrease if information about the system is lost,
i.e. entropy increases. One mechanism for information loss is by deliberately
discarding information and was used by Jaynes [79] to derive traditional
thermodynamics. Jaynes showed how equilibrium thermodynamics follows
naturally from Liouville’s equation if only information about the values of
the macroscopic variables defining a thermodynamic state is retained. Un-
required information is discarded by means of the principle of maximum
entropy. Coarse graining is another way of discarding unrequired informa-
tion in which all details below a certain scale are ignored.

6.3.3. Interaction with an incompletely known environment

The second main mechanism for information loss involves the interaction
with an incompletely known environment. This leads to a perturbed time
evolution of the system. Predictions for the system can then be made by
tracing out the environment, i.e., by averaging over the perturbations, which
is generally accompanied by an entropy increase.

These three methods all show that a system must be open if its evolution
is to cause an entropy increase.

7. Quantum entropy measures

To study quantum chaos we need a quantum entropy measure that could
be employed in a similar way to the classical KS entropy(-rate) discussed
earlier. The obvious choice is the rate of von Neumann entropy production.
This is a quantitative measure of disorder in quantum statistical mechanics
and can also be measured in bits per unit time. As described earlier, the
interaction of a system with an incompletely known environment will cause
an entropy increase, and thus we first need a way to determine ∆hvN for an
open quantum system.
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7.1. Introducing an environment

Consider a quantum system S with Hamiltonian

ĤS(p̂, q̂, t) =
p̂2

2
+ TKV (q̂)

∞
∑

n=−∞

δ(t− nT ). (35)

This is a generalisation of the classical Hamiltonian in Eq. (21). Similarly,
initial states |ψ(0)〉 are assumed to be coherent states. These can be charac-
terised as minimum-uncertainty states [80] allowing for a close comparison
with the classical dynamics. At time t, the system can be described by the
density operator

ρ(t) = |ψ(t)〉〈ψ(t)| (36)

which evolves according to the equation

ρ(t+ T ) = ÛSρ(t)Û
−1
S . (37)

Here ÛS is the evolution operator for the system given by

ÛS = exp

(−ip̂2T

2~

)

exp

(−iTKV (q̂)

~

)

. (38)

In an experimental situation, the free particle motion would need to be
periodically opened up to an environment to allow the δ-function “kick”
to be introduced. Though Eq. (38) defines the evolution operator for free
motion experiencing an instantaneous periodic kick, it is equally valid (as
long as the free motion is not concurrent [59]) for a finite time periodic
kick which is what is required to perform this experimentally. Requiring a
quantum system to be open to achieve an entropy increase is thus not just
a convenient mathematical construction but a necessary condition for an
experimental realisation.

We choose, therefore, the environmental coupling to mirror the form of
the kick in Eq. (35) with regard to the q̂ dependence and interaction time.
We also choose the environmental model to be a collection of degenerate
two-state systems with a range of interaction strengths governed by a normal
distribution. This is a generalisation of the class of environments considered
by Schack and Caves [51]. Thus we have an interaction Hamiltonian

ĤI = εV (q̂) ⊗
∞
∑

n=−∞

σ̂z(n)δ(t− nT ). (39)

During the nth kick S interacts with a single two state system I. This
has Pauli operator σ̂z(n) and interaction strength ε. Each of the two-state
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enviroment systems is equally likely to in the “up” state |↑〉, where σ̂z|↑〉 = |↑〉,
or in the “down” state |↓〉, where σ̂z|↓〉. During each kick the distribution Pε

for ε is the normal distribution N(ε0, εvar).
The combined (total) Hamiltonian for the coupled system and environ-

ment is thus

ĤT = ĤS + ĤI (40)

and the corresponding density operator evolution equation is

ρ(t+ T ) = ÛT (ε, β) ρ(t) Û−1
T (ε, β) . (41)

Here ÛT is the combined evolution operator given by

ÛT (ε, β) = ÛIÛS , (42)

where

ÛI = exp

(−iεβTV (q̂)

~

)

. (43)

β ∈ {−1, 1} and is the result of measuring the two state environment after
each interval T to determine whether it is an up or down state. As before,
this same operator would result if Eq. (39) was turned on for the finite time
required for an experimental realisation of this system.

