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The environment — external or internal degrees of freedom coupled to
the object of interest — can, in effect, monitor some of its observables.
As a result, the eigenstates of these observables decohere and behave like
classical states. Continuous destruction of superpositions leads to the effec-
tive environment-induced superselection (einselection), which is beginning
to be recognized as a key step in the transition from quantum to classical.
We investigate it here in the context of quantum chaos. I show that the
evolution of a chaotic macroscopic system is not just difficult to predict
(requiring accuracy exponentially increasing with time) but quickly ceases
to be deterministic in principle as a result of the Heisenberg uncertainty
(which limits the available resolution). This happens after a time t~ which
is only logarithmic in the Planck constant. For example, various compo-
nents of the solar system are chaotic, with the Lyapunov timescales ranging
from a bit more then a month (Hyperion) to millions of years (planetary
system as a whole). On the timescale t~ the initial minimum uncertainty
wavepackets corresponding to celestial bodies would be smeared over dis-
tances of the order of radii of their orbits into “Schrödinger cat-like” states,
and the very concept of a “trajectory” would cease to apply. In reality,
such paradoxical states are eliminated by decoherence which helps restore
quantum–classical correspondence. The price for the recovery of classical-
ity is the loss of predictability. In the classical limit (associated not with
the smallness of ~, but with decoherence) the rate of increase of entropy is
independent of the strength of the coupling to the environment, and equal
to the sum of the positive Lyapunov exponents. I end by noting that the
cost of information transfer between systems — of the action measured in
units of ~’s per bit — decreases with the increasing size. This suggests why
information may seem to be so irrelevant for classical dynamics, and yet is
obviously so crucial at the quantum level.
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1. Introduction

Movements of planets have served as a paradigm of order and predictabil-
ity since ancient times. This view was not seriously questioned until the
time of Poincaré, who has initiated the enquiry into the stability of the solar
system [1] and thus laid foundations of the subject of dynamical chaos. How-
ever, only recently and as a result of sophisticated numerical experiments
questions originally posed by Poincaré are being answered. Two groups,
using very different numerical approaches, have reported that solar system
is chaotically unstable [2,3]. The characteristic Lyapunov exponent which
determines the rate of divergence of neighboring trajectories in the phase
space is estimated to be λ = (4 × 106)−1 [year−1]. Fortunately (and in
accord with the overwhelming experimental evidence) it is likely that this
instability will not alter crucial characteristics of the orbits of planets such
as their average distance from the sun (although eccentricities of the orbits
may not be equally “safe” [3]). Rather, it is the location of the planet along
its orbit which is exponentially susceptible to minute perturbations. Even
trajectories of the massive outer planets alone appear to be exponentially
unstable, although the Lyapunov exponent for that subsystem of the solar
system is harder to estimate [2], and may correspond to a timescale as short
as few million years, or as long as 30 Myr.

While the instability of the planetary system takes place on a relatively
long timescale, there are celestial bodies which become chaotically unpre-
dictable much more rapidly. Perhaps the best studied example is Hyperion,
one of the moons of Saturn. Hyperion is shaped as an elongated ellipsoid.
The interaction between its quadrupole moment and the gravitational field
of Saturn leads to chaotic tumbling, which results in an exponential diver-
gence on a timescale approximately equal to twice its 21 day orbital period
[4]. There are also numerous examples of chaos in the asteroid belt (such as
Chiron) with the exponential instability timescales of few hundred thousand
years [5].

In spite of its obviously macroscopic characteristics solar system is, ulti-
mately, undeniably quantum. This is simply because its constituents are a
subject to quantum laws. The action associated with the solar system is, of
course, enormous:

I ≃ GM⊙MJ

RJ
× τJ ≃ 1.2 × 1051[erg s] , (1.1)

where the mass MJ and period τJ of Jupiter were used in the estimate.
Given this order of magnitude of I and the smallness of the Planck constant
(~ = 1.055 × 10−27 erg s), one might have anticipated that the dynamics of
the solar system is a safe distance away from the quantum regime. However,
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and as a consequence of the chaotic character of its evolution, this is not the
case.

I will begin by showing that the macrosopic nature of the system does not
guarantee its classicality. Quantum theory demonstrates that the solar sys-
tem – and every other chaotic system – is in principle indeterministic, and
not just “deterministically chaotic”: Classical predictability in the chaotic
context would require an ever increasing accuracy of its initial conditions.
This is possible in principle in classical physics. But, according to quantum
mechanics, simultaneously increasing accuracy of position and momentum
would violate the Heisenberg principle at some instant. This time is surpris-
ingly short, and – at least for some of its components – definitely less than
the age of the solar system.

Classicality is restored with the help of the environment - induced de-
coherence, which continuously destroys purity of the wavepackets. The re-
sulting loss of predictability can be quantified through the rate of entropy
production. For a decohering chaotic system we shall see that it is (i) inde-
pendent of the strength of the coupling to the environment, and (ii) given by
sum of the positive Lyapunov exponents. That is, quantum entropy produc-
tion rate coincides with the Kolmogorov–Sinai entropy in open systems, even
though its ultimate cause is the loss of the information to the correlations
with the environment.

Why is it so difficult to detect violations of the quantum–classical cor-
respondence on the macroscopic level? We shall see throughout the paper
that decoherence is caused by the information transfer between the system
and the environment. And we shall close our arguments with an estimate
indicating that the action per bit — the cost of information — decreases
with the increase of the size of the system. Thus, decoherence is easier to
accomplish (and harder to track) in the macroscopic domain.

2. Quantum predictability horizon: How

the correspondence is lost

As a result of chaotic evolution, the patch in the phase space which
corresponds to some regular (and classically “reasonable”) initial condition
becomes drastically deformed: Classical chaotic dynamics is characterized
by the exponential divergence of trajectories. Moreover, conservation of the
volume in the phase space in course of Hamiltonian evolution implies that
the exponential divergence in some of the directions must be balanced by
the exponential squeezing – convergence of trajectories – in the other direc-
tions. It is that squeezing which forces a chaotic system to explore quantum
regime: As the wavepacket becomes narrow in the direction corresponding
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to momentum;
∆p(t) = ∆p0 exp(−λt) , (2.1)

(where ∆p0 is its initial extent in momentum, and λ is the relevant Lyapunov
exponent) the position becomes delocalized: Wavepacket becomes coherent
over the distance ℓ(t) which can be inferred from the Heisenberg’s principle:

ℓ(t) ≥ (~/∆p0) exp(λt) . (2.2)

Coherent spreading of the wavepacket over large domains of space is disturb-
ing in its own right. Moreover, it leads to a breakdown of the correspondence
principle — predictions of the classical and quantum dynamics concerning
some of the expectation values no longer coincide after a time t~ when ℓ(t)
reaches the scale on which the potential is noticeably nonlinear.

Such scale χ can be usually defined by comparing the classical force
(given by the gradient of the potential ∂xV ) with the leading order nonlinear
contribution ∼ ∂3

xV :

χ ≃
√

∂xV

∂3
xV

. (2.3)

For the gravitational potential χ ≃ R/
√

2, where R is the size of the system
(i.e., a size of the orbit of the planet). The reason for the breakdown of the
correspondence is that when the coherence length of the wavepacket reaches
the scale of the nonlinearity,

ℓ(t) ≃ χ , (2.4)

the effect of the potential energy on the motion can be no longer represented
by the classical expression for the force [8], F (x) = ∂xV (x), since it is not
even clear where the gradient is to be evaluated for a delocalised wavepacket.
As a consequence, after a time given by:

t~ = λ−1 ln
∆p0χ

~
, (2.5)

the expectation value of some of the observables of the system may even
begin to exhibit noticeable deviations from the classical evolution.

This is also close to the time beyond which the combination of classi-
cal chaos and Heisenberg’s indeterminacy make it impossible in principle
to employ the concept of a trajectory. Over the time ∼ t~ chaotic system
will spread from a regular Planck-sized volume region in the phase space
into a (possibly quite complicated) wavepacket with the dimensions compa-
rable to the size of the system. This breakdown of correspondence can be
investigated more rigorously by following evolution generated by the Moyal
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bracket (that is, a Wigner transform of the von Neumann equation for the
time development of the density matrix).

Moyal bracket can be expressed through the familiar classical Poisson
bracket as:

{H,W}MB = −i sin(i~{H,W}PB)/~ . (2.6)

Above, H is the Hamiltonian of the system, and W is an object in the phase
space (i.e., a probability distribution). In our quantum case, W will denote
Wigner function — a Wigner transform of the density matrix.

When the potential V in H is analytic, Moyal bracket can be expanded
in powers of the Planck constant. Consequently, evolution of W is given by:

Ẇ = {H,W}PB +
∑

n≥1

~
2n(−)n

22n(2n + 1)!
∂2n+1

x V (x)∂2n+1
p W (x, p) . (2.7)

Correction terms above will be negligible when W (x, p) is a reasonably
smooth function of p — that is, when the higher derivatives of W with re-
spect to momentum are small. However, Poisson bracket alone predicts that,
in the chaotic system, they will increase exponentially quickly as a result of
the “squeezing” of W in momentum, Eq. (2.1). Hence, after a logarithmic
time quantum “corrections” will become comparable to the first classical
term on the right hand side of Eq. (2.7). At that point Poisson bracket will
no longer suffice as a generator of evolution. Phase space distribution will
be coherently extended over macroscopic distances, and interference between
the fragments of W will begin to play a role.

The timescale on which the quantum–classical correspondence is lost in
a chaotic system can be also estimated (or, rather, bounded from above) by
the formula [6,7]:

tr = λ−1 ln(I/~) , (2.8)

where I is the action which — for the solar system — we have already
estimated, Eq. (1.1). It follows that, for the planetary system, quantum–
classical correspondence should be significantly violated after approximately:

tr ≃ 711 [Myr] .

This is less than a fifth of the modest estimates of the age of Earth, and,
presumably, a still smaller fraction of the actual age of the solar system.
When we compute instead the value of t~, setting initial uncertainty in
the momentum to ∆p0 = ~/ΛdB(T ) ≃ 109 [g cm/s], where ΛdB(T ) is the
thermal de Broglie wavelength of Jupiter at its present surface temperature
of ∼ 100 K, we can estimate almost identical:

t~ ≃ 682 [Myr] .
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A similar calculation for Hyperion results in a much smaller (and, therefore,
so much more disturbing):

t~ ≃ 20 [yr] .

Moreover, it should be pointed out that — in the macroscopic regime con-
sidered here — the above estimates are exceedingly insensitive to either the
action or the initial momentum uncertainty. Both of these quantities ap-
pear under the logarithm. Therefore, the estimated time of the breakdown
of quantum–classical correspondence does not change much in response to
changes of I and ∆p0 (as long as they are not obviously unreasonable).

3. Solar system as a Schrödinger cat

We have seen above that a seemingly very secure prediction of quan-
tum physics as applied to the solar system fails: According to Schrödinger
equation, less than a billion years after its formation behavior of the so-
lar system should be flagrantly non-classical, with the quantum states of
celestial bodies spread over dimensions comparable with the sizes of their
orbits, and with the planetary dynamics no longer in accord with the laws
of Newton! Somehow, this does not seem to be the case. The source of
the paradox is obvious: Chaotic dynamics increases the size of the coherent
wavepacket with exp(λt), so that it becomes comparable with the dimen-
sions of the solar system after a time t~, which is but a fraction of its age.
Similarly, and after only ∼ 20 years the quantum state of Hyperion would
be a coherent superposition involving macroscopically distinct orientations
of its major axes.