The effect of this environmental coupling is to produce a multiple stochas-
tic perturbation at the end of each time interval. Roughly speaking, Eq. (43)
acts like a momentum shift operator, the extent of the shift being depen-
dent on ε at every time step. If εp is the magnitude of the momentum shift
measured in units of the separation between momentum eigenstates then

εp =
ε

2π~
. (44)

We can model N(ε0, εvar) with a symmetric binomial distribution such
that ε is drawn from a large collection of R + 1 independent interaction
strengths. Thus after each interval, there are 2R+ 2 different measurement
results leading to 2R + 2 possible pure states for the system. Averaging
over all these possible outcomes in the position basis produces the density
operator evolution equation for S which is

ρ̄ab(t+ T ) ≡ 〈a| ρ̄(t+ T ) |b〉

=
R+1
∑

r=1

Pεr

2

∑

β=−1,1

〈a| ÛT (εr, β) ρ̄(t) Û−1
T (εr, β)|b〉

= F (a, b) 〈a| ÛS ρ̄(t) Û
−1
S |b〉 , (45)
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where

F (a, b) =
R+1
∑

r=1

Pεr
cos

(

εr[V (a) − V (b)]

~

)

(46)

now contains all the perturbation effects due to the environment. This
results in a vN entropy increase, ∆hvN, which can be determined by

∆hvN(nT ) = −Tr(ρ̄(nT ) log2 ρ̄(nT )) , (47)

where ρ̄(nT ) is the average density matrix of the system after n time steps.
We are now in a position to calculate the von Neumann entropy produc-

tion rate, h̃vN. Setting T = 1, this can be approximated in discrete time
by

h̃vN ≈ ∆hvN(n) − ∆hvN(n− 1) . (48)

Using this and expanding the cosine in Eq. (46) and the logarithm in Eq. (47)
as power series, the rate of vN entropy production in aD-dimensional Hilbert
space can be written explicitly:

h̃vN ≈
∞
∑

m=1

m
∑

q=1

(

m

q

)

(−1)q+1

m ln 2

D
∑

a1...aq+1

(

q+1
∑

l=1

f(al, al+1)

)

×
q+1
∏

l′=1

〈al′ |ÛS ρ̄(n− 1)Û−1
S |al′+1〉 , (49)

where D = (2π~)−1, l is cyclic (lq+2 = l1) and

f(al, al+1) =

R+1
∑

r=1

Pεr

∞
∑

j=1

(−1)j+1

(2j)!

(

εr[V (al) − V (al+1)]

~

)2j

. (50)

It should be noted that the total entropy increase is bounded by a max-
imum,

(hvN)max = −
D
∑

j=1

(

1

D

)

log2

(

1

D

)

= log2D . (51)

This is only attained when the density matrix is a completely random en-
semble [81]. Clearly, (hvN)max is limited by the dimensions of the Hilbert
space.
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7.2. Linear entropy

Linear entropy [82] is a measure of the purity of a state. It is defined as

hlin. = Tr(ρ− ρ2). (52)

and has been used to reveal the selection of the preferred classical set of
states in the process of quantum decoherence [83].

Keeping only the first term (m = 1) in the logarithm expansion in
Eq. (49) yields the linear entropy production rate:

h̃lin.
vN ≈

D
∑

a1,a2

(f(a1, a2) + f(a2, a1))
∣

∣

∣
〈a1|ÛS ρ̄(n− 1)ÛS |a2〉

∣

∣

∣

2
. (53)

Assuming εvar ≪ 1 we only need to keep the first term of the j expansion
in Eq. (50). Thus

f(a1, a2) =

R+1
∑

r=1

Pεr
ε2r

2

(

[V (a1) − V (a2)]

~

)2

. (54)

However,

R+1
∑

r=1

Pεr
ε2r = εvar, (55)

so that

h̃lin.
vN ≈ εvar

ln 2

D
∑

a1,a2

(

[V (a1) − V (a2)]

~

)2 ∣
∣

∣
〈a1|ÛS ρ̄(n− 1)ÛS |a2〉

∣

∣

∣

2
. (56)

This gives us an idea of the parameter dependence of h̃vN. At each
timestep the linear entropy production rate is proportional to the variance
of the distribution of interaction strengths as well as being dependent on
the specific nature of the environment. Thus the strength and nature of the
environment are expected to effect the rate of entropy increase. This is in-
tuitively satisfying since the ultimate source of quantum entropy production
is the environmental coupling.

8. Quantum-classical correspondence

As we stated earlier Zurek and Paz [52, 53] have conjectured that for
an open quantum system with minimal dissipation which displays classical
chaos, the rate of vN entropy production, h̃vN, of its quantum analogue,
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after an initial decoherence time, td, will rise to a maximum value which
is equal to the sum of its positive Lyapunov exponents. This “entropy rate
plateau” will be sustained until the system begins to approach equilibrium
when h̃vN will slowly decrease. It will reach zero at a time teqm when the
entropy increases to a maximum as in Eq. (51). In contrast, for the quantum
analogue of a regular system, the entropy production rate will asymptotically
tend to zero well before teqm. These possibilities are shown in figure 3.
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Fig. 3. The correspondence conjecture.