There are parallels between our discussion above and the famous argu-
ment due to Schrödinger [10] in that a very macroscopic object (planet here,
cat there) is forced, through the strict compliance with the laws of quantum
mechanics, into a very non-local state, never encountered as an ingredient of
our familiar “classical reality”. The main difference between the two exam-
ples — Schrödinger cat and the chaotic quantum planet — is in the manner
in which they are forced into the final superposition: Schrödinger cat either
lives (or dies) as a result of decay of an unstable nucleus: An intermediate
step in which a quantum state of the nucleus is measured (to determine the
fate of the cat) is essential. Thus, in the case of the cat it was possible to
entertain the notion that the (admittedly preposterous) final superposition
of dead and alive cat could be avoided if the process of measurement was
properly understood. This “way out” is no longer available in the case of
celestial bodies we are discussing. They evolve into states which are nonlo-
cal and flagrantly quantum simply as a result of dynamical evolution — the
measurement plays absolutely no role in setting up the paradox. And the
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systems involved are certainly even more macroscopic than the cat. More-
over, if the reader considers the idea of putting a living being (cat) in a
superposition especially tantalizing, this is certainly occurring also in the
case considered here. For, in accord with the quantum arguments presented
above, after a time t~ Earth would evolve into a state corresponding to a
coherent superposition of all the seasons, as well as all of the hours of the
day!

So what is the resolution of the above paradox? Let us us start with a few
possibilities which may be tempting at the first sight, but which ultimately
lead nowhere. To begin with, one might be worried that in the arguments
above we have cut corners by considering just one spatial dimension and
one momentum, while the solar system is inhabiting a multidimensional
phase space. This is certainly true, but the squeezing in momentum and the
resulting delocalization is unlikely to be alleviated by considering multidi-
mensional phase space of all the celestial bodies for which it occurs. This is
especially true for systems such as Hyperion or Chiron, which have a rather
large Lyapunov exponent. Another more contrived possibility of avoiding
the difficulty with quantum–classical correspondence at present would be to
design an initial state which evolves into a “classical looking” state by the
present epoch. This can be in principle done, but — as the reader is invited
to verify — leads to initial states which are even more flagrantly quantum
than those we were forced to consider above.

Finally and in desperation one might consider abandoning quantum the-
ory for some other theory which is almost exactly like quantum theory (to
pass all of the experimental tests) but contains either nonlinear corrections,
or allows for underlying “hidden variable” dynamics, or, perhaps, introduces
“collapse of the wavepacket” ad hoc at some fundamental level in order to
get rid of the quantum nonlocality. All of these ideas face either serious ex-
perimental constraints (which render them useless for the purpose of making
quantum theory look classical) or profound theoretical difficulties (such as
a conflict with the Lorentz invariance), or both.

4. Decoherence, the quantum, and the classical

I shall instead contend that quantum theory is rigorously correct, but
that the superposition principle cannot be applied naively, especially to the
macroscopic objects. The failure of such simple-minded application of quan-
tum principles to the classical domain is, however, itself a consequence of the
unitarity of quantum evolution: Macroscopic objects are all but impossible
to insulate from their environments. Consequently, external and internal
degrees of freedom continuously “monitor” — that is, become correlated —
with their state [11–13]. This is the process of decoherence [11–20].
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We have no room here to develop theory of decoherence systematically
and completely. A sketch with a few leads to the existing (and rapidly
expanding) literature will have to suffice. The key point is the observation
that in quantum mechanics information matters much more than in classical
mechanics, where it can be acquired without influencing in any way the
actual state of the system, which exists and evolves independently of what
is known about it. This neat division between information and “physical
reality” is impossible to implement in the quantum realm: Acquisition of
information is equivalent to the establishment of a correlation, which in
turn is reflected in the loss of the capacity for interference. Double slit
experiment is a classic example. As soon as it is known through which slit
the photon has passed, the possibility for interference is lost.

Information transfer which accompanies decoherence has the same nature
as the one encountered in quantum measurements, or for that matter, in
quantum computation. In either case it is useful to represent it with an
elementary logical gate — so-called “controlled not” or a “c-not” — which
reversibly copies a single bit of information between two (two-state) quantum
systems, a “control” and a “target”:

(a|0〉 + b|1〉)c |0〉t −→ a|0〉c|0〉t + b|1〉c|1〉t . (4.1)

In short, a quantum c-not is an obvious generalization of a classical gate
(also occasionally known as an “exclusive or” or “xor”), which flips the state
of the target bit when the control is in a state “1”, and does nothing otherwise.
The analogy between Eq. (4.1) and the von Neumann model of a quantum
measurement [21] is obvious: Control bit acts as a measured system, forcing
the apparatus (target bit) to measure its state.

The state on the right hand side of Eq. (4.1) is, however, not the reso-
lution of the measurement problem, but, rather, its cause: When a = −b =
1/
√

2 it is in fact identical to the states encountered in the Bohm’s version
of the Einstein–Podolsky–Rosen experiment [22,23]. The correlation estab-
lished is a quantum entanglement, with all its seemingly paradoxical conse-
quences, which deny to each of the two systems involved the right to possess
a state prior to a measurement [23–25]. Decoherence converts quantum en-
tanglement into classical correlation by virtue of allowing the environment to
carry out additional measurements on the to-be-classical system [11,12]. Its
consequence is then a disentanglement — correlations between the system
and the apparatus weaken to their classically allowed form.

Decoherence can then be conveniently “caricatured” (if not quite “rep-
resented”) by means of the c-not like gates transferring information about
the to-be-classical observable to the environment. In the process of decoher-
ence information flows from the to-be-classical observable of the decohering
entity to the environment. Decoherence is a purely quantum effect — as we
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have already noted, information does not matter in classical dynamics. In
the symbolism of c-not’s decoherence can be conveniently contrasted with
the more familiar consequence of the coupling to the environment — noise
— in which the state of the environment becomes inscribed on the observ-
able of interest. In case of decoherence, the system is the control, and the
environment in the target which is perturbed in a manner dependent on the
state of the system. In the case of noise, the roles are reversed.