8.1. Theory

Since hKS is equal to the sum of the positive Lyapunov exponents of a
classically chaotic system (Eq. (24)), this correspondence conjecture can be
written as

h̃vN = hKS. (57)

With reference to the above system S interacting with an environment,
the Zurek and Paz conjecture implies that the discrete time h̃vN should be
approximately equal to the KS entropy of its unperturbed counterpart in
classical mechanics. Thus if

td < n≪ teqm, (58)

then

h̃vN ≈ ∆hvN(n) − ∆hvN(n − 1) ≈ hKS. (59)

The onset of decoherence at time td is essentially independent of ĤS ,
but is dependent on the strength and nature of the coupling with the envi-
ronment described by ĤI and on the form of the initial state.

Suprisingly however, the conjecture of Zurek and Paz expects that for a
system weakly coupled to an environment and fulfilling Eq. (58), the nature
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and strength of the environmental coupling will not effect the correspon-
dence described in Eq. (57) [84]. Our derivations of the discrete time h̃vN in

Eq. (49), and h̃lin.
vN in Eq. (56), clearly show that the environment will effect

the correspondence relation.
We will numerically calculate vN entropy production rates for two quan-

tum systems with a range of environmental coupling strengths. This will
lead to a modified version of the correspondence conjecture advocated by
Zurek and Paz. Also, since we now have a formal way of calculating quan-
tum entropy production rates, we can produce vN entropy production rate
contour maps and their associated multifractal spectra.

8.2. Shadowing

There is an immediate challenge to the correspondence conjecture as
a result of introducing an environment. The Hamiltonian of the coupled
system described in Eq. (40) no longer corresponds to the classical one. By
comparing Eq. (38) with Eq. (43), it is clear that K will be replaced by
K + εΛ in the map derived from the classical limit of the coupled quantum
Hamiltonian. This mapping is like the generic classical map but with a small
perturbation (whose strength and sign is randomly chosen at each time step)
added to the chaos parameter K.

By rewriting this mapping as

qn+1 = qn + pn+1

pn+1 = pn + δn −K

(

∂V

∂q

)

q=qn

, (60)

where

δn = (εβ)n

(

∂V

∂q

)

q=qn

, (61)

we can now view the classical perturbation as a small random displacement
in phase space at every time step. This noisy classical mapping is comparable
to the noise generated by round-off errors in the numerical computation
of classical chaotic trajectories. Once again we can invoke the shadowing
property to argue that the noisy classical map in Eq. (60) will generate the
same localised KS entropy measures as the generic classical map provided
that the noise level is below a certain bound.

8.3. Results for the standard map

Quantum entropy measures for the standard map [91] can be found by
following the theory in Section 7.1 while setting V (q) = cos(4πq̂)/4π2. A
uniformly spaced 64× 64 grid of initial coherent states (corresponding to an
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even spread over unit phase space) were numerically evolved in time. Using

Eq. (48), the maximum value of h̃vN for each evolution was plotted on a
contour map in a similar fashion to the classical case. Figure 4 displays
the results for three values of K with D = 256, ε0 = 0.001, εvar = 0.2ε0,
R = 100 and T = 1.

(i) K=0.2 (ii) K=0.97

(iii) K=4.0

Fig. 4. Contour plots of the vN entropy production rate in unit phase space for the

quantum kicked rotor (standard map) interacting with an environment

There are remarkable similarities between figure 2 and figure 4. For
the same K values, the size and location of the various stable islands is
analogous, dark patches are prevelant in the heavily chaotic regions, the
axes of symmetry are consistent and the overall complexity of the dynamics
is clearly visible in both.

There are also differences. The quantum contour maps are generally
much smoother than their classical counterparts. This is because each ini-
tial coherent state in the quantum system has a support area causing their
evolution to imitate that of a density of points on phase space. Thus neigh-
bouring coherent states will fail to achieve dramatically different rates of
vN entropy production. Increasing D reduces the supports of the initial
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coherent states as well as reducing the overlap between neighbouring states.
It was found that this led to a reduction in the smoothness of the quan-
tum contour maps making them more greatly resemble the classical contour
maps.

The process of calculating these entropy contour maps was repeated with
variations to N(ε0, εvar). For ε0, εvar ≪ K, when any entropy increase is due
primarily to the chaotic dynamics of the system and not the interaction,
similar results were achieved.