The direction of the information flow depicted in the c-nots depends on
the observables involved. This is an important consequence of the quantum
nature of the information transfer. The reader can verify this by re-writing
action of the c-not in the complementary basis |±〉 = (|0〉 ± |1〉)/

√
2, and

checking that in the new basis the roles of the control and target are re-
versed. This illustrates the connection between the loss of phase coherence
and “reduction of the state vector” — while the environment is “measuring”
a certain observable A, its (Fourier) complement is busy “measuring” the
state of the environment, and storing the information in the phases between
the eigenstates of A — in the correlations with the states |+〉 and |−〉.

In idealised examples of decoherence (i.e., in absence of the self-Hamil-
tonian) preferred observable is selected by the interaction Hamiltonian with
the environment — it satisfies (or, at least, approximates) the commutation
relation [11,12]:

[Hint, A] = 0 . (4.2)

However, in more realistic circumstances involving dynamical evolution
Eq. (4.2) defines only the “instantaneous” preferred (pointer) observable.
Long-term predictability (which is a convenient and natural criterion of the
more elusive “classicality”) is maximized by the states which are least per-
turbed by the environment in spite of the incessant rotation between the
observables and their complements [20,26,27].

A system — such as a harmonic oscillator or, for that matter, a chaotic
quantum system — is then described by an effective master equation [28–
31], which continuously transforms pure states into mixtures. The rate at
which this happens is set in part by the coupling, but the nature of the ini-
tial state plays the decisive role. States which become least mixed are then
most predictable and can be regarded as most classical. High-temperature
master equation for a particle interacting with the thermal excitations of
the environment composed of harmonic oscillators is a convenient and of-
ten studied example [29–31]. Density matrix ρ(x, x′) of the system in the
position representation evolves in this case according to:
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ρ̇ =

von Neumann eq.
︷ ︸︸ ︷

− i

~
[H, ρ]

︸ ︷︷ ︸

ṗ=−FORCE=∇V

−

relaxation
︷ ︸︸ ︷

γ(x − x′)(
∂

∂x
− ∂

∂x′
)ρ

︸ ︷︷ ︸

ṗ=−γp

−

decoherence
︷ ︸︸ ︷

2mγkBT

~2
(x − x′)2 ρ

︸ ︷︷ ︸

classical phase space

.

(4.3)
Above, H is the effective Hamiltonian of the system (i.e., with the potential
renormalised to recognise the influence of the environment), and γ is the
relaxation rate. Interaction Hamiltonian was assumed to couple coordinate
x of the system with the coordinates of the environment oscillators. When
the oscillators are collectively represented by a field φ(q), the coupling can
be taken to have a form [30]:

Hint = εxφ̇(q, t) ,

in which case effective viscosity η = 2mγ = ε2/2.
An arbitrary superpositions of localized wavepackets can in principle ex-

ist in the Hilbert space, but, as a result of environmental monitoring —
they are exceedingly unstable in practice: Continuous monitoring enforces
environment — induced superselection [12]: Only some — relatively few —
of the quantum states which can exist in principle are capable of surviv-
ing the interaction with the environment more or less intact. Which states
can survive depends on the form of the interaction with the environment
[11]. The general rule is that the states which are localized in the monitored
observables are most stable [11,12,20,26,27]. Moreover, when the Hamilto-
nian of interaction is a function of some observable, then the environment
is most effective in monitoring it. This singles out the preferred pointer
states [11,17]. They usually turn out to be localized in position, since the
interactions tend to depend on the distance [12].

Such tendency towards localization in position can be characterized by
the time it takes for the two fragments of the wavepacket separated in space
by the distance δx to loose quantum coherence. Decoherence time [14]:

τD(δx) = γ−1

(
ΛdB(T )

δx

)2

(4.4)

can be computed from the third term of Eq. (4.3). It is proportional to
the relaxation time τR = 1/γ (which determines the rate at which the sys-
tem looses energy due to the interaction with the environment), but it is
much faster: For a one gram object at the room temperature the ratio of
the thermal de Broglie wavelength ΛdB(T ) = ~/

√
2mkBT to the separation

δx = 1 cm is approximately 10−20. Hence, in the above example, and un-
der the circumstances in which thermal excitations dominate the process of
decoherence (an assumption which allows one to derive Eq. (4.3) and the
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simple expression for the decoherence time, Eq. (4.4), but which does not
effect the conclusion about its nearly instantaneous onset for macroscopic
objects) τD ≃ 10−40/γ.

It follows that quantum coherence may be (and, for macroscopic ob-
jects, it is) lost exceedingly rapidly even when the relaxation time is very
large. Preliminary experimental indication which corroborates these theo-
retical expectations are just at hand, following beautiful microwave cavity
experiments [31]. More detailed studies of various aspects of decoherence are
likely to follow in the wake of the ion trap “Schrödinger cat” experiments [32].

For the microscopic objects (such as an electron) and/or for microscopic
separations, estimate of τD may become comparable to τR, and — when the
isolation from the environment is sufficient — can be much larger than the
characteristic dynamical timescales. The quantum nature of the evolution
would then manifest itself unimpeded. But for Jupiter or Hyperion the
opposite — reversible classical limit [17,20] with τD ≪< tdynamical ≪< τR —
is going to be enforced.