9. Generalised cat map investigations

To investigate further the notions of classical chaos and the correspond-
ing quantum chaos discussed in previous sections we now turn to a simple
one dimensional system — the generalised cat map. We review the classical
dynamics of this map, show its chaotic nature based on established defini-
tions and highlight some special features which will be useful when looking
at its quantised counterpart. We make entropy comparisons between the
classical and quantum generalised cat systems based on the theory of the
previous sections and present a mathematical relationship between these
entropies.

9.1. The classical map

Even though the generalised cat map is much simpler than the standard
map previously discussed it has a number of peculiar qualities that make
it worthy of investigation. Firstly, it is a straightforward piecewise linear
system capable of chaotic motion. Secondly, it displays an abrupt transition
between dynamical regimes by never having a mixed phase space. The map
can thus only be globally regular or globally chaotic. Thirdly, being a well
known system [47, 64, 85–89] its ability to act chaotically in the quantum
regime is of general interest.

9.1.1. Phase space dynamics

Introducing a simple nonlinear potential energy function V (q) =
−Kq2/2∑∞

n=−∞ δ(t − n) to replace the potential in Eq. (21) and impos-
ing periodic boundary conditions in both q and p gives rise to the mapping

pn+1 = pn +Kqn (mod p = 1),

qn+1 = qn + pn+1 (mod q = 1). (62)

HereK is a real variable which acts as the chaos parameter and the dynamics
of the system is confined to the unit phase space torus.
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The positive integer values of K produce a class of maps known as the
cat maps [64]. The name comes from the fact that their chaotic nature is
traditionally illustrated by showing the result of their evolution on the face
of a cat. The class of maps for noninteger K are known as the sawtooth
maps [85]. This name comes from the graph of the ’kick term’ in Eq. (62)
versus position i.e. plotting Kq (modq = 1) against q produces a repeated
sawtooth shape. Though the cat and sawtooth maps have some distinguish-
ing features (e.g. the cat map can be obtained from a non-periodic but
the sawtooth map cannot), we treat them as part of a family of mappings
because simply varying K in Eq. (62) can produce both. We choose the
generalised cat map (GCM) as their collective name.

The GCM is already linear so, following Eq. (27), its associate tangent
map is simply

(

δpn+1

δqn+1

)

=

(

1 K
1 1 +K

)(

δpn

δqn

)

. (63)

and is independent of phase space position for all times. The two eigenvalues,
Λ±, of this map are x±

√
x2 − 1, where x = 1 +K/2. The dynamics of the

GCM thus fall into two K dependent categories:
(i) When K > 0 or K < −4 then Λ+ > 0 > Λ−. In this case all

points in the phase space are hyperbolic (saddle points) so that the distance
between neighbouring trajectories exponentially expands in one direction
while exponentially contracting in another. The map is thus chaotic for all
initial conditions.

(ii) When −4 ≤ K ≤ 0 then

Λ± = x+ iy = e±iθ, (64)

where x = cos θ and y = sin θ =
√

1 − x2. In this case there are both
periodic and quasiperiodic phase space orbits densely spread throughout
the K value range. The smallest periodic orbit, P , is 4 for K = −2. Moving
away from this value in both directions, all possible periodic orbits can be
identified until P → ∞ as K → −4 and K → 0. When K = 0 the dynamics
are just those of a free rotor. No phase space points evolve exponentially so
the map is everywhere regular.

Figure 5 shows the phase space of the GCM for a number of K values.
Each one is the result of iterating several initial points 105 times. For (b) to
(e) the map is globally regular, having a central elliptic island surrounded
by an intricate set of other smaller islands which fill up the phase space. As
K is increased the extent of stretching and folding of the islands is reduced.
Specifically, the large central island no longer encounters folding when K ≥
1. In (a) and (f) the map is globally chaotic so that there is no phase space
structure at all.
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(a) K = −5.0 (b) K = −3.9

(c) K = −2.9 (d) K = −1.1

(e) K=–0.1 (f) K=1.0

Fig. 5. Phase space of the varying K values bounded on the interval [− 1

2
, 1

2
) for

both q and p.
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9.1.2. KS entropy measures

The two Lyapunov exponents of the GCM are σ± = ln(x ±
√
x2 − 1).

Also, using Eq. (24), the KS entropy of the map, in bits, is

hKS = log2(x+
√

x2 − 1), (65)

and when K is large hKS ≈ K. Using Eq. (63) in (25), with

ln =
√

(δpn)2 + (δqn)2, (66)

we have calculated the KS entropy as a function of K. This is shown in
figure 6 for a large number of K values, with t = 105. The graph shows the
abrupt switch from globally regular to globally chaotic dynamics at K = −4
and K = 0. It is symmetric about the K = −2 axis.

−8.0 −6.0 −4.0 −2.0 0.0 2.0 4.0
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

h K
S

Fig. 6. KS entropy vs. K for the GCM.

9.1.3. A divergence measure for regular dynamics

Though the KS entropy gives a measure of the GCM’s dynamics in the
chaotic regime, it is not very useful in the regular regime because hKS = 0 for
all nonchaotic motion. Can we find a measure that will reflect the changing
structure in the phase space of the regular GCM described in Fig. 5(b)-(e)?

From Eq. (64) we know that the eigenvalues for the tangent map are
complex in the regular regime and, as shown in figure 7, form an argand
diagram with radius 1. Like figure 6, this gives the impression that the
dynamics of the map are symmetric about K = −2.

However, it is clear from the phase space diagrams in figure 5 that the
regular dynamics are much more erratic for −4 < K < 2 than −2 < K0.
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Fig. 7. Argand diagram for eigenvalues of the regular GCM

We need a formula that is sensitive to the changing shapes of the elliptic
islands in phase space. The amount of stretching of the elliptic islands in the
GCM map depends on Eq. (66). However, for regular dynamics the diver-
gence is not exponential — it only grows linearly (or possibly algebraically)
— therefore the logarithmic measure described in Eq. (65) is not suitable.
Paralleling the well known Lyapunov characteristic exponent definition we
therefore suggest the following

σdiv = lim
t→∞

lim
d(0)→0

(

1

tR

)[

d(t)

d(0)

]

, (67)

where R is the highest power in the algebraic expression that the describes
the nature of the divergence. In the case of the discrete time 1-dimensional
GCM, assuming a polynomial divergence growth, we can then define a cal-
culable pseudo-entropy divergence measure

hdiv = lim
t→∞

(

1

l0tR+1

) t
∑

n=1

ln , (68)

where the growth rate of ln is parameterised by the polynomial coefficients
cr so that

ln =

R
∑

r=1

crn
r. (69)

In this adaptation of Eq. (25) the distance between neighbouring points does
not need to be rescaled after every time step because the divergence is not
exponential.

If we now assume a linear growth in the divergence of neighbouring phase
space points in the GCM then R = 1 and Eq. (68) becomes

hdiv = c1/2l0 , (70)
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because
t
∑

n=1

n = t(t+ 1)/2. (71)

Setting t = 105, figure 8 shows the numerical results of plotting hdiv

against K with this assumption. At K = −4 and K = 0 (shown by vertical
dashed lines), the graph gradually approaches infinity as expected. How-
ever, in between it produces a very interesting non-symmetric shape. As K
decreases, the hdiv curve quickly drops to a minimum just beyond K = −1.
The curve then begins to rise at a slower rate than the previous decline. The
approach to infinity at K = −4 thus starts earlier, and is also much slower,
than at K = 0.

−5.0 −4.0 −3.0 −2.0 −1.0 0.0 1.0
K

0.0

0.5

1.0

1.5

2.0

 h
di

v x
10

−
4

Fig. 8. Divergence plot for the regular GCM

The shape of this curve parallels the amount of stretching and folding
of the larger elliptic islands displayed in figure 5(b) to (e). When the curve
drops into the regular regime at K = 0, there is no folding and little stretch-
ing of these islands — see (e) in Fig. 5 — until K = −1. Thus hdiv quickly
falls to a minimum. However, for K ≤ −1, these islands begin to stretch and
fold more and more — see (d) to (b) in Fig. 5 — causing hdiv to gradually
increase. Also, comparing the difference in stretching and folding of these
islands in (b) and (e) of Fig. 5 explains why hdiv near K = −4 is much larger
than near K = 0.

In a similar set up with R = 2 (and in fact for R ≥ 2), the numerical
results gave hdiv = 0 for all values of K. This suggests that the assumption
of linear divergence growth in the case of the regular GCM is reasonable.

We now have a calculable measure of the GCM’s regular phase space
dynamics. Just as hKS measures the exponential divergence of neighbour-



3676 P.A. Miller, S. Sarkar, R. Zarum

ing phase space points when the GCM displays chaotic dynamics, so hdiv

measures the linear divergence of neighbouring phase space points when the
GCM displays regular dynamics. We thus have a comprehensive method of
measuring the nature of the dynamics of the GCM for all values of the chaos
parameter K.