5. Exponential instability vs. decoherence

In a quantum chaotic system weakly coupled to the environment the pro-
cess of decoherence briefly sketched above will compete with the tendency for
coherent delocalization, which occurs on the characteristic timescale given
by the Lyapunov exponent λ. Exponential instability will attempt to spread
the wavepacket to the “paradoxical” size, while monitoring by the environ-
ment will attempt to limit its coherent extent. The two processes can be
expected to fight one another into a standstill when their rates will become
comparable:

τD(δx) λ ≃ 1 . (5.1)

As the decoherence rate depends on δx, this equation can be solved for the
critical, steady state coherence length, which turns out to be
ℓc ∼ ΛdB(T ) ×

√

λ/γ.
A more careful analysis can be based on the combination of the Moyal

bracket we have introduced in Section 2 with the master equation approach
to decoherence we have just sketched. In many cases (including the situation
of large bodies immersed in the environment of photons, rarefied gases, etc.,
which are all present in the interplanetary medium) an effective approximate
equation can be derived and translated into the phase space by performing
Wigner transform on Eq. (4.3). Then:

Ẇ = {H,W}PB + 2γ∂ppW + D∂2
pW

+
∑

n≥1

~
2n(−)n

22n(2n + 1)!
∂2n+1

x V (x)∂2n+1
p W (x, p) . (5.2)
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The second term causes relaxation, and, in the macroscopic limit, it can
be made very small without decreasing the effect of decoherence caused by
the third, diffusive term. Its role is to destroy quantum coherence of the
fragments of the wavefunction between spatially separated regions. Thus, in
effect, this decoherence term can assure that the Poisson bracket is always
accurate: Diffusion in momentum prevents the Wigner function from be-
coming too finely structured in momentum, which — as we have seen early
on in the paper, is the cause of the failure of the correspondence principle
in chaotic quantum systems. In case of the thermal environment diffusion
coefficient D = ηkBT , where η is viscosity. The competition between these
two effects — squeezing due to the chaotic instability and spreading due to
diffusion — leads to a standoff reached when the structure of the Wigner
function reaches critical scale

σc =

√

2D

λ
, (5.3)

in momentum. This translates into the critical (spatial) coherence length of:

ℓc = ~/

√

λ

2D
= ΛdB(T ) ×

√

λ

2γ
. (5.4)

This nearly coincides with the quick estimate, Eq. (5.1).
For instance, for a planet of the size of Jupiter, chaotic instability on

the four million year timescale and the consequent delocalization would be
easily halted even by a very rarefied medium (0.1 atoms/cm3, comparable
to the density of interplanetary gas in the vicinity of massive outer planets)
at a temperature of 100K (comparable to their surface temperature): The
resulting ℓc is of the order of 10−29 cm! Thus, decoherence is exceedingly
effective in preventing the packet from spreading — ℓc ≪< χ, by an enormous
margin. Hence, the paradox we have described in the first half of the paper
has little chance of materializing in the macroscopic realm.

The example of quantum chaos in the solar system is a dramatic illus-
tration of the effectiveness of decoherence, but its effects are, obviously, not
restricted to celestial bodies: Schrödinger cats, Wigners friends, and, gen-
erally, all of the systems which are in principle quantum but sufficiently
macroscopic will be forced to behave in accord with classical mechanics as
a result of the environment-induced superselection [11,12].

This incredible efficiency of the environment in monitoring (and, there-
fore, localizing) states of quantum objects is actually not all that surprising.
Dittrich and Graham have shown that either continuous quantum measure-
ments or dissipation can help erase discord between quantum and classical
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evolutions in chaotic systems [34]. And we know (through direct experience)
that photons are capable of maintaining an excellent record of the location
of Jupiter (or any other macroscopic body). This must be the case, since we
obtain our visual information about the rest of the Universe by intercepting
a minute fraction of the reflected (or emitted) radiation with our eyes.

Given the efficiency of decoherence, can one ever expect to observe quan-
tum manifestations of chaos? Characteristic coherence length ℓc establishes
the scale below which different fragments of the quantum wavepacket will
be able to retain their relative phases. Hence, the system confined to less
than ℓc can exhibit quantum behavior. When the size of the system can be
characterized by the scale of the nonlinearity χ (as is often the case), this
argument results in the inequality:

χ ≪ ℓc (5.5)

as a condition for quantum chaotic evolution. This requirement is obviously
impossible to satisfy for the celestial bodies, but it should hold for sufficiently
well isolated objects of atomic masses and microscopic dimensions.

6. The arrow of time: a price of classicality?

Decoherence is caused by the continuous measurement-like interactions
between the system and the environment. Measurements involve transfer
of information, and decoherence is no exception: The state of the envi-
ronment acquires information about the system. For an observer who has
measured the state of the system at some initial instant the information he
will still have about it at some later time will be influenced (and, in gen-
eral, diminished) by the subsequent interaction between the system and the
environment. When the observer and the system monitor the same set of
observables, information losses will be minimized. This is in fact the idea
behind the predictability sieve [20] — an information-based tool which al-
lows one to look for the einselected effectively classical states under quite
general circumstances. When, however, the state implied by the information
acquired by the observer either differs right away from the preferred basis
selected by the environment, or — as will be the case here — evolves dynam-
ically into such a “discordant” state, environment will proceed to measure
it in the preferred basis, and, from the observers point of view, information
loss will ensue.

The loss of information can be quantified by increase of the von Neumann
entropy:

H = −Tr ρ ln ρ , (6.1)

where ρ is the reduced density matrix of the system. We shall now focus on
the rate of increase of von Neumann entropy in a dynamically evolving sys-
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tem subject to decoherence. As we have seen before, decoherence restricts
spatial extent of the quantum coherent patches to the critical coherence
length ℓc, Eq. (5.3). A coherent wavepacket which overlaps a region larger
than ℓc will decohere rapidly, on a timescale shorter than the one associated
with the classical predictability loss rate given by the Lyapunov exponent
λ. Such wavepacket will deteriorate into a mixture of states each of which
is coherent over an area of dimension ℓc by σc = ~/ℓc. Consequently, the
density matrix can be approximated by an incoherent sum of reasonably lo-
calized and approximately pure states. When N such states contribute more
or less equally to the density matrix, the resulting entropy is of the order of
H ≃ ln N. Coherence length ℓc determines the resolution of the “environ-
mental monitoring” on a chaotic quantum system. That is, by making an
appropriate measurement on the environment one could in principle localize
the system to within ℓc. As the time goes on, the initial phase space patch
characterizing observers information about the state of the system will be
smeared over an exponentially increasing range of the coordinate, Eq. (2.2).