9.2. The quantum map

We now quantise the generalised cat map and then closely follow the
procedure described in Section 7.1 of introducing a suitable perturbing envi-
ronment. The quantised model of the GCM is governed by the Hamiltonian

ĤGCM(p̂, q̂, t) =
p̂2

2
− Kq̂2

2

∞
∑

n=−∞

δ(t− n) . (72)

Following Refs. [34,80] and [90], the kinematics are that of finite-dimensional
quantum mechanics with periodic boundary conditions. Position and mo-
mentum space are thus discretised, placing the lattice sites at discrete values

qx, px = x/D , (73)

for x = −D/2, . . . ,D/2 − 1. The dimension D of Hilbert space is taken
as even and, for consistency of units, the quantum scale on phase space is
taken to be 2π~ = 1/D. The periodicised position and momentum basis
kets are denoted by |qx〉 and |py〉 respectively. The transformation functions
are discretised plane waves,

〈qx|py〉 =
1√
D

exp

(

2πixy

D

)

. (74)

Initial states, |ψ0〉, are chosen as follows. We define a family of D2 states
|qx, py〉, which can be treated as (minimum uncertainty) coherent states in
analogy to the continuous case. The fiducial initial coherent state

|ψ0{0,0}〉 = |q0, p0〉 (75)

is defined as the ground state of a special Harper operator [80] i.e. the
eigenstate with the smallest eigenvalue of the operator

2 − cos(2πq̂) − cos(2πp̂). (76)

This can be displaced with the appropriate operators to identify all the other
possible initial coherent states |ψ0{x,y}〉 = |qx, py〉, i.e.,

|ψ0{x,y}〉 = exp

(

iπxy

D

)

exp(−2πixp̂) exp(2πiyq̂)|ψ0{0,0}〉. (77)
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The unitary evolution operator for one step is

ÛGCM = exp

(−ip̂2

2~

)

exp

(

iKq̂2

2~

)

. (78)

Following Section 7.1, we introduce an environmental coupling which
mirrors the form of the kick in Eq. (72) with regard to the q̂ dependence
and interaction time. The interaction Hamiltonian is thus

Ĥinteraction =
εKq̂2

2
⊗

∞
∑

n=−∞

σ̂z(n)δ(t− n). (79)

and the combined evolution operator for the quantised perturbed GCM is

Ûtotal(ε, β) = exp

(

iεβq̂2

2~

)

ÛGCM. (80)

Following Eq. (45), the iterative density evolution operator for the coupled
system from timestep n− 1 to time step n is

ρ̄(n+ 1) = F (a, b)〈a|Ûtotal ρ̂(n)Û−1
total|b〉 , (81)

where

F (a, b) =

R+1
∑

r=1

Pεr
cos

(

πεr[a
2 − b2]

D

)

. (82)

The rate of von Neumann entropy increase after n time steps can then be
calculated using

h̃vN ≈ ∆hvN(n) − ∆hvN(n− 1) , (83)

where
∆hvN(n) = −Tr(ρ̄(n) log2 ρ̄(n)) , (84)

and ρ̄(n) is the average density matrix of the system at that time step.
Using Eq. (60), we can write the perturbed GCM associated with the

classical limit of the coupled quantum system as

pn+1 = pn +K(qn + δqn),

qn+1 = qn + pn+1 , (85)

where δqn = (εβ)nqn/K and mod p, q = 1. The discussion in Section 8.2
about the shadowing property implies that for small perturbations, the maps
in Eqs. (62) and (85) should lead to very similar entropy measures.

We used Eq. (85) to calculate hKS and hdiv for similar K values and
for a range of εvar which, as in the quantum case, govern the perturbation
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strength. We compared these results with the numerical results plotted in
figures 6 and 8. When εvar ≤ 0.1 all the hKS results for the perturbed and
unperturbed systems matched to at least two decimal places. Due to the
nature of Eq. (70), perturbations in K have a much larger impact on hdiv

than hKS so that the hdiv results for the perturbed and unperturbed systems
do not match up very well unless εvar ≪ 0.1. However, the overall shape of
the unsymmetric curve is common to both.

As expected, for small perturbations (εvar ≤ 0.1), we can assume that
the entropy rate measures of the chaotic dynamics of our quantised system
are comparable with the equivalent measures for the (unperturbed) classical
GCM. For regular dynamics only overall shapes of entropy rates vs. K plots
can be reasonably compared.

9.3. vN entropy results

This section contains the results of numerical computations of von Neu-
mann entropy performed on the perturbed quantum map. By varying the
parameters described below, a large array of data was produced which can
be used to investigate the quantum-classical correspondence of the GCM
system described in the previous chapter.