When the evolution is reversible, such stretching does not matter, at least
in principle: It is matched by the squeezing of the probability density in the
complementary directions (corresponding to negative Lyapunov exponents).
Moreover, in the quantum case folding will result in the interference – telltale
signature of the long range quantum coherence, best visible in the structure
of the Wigner functions.

Narrow wavepackets, and, especially, small-scale interference fringes are
however exceedingly susceptible to the monitoring by the environment. Thus,
the situation changes dramatically as a result of decoherence: In a chaotic
quantum system the number of independent eigenstates of the density ma-
trix will increase as:

N ≃ ℓ(t)/ℓc ≃ ~

∆p0ℓc
exp(λt) . (6.2)

Consequently, von Neumann entropy will grow at the rate:

Ḣ =
d

dt
ln

(
ℓ(t)

ℓc

)

≃ λ . (6.3)

This result is expected to be valid — strictly speaking — only asymptotically,
in the decoherence - imposed classical limit χ ≫ ℓc. It is a “corollary” of our
discussion, and perhaps even its key result [8]. Decoherence will help restore
the quantum–classical correspondence. But we have now seen that this will
happen at a price: Loss of information is an inevitable consequence of the
eradication of the “Schrödinger cat” states which were otherwise induced by
the chaotic dynamics. They disappear because the environment is “keeping
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an eye” on the phase space, monitoring the location of the system with an
accuracy set by ℓc.

Throughout this paper we have “saved” on notation, using “λ” to denote
(somewhat vaguely) the rate of divergence of the trajectories of the hypo-
thetical chaotic system. It is now useful to become somewhat more precise.
A Hamiltonian system with D degrees of freedom will have in general many
(D) pairs of Lyapunov exponents with the same absolute value but with the
opposite signs. These global Lyapunov exponents obtain by averaging local
Lyapunov exponents, which are the eigenvalues of the local transformation,
and which describe the rates at which a small patch centered on a trajectory
passing through a certain location in the phase space is being deformed. The
averaging of the local exponents into the global ones is achieved by following
the trajectory of the system for a sufficiently long time.

The evolution of the Wigner function in the phase space is governed by
the local dynamics. However, over the long haul, and in the macroscopic
case, the patch which supports the probability density of the system will
be exponentially stretched. The stretching and folding will produce a phase
space structure which differs from the classical probability distribution be-
cause of the presence of the interference fringes, with the fine structure on
the scale of the order ~/ℓ(i)(t). In an isolated system this fine structure
will saturate only when the envelope of the Wigner function will fill in the
available phase space volume [35]. Monitoring by the environment destroys
these small scale interference fringes and keeps W from becoming narrower
than σc in momentum. As a result — and in accord with Equation (6.3)
above — the entropy production will asymptote to the rate given by the
sum of the positive Lyapunov exponents:

Ḣ =
D∑

i=1

λ
(i)
+ . (6.4)

This result [8] is at the same time familiar and quite surprising. It looks
familiar because it coincides with the Kolmogorov–Sinai formula for the en-
tropy production rate for a classical chaotic system. It is surprising because
it is independent of the strength of the coupling between the system and
the environment, even though the process of decoherence (caused by the
coupling to the environment) is the ultimate source of entropy increase.

We emphasize that this rate of entropy production can be expected only
in the decoherence-imposed classical limit, that is when the scale of non-
linearities χ (which also coincides with the scale on which the folding takes
place) is much greater than the scale ℓc on which the wave function is coher-
ent, and, by the same token, where σc is much less than the range of momenta
traversed by the system. Moreover, we have had to assume that the system
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is far from equilibrium, so that Ḣ does not saturate. This assumption can
be implemented in an elegant manner by considering the algorithmic infor-
mation content of the record of evolution [36].

The conjectured independence of the entropy production rate on the
strength of the coupling is indeed remarkable, and leads one to suspect that
the cause of the arrow of time may be traced to the same phenomena which
are responsible for the emergence of classicality in chaotic dynamics, and
elsewhere (i.e., in quantum measurements). In a sense, this is of course not
a surprise: Von Neumann knew that the measurements are irreversible [21].
And Zeh [37] emphasized the close kinship between the irreversibility of the
“collapse” in quantum measurements, and in the second law, and cautioned
against circularity of using one to solve the other. What is however surprising
is that the classical-looking result has ultimately quantum roots, and that
these roots are so well hidden from view — that in the χσc ≫ ~ limit the
entropy production rate depends solely on the classical Lyapunov exponents.

Environment may not enter explicitely into the entropy production rate,
Eq. (6.4), but it will help determine when this asymptotic formula be-
comes valid. The Lyapunov exponents will “kick in” as the dimensions of
the patch begin to exceed the critical size in the corresponding directions,

ℓ(i)(t)/ℓ
(i)
c > 1. The instant when that happens will be set by the strength

of the interaction with the environment, which determines ℓc. This “border
territory” may be ultimately the best place to test the transition from quan-
tum to classical. One may, for example, imagine a situation where the above
inequality is comfortably satisfied in some directions in the phase space, but
not in the others. In that case the rate of the entropy production will be
lowered to include only these Lyapunov exponents for which decoherence is
effective.

Serious numerical reconnaissance into this quantum–classical border ter-
ritory is just at hand: Sarkar and his collaborators report [38] that the en-
tropy production rate indeed saturated at a plateau, but note that the level
of that plateau is; (i) generally below the value estimated from Eq. (6.4),

and; (ii) that Ḣ seems to depend on the strength of the coupling with the
environment. That the rate of entropy production should asymptote to zero
in the quantum limit, χσc ≪ ~, Eq. (5.5), is not unexpected: Quantum
evolution in this limit becomes unitary. Thus, an increase of entropy with
the increase of the coupling strength (and the resulting increase of σc) is
anticipated. It would be most interesting is to determine the behavior in
the transition region — before the classical limit is attained — and to study
the manner in which it is traversed.

Detailed maps of specific entropy production rates exhibit a quantum–
classical correspondence which is remarkable both for the general similarity
and because of the detailed differences. Another interesting result of that
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investigation is a generalization of the formula for entropy production to the
case of significant damping. Obviously, much more remains to be done, both
analytically and numerically, in anticipation of the experimental investiga-
tions which seem to be a matter of near future [39]. The goal of this pursuit
is eminently worthwhile; nothing less than the elusive origins of the “arrow
of time”.

7. Decoherence, einselection, and the interpretation

of quantum theory

The significance of the efficiency of decoherence goes beyond the ex-
ample of the solar system or the task of reconciling quantum and classical
predictions for classically chaotic systems. Every degree of freedom coupled
to the environment will suffer loss of quantum coherence. Objects which
are more macroscopic are generally more susceptible. In particular, the
“hardware” responsible for our perceptions of the external Universe and for
keeping records of the information acquired in course of our observations
is obviously very susceptible to decoherence: Neurons are strongly coupled
to the environment, and are definitely macroscopic enough to behave in an
effectively classical fashion. That is, they have decoherence timescale many
orders of magnitude smaller than the relatively sluggish timescale on which
they can exchange and process information. As a result, in spite of the unde-
niably quantum nature of the fundamental physics involved, perception and
memory have to rely on the decohered (and, therefore, effectively classical)
degrees of freedom.

An excellent illustration of the seriousness of the constraint imposed on
the information processing by decoherence comes from the recent discussions
of the possibility of implementation of quantum computation: Decoherence
is viewed as perhaps the most serious threat to the ability of a quantum
information processing system to carry out a superposition of computations
[40]. Yet, precisely such an ability to “compute” in an arbitrary superposition
would be necessary for an observer to be able to “perceive” an arbitrary
quantum state. Moreover, in the external Universe only these observables
which are resistant to decoherence and which correspond to “pointer states”
are worth recording: Records are valuable because they allow for predictions,
and resistance to decoherence is a precondition to predictability [17,20].

An interesting insight into the fragility of quantum states of macroscopic
systems comes from the realization that the average price of a bit of infor-
mation decreases with the increasing size of the system. The reason for this
is easy to understand. The least action required to correlate perfectly two
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N -state quantum systems;

(
N∑

k=1

αk |ck〉
)

|t0〉 −→
N∑

k=1

αk |ck〉|tk〉 , (7.1)

which play roles of the control and target of Eq. (4.1) is given by:

〈I〉 =
N∑

k=1

|αk|2 arccos |〈t0|tk〉| . (7.2)

A successful correlation of the control and target requires orthogonality.
Thus, at least in the limit of large N the average action should be:

〈IN 〉 ≈ π

2
. (7.3)

This estimate can be lowered a little when N is small: For N = 2〈I2〉= π/4
[11].

So, a fraction of a Planck per correlating (or entangling) operation,
Eq. (7.1), seems to be a fair estimate of the least amount of action needed
to bring the two systems into perfect correlation. One can be of course
wasteful, and use more action, but it is impossible to be more frugal.

The information exchanged as a result of such an interaction is given by
the von Neumann entropy of the reduced density matrix of one of the two
systems. Hence;

H ≤ log2 N . (7.4)

The most efficient transfer of information takes place when the inequality is
saturated. In such a case, the specific action ı — action per bit of transferred
information — can be as low as:

ı = < I > /H ≃ π

2 log2 N
. (7.5)

The price of the bit decreases when they are traded wholesale — when the
size of the system increases.

Logarithmic decrease of ı with the dimensionality of the Hilbert space N
may seem far from dramatic. However, N increases exponentially with the
physical size of the system (i.e., with the number of spins, particles, etc.)
Hence, ı will be of order ~/4 for small systems, but it will be infinitesimally
small in the macroscopic domain.

We note that the scaling we have obtained does not depend on the as-
sumption that the initial state was pure. Therefore, the price of a classical
correlation (i.e., information about the einselected pointer states) will be-
have in an essentially identical manner.
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The action per bit ı we have estimated is the least required. Actual
interactions will not be this efficient. Yet, it seems plausible that the trend
exhibited by ı is indicative of the price of information in general. Therefore,
in the macroscopic domain, the information seems to come for free, and it
is easy not to notice that information carries a price — action — that it is
physical, and that there is no information without (physical) representation.

The above argument — carried out more carefully elsewhere [44] —
allows one to see the macroscopic-classical link in a new light. It is too
early to claim that all the issues arising in the context of the transition
from quantum to classical have been settled with the help of decoherence.
Decoherence and einselection are, however, rapidly becoming a part of the
standard lore [41,42]. Where expected, they deliver classical states, and —
as we have seen above — guard against violations of the correspondence
principle. The answers which emerge may not be to everyone’s liking, and
do not really discriminate between the Copenhagen Interpretation and the
Many Worlds approach. Rather, they fit within either mold, providing the
key missing elements — i.e., the quantum–classical border postulated by
Bohr, and the scheme for defining branches required by Everett [43,44].
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Modern Studies of Basic Quantum Concepts and Phenomena, Ref. [36].

REFERENCES

[1] H. Poincaré, Les Methodes Nouvelles de la Méchanique Céleste, Gauthier–
Villars, Paris 1892.