εvar is the variance of the normal distribution of interaction strengths and
is a measure of the coupling between the map and the perturbing
environment.

D is the dimension of the Hilbert space.

K is a measure of the extent of dynamical chaos in the GCM.

|ψ0{x,y}〉 describes the initial state of the system.

In our computations the normal distribution is modelled by a binomial
distribution of R+ 1 terms and mean ε0. We set R = 100 and ε0 = 0 for all
the results.

The plateau heights were computed in the same way for every result:
The von Neumann entropy rate was calculated for the first ten steps of the
discrete time evolution n. This was long enough to contain the complete
plateau. Then the three largest values of h̃vN were averaged to give the
average height of the entropy rate plateau.

Starting with the fiducial initial state |ψ0{0,0}〉 the coupled GCM quan-
tum system was numerically evolved in discrete time using Eq. (81). Then
using Eq. (83), entropy rate plateaux were calculated for a range of chaos pa-
rameters K and a range of environmentally-induced perturbation strengths
governed by εvar. The results, for D = 256 and D = 512, are displayed in
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figures 9 and 10. The vertical dashed lines mark out the two transitions to
global chaos in the corresponding classical dynamics and are shown to aid
the discussion of quantum-classical correspondence.
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Fig. 9. Quantum GCM: Entropy rate plateaux for a range of K with D = 256.
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Fig. 10. Quantum GCM: Entropy rate plateaux for a range of K with D = 512

(key is the same as above).

The overall shapes of the curves in figures 9 and 10 are remarkably similar
to the classical case of figure 6 in that the chaotic and regular regions are
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clearly distinct and there is a rough symmetry about K = −2. There are
however a number of differences in each of the two regions:

9.3.1. The chaotic region

Unlike the classical case, the entropy rate plateaux in figures 9 and 10
begin to level off for increasing |K|. There are two separate reasons for this
depending on the size of εvar which is used.

When εvar is small (e.g. the εvar = 0.005 curve in both figures), the per-
turbation strength is not large enough to cause complete decoherence. Unlike
the anharmonic oscillator discussed by Zurek and Paz in the correspondence
conjecture, the GCM exhibits folding as well as stretching. Increasing |K|
produces more folding and a faster development of fine structure in the clas-
sical phase space patch. Due to interference effects, this cannot be imitated
in the quantum GCM.

When εvar is large (e.g. the εvar = 0.04 curve in both figure), satura-
tion problems come into play. The combined effect of a large perturbation
strength and an increasing |K| cause the vN entropy to quickly approach its
maximum value. (hvN)max = 8 for figure 9 and 9 for 10). Thus the increase
of the vN entropy production rate will then be curtailed and the entropy
rate plateau will not faithfully reflect the peak rate.

9.3.2. The regular region

The discontinuity in the transitions from chaotic to regular dynamics
in the classical system become smooth gradual transitions in its quantum
counterpart. Also, though the (KS) entropy rate falls to zero in the regular
regions of the classical system, in the quantum system these regions contain
finite (vN) entropy rates which increase with εvar.

These differences are a result of the influence of the perturbing envi-
ronment as well as the nature of the vN entropy measure. The fact that
the environment is itself a source of entropy increase means that even in
the regular regions we do not expect the quantum entropy rate curves to
fall to zero. In these regions, we would expect h̃vN to be held constant,
with values proportional to εvar. However, the pronounced structure of the
curves in figures 9 and 10 implies that the quantum system is sensitive to
the varying K.

In Section 9.1.3 we described a pseudo-entropy divergence measure, hdiv,
that is sensitive to varying K for the classical regular GCM. Away from the
transition points (K = 0, 4) the shape of the hdiv curve in figure 8 is actually
remarkably similar in shape to that in figures 9 and 10. Both are similarly
unsymmetric aboutK = −2. Also, there are two small glitches in the regular
region of every h̃vN curve at K = −2 and K = −3. Corresponding glitches
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are just visible in the curve of figure 8. These are the result of exact periodic
orbits of low periodicity (a 4-cycle for K = −2 and a 3-cycle for K = −3)
which considerably reduce the classical measure hdiv and are picked up by
the quantum entropy measure h̃vN. These similarities imply that h̃vN is
unlike hKS in that it is sensitive to structures (islands, periodic orbits etc.)
in classical phase space.

The correspondence theory of Zurek and Paz, can be extended to account
for this. The rate of vN entropy increase for a quantum system coupled to an
environment is determined by the positive Lyapunov exponents (or, equiva-
lently, the KS entropy) of the corresponding classical system because a phase
space patch in the corresponding classical system stretches at an exponential
rate if the dynamics are chaotic. Similarly, if the classical dynamics are reg-
ular, the patch will stretch algebraically and the rate of vN entropy increase
in the corresponding quantum system will be determined by the divergence
measure defined in Eq. (68).