[2] J. Laskar, Nature 338, 237 (1989).

[3] G.J. Sussman, J. Wisdom, Science 257, 56 (1992).

[4] J. Wisdom, S.J. Peale, F. Maignard, Icarus 58, 137 (1984).

[5] J. Wisdom, Icarus 63, 272 (1985).

[6] G.P. Berman, G.M. Zaslavsky, Physica (Amsterdam) 91A, 450 (1978).

[7] M.V. Berry, N.L. Balzas J. Phys. A 12, 625 (1979).



3708 W.H. Zurek

[8] W.H. Zurek, J.P. Paz, in Quantum Measurement, Irreversibility, and the
Physics of Information, eds P.P. Busch, P. Lahti, P. Mittelstaedt, World Sci-
entific, Singapore 1993, pp.458–472; Phys. Rev. Lett. 72, 2508 (1994); Phys.
Rev. Lett. 75, 351 (1995).

[9] These results were announced already some time ago, but appear to be still
somewhat controversial; see selected papers in G. Casati, B. Chrikov, Quantum
Chaos, Cambridge University Press, Cambridge 1995.

[10] E. Schrödinger, Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935);
English translation in Quantum Theory and Measurement, eds J.A. Wheeler
and W.H. Zurek, Princeton University Press, Princeton, NJ 1983, pp.152–167.

[11] W.H. Zurek, Phys. Rev. D24, 1516 (1981).

[12] W.H. Zurek, Phys. Rev. D26, 1862 (1982).

[13] E. Joos, H.D. Zeh, Z. Phys. B 59, 229 (1985).

[14] W.H. Zurek, in Frontiers of Nonequilibrium Statistical Mechanics, eds
G.T. Moore and M.O. Scully, Plenum, New York 1986, pp.145–149.

[15] G.J. Milburn, C.A. Holmes, Phys. Rev. Lett. 56, 2237 (1986).

[16] F. Haake, D.F. Walls, in Quantum Optics IV, eds J.D. Harvey and D.F. Walls,
Springer Verlag, Berlin 1986.

[17] W.H. Zurek, Physics Today 44, 36 (1991).

[18] M. Gell-Mann, J.B. Hartle, Phys. Rev. D47, 3345 (1993).

[19] A. Albrecht, Phys. Rev. D48, 3768 (1993).

[20] W.H. Zurek, Progr. Theor. Phys. 89, 281 (1993).

[21] J. von Neumann, in Mathematische Grundlagen der Quantenmechanik,
Springer Verlag, Berlin 1932, chapters V and VI; English translation by
R.T. Beyer Mathematical Foundations of Quantum Mechanics, Princeton
Univ. Press, Princeton 1955.

[22] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev 47, 777 (1935).

[23] D. Bohm, in Quantum Theory, Prentice-Hall, Engelwood Cliffs 1951, chapter
22.

[24] J.S. Bell, Physics 1, 195 (1964).

[25] A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

[26] W.H. Zurek, S. Habib, J.P. Paz, Phys. Rev. Lett. 70, 1187 (1993).

[27] M.R. Gallis, Phys. Rev. A53, 655 (1996).

[28] G. Lindblad, Comm. Math. Phys. 40, 119 (1976).

[29] A.O. Caldeira, A.J. Leggett, Physica 121A, 587 (1983).

[30] W.G. Unruh, W.H. Zurek, Phys. Rev. D40, 1071 (1989).

[31] M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J-M. Rai-
mond, S. Haroche, Phys. Rev. Lett. 77, 4887 (1996).

[32] C. Monroe, D.M. Meekhof, B.E. King, D.J. Wineland, Science, 272, 1131
(1996).

[33] See J.F. Poyatos, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 77, 4728 (1996) for a
related experimental proposal.



Decoherence, Chaos, Quantum–Classical Correspondence . . . 3709

[34] T. Dittrich, R. Graham, Phys. Rev. A42, 4647 (1990), and references therein.

[35] S. Habib, K. Shizume, W.H. Zurek, Phys. Rev. Lett. 80, 4361 (1998).

[36] W.H. Zurek, Physica Scripta T76, 186 (1998).

[37] H.D. Zeh, The Physical Basis of the Direction of Time, Springer Verlag, Berlin
1989.

[38] P.A. Miller, S. Sarkar, R. Zarum, Acta Phys. Pol., 29, 3643 (1998).

[39] H. Ammann, R. Gray, I. Shvarchuck, N. Christensen, Phys. Rev. Lett. 80,
4111 (1998); B.G. Klappauf, W.H. Oskay, D.A. Steck, M.G. Raizen, Phys.
Rev. Lett. 81, 1203 (1998).

[40] R. Landauer, in Proc. of the Drexel-4 Symposium on Quantum Nonintegrabil-
ity: Quantum–Classical Correspondence, eds D.H. Feng and B.-L. Hu, World
Scientific, Singapore 1997; I.L. Chuang, R. Laflamme, P. Shor, W.H. Zurek,
Science, 270, 1633 (1995); C.H. Bennett, Physics Today 48, No.10 (1995).

[41] M. Gell-Mann, J.B. Hartle, in Complexity, Entropy, and the Physics of In-
formation, ed. W.H. Zurek, Addison-Wesley, Reading 1990; R. Omnès, Rev.
Mod. Phys. 64, 339 (1992), and The Interpretation of Quantum Mechanics,
Princeton, 1994; R.B. Griffiths, Phys. Rev. A54, 2759 (1996).

[42] D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, H.D. Zeh, Decoher-
ence and the Appearance of a Classical World in Quantum Theory, Springer,
Berlin 1996.

[43] W.H. Zurek, Phil. Trans. Roy. Soc. Lond. A 356, 1793 (1998).

[44] W.H. Zurek, Rev. Mod. Phys., in preparation.