The smooth transition from chaotic to regular dynamics in the quantum
system is thus due to the peculiar nature of the quantum entropy measure:
h̃vN corresponds to hKS in chaotic regions and hdiv in regular regions making
it a much more general measure of dynamics than either of its classical
counterparts.

9.4. Quantum-classical correspondence

Since the correspondence conjecture discussed in the previous chapter
was suggested for specifically chaotic motion we now look at a range of K
values for which the classical KS entropy is positive i.e. K ≤ −4 and K ≥ 0.
Figure 11 shows plots of the classical KS entropy of figure 6 against the
corresponding plateaux of vN entropy production rates of figure 9. Similarly
in figure 12, classical entropies are plotted against the quantum entropies in
figure 10, this time with a higher Hilbert space dimension.

All the plots show a linear relationship between hKS and h̃vN in a chaotic
region of the GCM. The linearity of the curves in figure 9 begins to break
down for higher K due to saturation. This is somewhat rectified by using a
higher D as shown in figure 10. In both figures there is a marked difference
between the left hand (K ≤ −4) and right hand (K ≥ 0) curves. This is
due to the relative strength of the perturbing environment. Since the envi-
ronment contributes to the overall entropy increase of the quantum system,
only if εvar ≪ K will the major entropy contribution to h̃vN come from the
chaotic dynamics of the GCM. Thus, even though classically

hKS(|K|) = hKS(−|K| − 4), (86)

this is not the case for the corresponding quantum entropy measure, h̃vN,
when |K| is small.
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(a) K ≤ −4 (b) K ≥ 0

Fig. 11. Quantum-classical correspondence for the GCM: D = 256
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Fig. 12. Quantum-classical correspondence for the GCM: D = 512 (key is the same

as above)

The quantum-classical correspondence is clearly dependent on both the
perturbation strength of the environment and the size of the Hilbert space,
i.e.

h̃vN = AhKS + c, (87)

where A = A(D, εvar) and c = c(D, εvar). Thus, in line with Eq. (56), keeping
εvar and D constant for each curve reveals that the vN production rates are
dictated by the chaotic dynamics of the GCM and not the environment.

The conjecture of Zurek and Paz states that for a system weakly cou-
pled to an environment and fulfilling Eq. (58), the environmental coupling
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strength does not appear in Eq. (57), and only helps to determine td, i.e.
when this formula becomes valid [84]. Our work on the GCM may be used
to test this conjecture.

The results in this section clearly give numerical support for the basic
conjecture, but with two significant modifications:

1. The vN entropy production rate is not equal to the classical KS en-
tropy, but there is in fact a linear relationship over a range of K values.

2. The relationship is very much dependent on the strength of the coupling
environment. This is intuitively satisfying since the ultimate source of
quantum entropy production is the environmental coupling.

9.5. Conclusions

In this section we have investigated both the regular and chaotic dynam-
ics of the generalised cat map (GCM) in classical and quantum mechanics.
We have demonstrated that there is a linear relationship between the von
Neumann entropy production rate in the quantum GCM interacting with
an environment and the Kolmogorov–Sinai entropy which characterises the
chaotic dynamics of its classical counterpart. Regarding the regular dy-
namics of the GCM, we have also shown a qualitative relationship between
the quantum entropy measure and a corresponding classical pseudo–entropy
divergence measure of our own construction.

The strength of our approach to quantum–classical correspondence of
chaotic dynamics lies in observing a range of results. It is not the entropy
measure at a specific value of the chaos parameter K that characterises the
dynamics, rather it is the change in entropy over a range of K values.

10. Summary

In order to see the robustness of the conclusions for the kicked rotator
when a different environment is used, we coupled its momentum to the
position variables of a bath of harmonic oscillators (see figure 13). Our
conclusions remain unchanged [25], i.e. when there is the rate of change of
von Neumann entropy is lineary proportional to the KS entropy.

Our approach using, entropies for both classical and quantum systems
(coupled to an environment), gives a satisfying correspondence between clas-
sical and quantum systems. It is not strictly tied to semi-classical ar-
guments, although the quantative correspondence improves in the semi-
classical regime. The depth and value of our approach can be seen from
noting that a range of environments lead to the same conclusions.
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Fig. 13. The constant entropy production rate plotted against the corresponding

local KS entropy. The functional relationship is dS/dt ≈ 0.7295 hKS + 0.2265
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