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Improved expansion in width is applied to a curved domain wall in non-
relativistic dissipative λ(Φ2 − v2)2 model with real scalar order parameter
Φ. Approximate analytic description of such a domain wall to the second
order in the width is presented.

PACS numbers: 11.27.+d, 02.30.Mv

1. Introduction

Physics of domain walls and vortices has been a rather interesting field
of experimental as well as theoretical research for quite a long time [1].
Example of a recent hot topic is production of such soft solitonic objects
in rapid phase transitions — testing and refining a theoretical description
proposed by Kibble [2] and Żurek [3]. Theoretical analysis of dynamics
of domain walls and vortices is relatively difficult because pertinent field
equations are nonlinear, and the most interesting solutions do not belong to
weak field sector.

Among problems which have been discussed in literature is time evolu-
tion of single curved domain wall or vortex. It is commonly regarded as
accessible only by a numerical analysis. Actually, there exist also analytical
approaches which yield (an approximate) description of the time evolution:
the classical effective action (CEA) method which has been developed in a
series of papers starting from [4,5], examples of more recent works are [6–8],
and a version of Hilbert–Chapman–Enskog method which we call the im-
proved expansion in width (IEW). This latter approach has been developed
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in papers [9], with an inspiration coming from [10]. The two methods have
been outlined and compared in paper [11]. These two analytical approaches
are not simple, but neither is the purely numerical approach — this is just a
reflection of the fact that dynamics of the curved domain wall or a vortex is
nontrivial due to nonlinearity, many spatial dimensions, and many modes of
involved fields. The numerical and analytical approaches should be regarded
as equally important and complementary sources of information about the
dynamics.

In the present paper we apply IEW method to a curved domain wall in a
nonrelativistic dissipative system. Time evolution is governed by a diffusion
type equation for which no simple action functional exists. Therefore, it
is not clear how CEA scheme could be applied in this case, while, as it
turns out, IEW method works quite well. Because our second goal is a
presentation of the method, we consider a relatively simple system with
scalar order parameter. An application to domain walls in nematic liquid
crystals we will present elsewhere [12]. IEW method has also been applied
to a vortex line, see [13]. Work on application to a disclination line in a
nematic liquid crystal is in progress [14].

In our opinion IEW method has several attractive features, e.g., it com-
bines the old and elegant subject of differential geometry of surfaces in
3-dimensional space with nonlinear dynamics of the curved domain wall.
Another interesting aspect is that IEW scheme relates properties of the do-
main wall to properties of one-dimensional kink. In this sense IEW method
embodies the idea that the curved domain wall can be regarded as three-
dimensional embedding of the one-dimensional kink.

The expansion in width is based on the idea that transverse profile of
the curved domain wall considered in suitable coordinates (which are called
comoving coordinates) differs from transverse profile of a planar domain wall
by small corrections which are due to curvature of the domain wall, and that
these corrections can be calculated perturbatively. There is a condition for
applicability of such a perturbative scheme: the two main curvature radia
of the domain wall should be much larger than its width. As we shall see
below, turning that idea into a concrete calculational scheme requires some
work, but that should be expected in any approach which tackles generic
curved domain walls.

The plan of our paper is as follows. In Section 2 we introduce the co-
moving coordinate system. Section 3 is devoted to the presentation of the
perturbative expansion. Several remarks are collected in Section 4.
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2. The comoving coordinates

We shall seek the curved domain wall solutions of the following equation

γ
∂Φ

∂t
+
δF

δΦ
= 0 , (2.1)

where the free energy F has the form

F =
1

2

∫

d3x

(

∂Φ

∂xα

∂Φ

∂xα
+ λ(Φ2 − v2)2

)

. (2.2)

Here Φ is a real scalar order parameter; λ, v and γ are positive constants; and
(xα), α = 1, 2, 3, are Cartesian coordinates in the usual R3 space. From (2.1)
and (2.2) we obtain the following equation for the rescaled dimensionless
order parameter φ = Φ/v

γ
∂φ

∂t
= ∆φ− 2λv2φ(φ2 − 1) . (2.3)

The domain wall solutions of Eq. (2.3) smoothly interpolate between φ = −1
on one side of the wall and φ = +1 on the other side. Canonical example of
such a solution is given by the formula

φ0(x
3) = tanh

x3 − a

2l0
, (2.4)

where l−2

0
= 4λv2 and a is an arbitrary constant. The presence of the

constant a is due to translational invariance of Eq. (2.3). This particular
solution represents planar static domain wall located at the plane x3 = a.
Such domain wall is homogeneous along that plane. Its transverse profile is
parametrized by x3. Width of the wall is approximately equal to l0, in the
sense that for |x3 − a| ≫ l0 values of φ differ from +1 or -1 by exponentially
small terms. The form (2.4) of φ0(x

3) coincides with one-dimensional static
kink present in one-dimensional version of the model defined by (2.1) and
(2.2). The domain wall can be regarded as embedding of that kink in the 3-
dimensional space R3. Notice that somewhere inside any domain wall there
is a surface on which φ vanishes. For example, in the case of planar domain
wall (2.4) φ0 = 0 for x3 = a. Such surface is called the core of the domain
wall.

The first step in our construction of the perturbative scheme consists
in introducing special coordinates comoving with the domain wall. One
coordinate, let us say ξ, parametrizes direction perpendicular to the domain
wall, two other (σ1, σ2) parametrize the domain wall regarded as a surface in
the R3 space. The comoving coordinates have been proposed in the context
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of CEA method, [5]. We introduce one important modification: an auxiliary
surface S, which is present in the definition of the comoving coordinates,
is apriori independent of the domain wall. In literature on CEA method it
is defined directly in terms of the domain wall — the most popular choice
is that S coincides with the core. It turns out that the latter choice in
general is not compatible with certain consistency conditions which appear
in our approximation scheme. Transformations to comoving coordinates in
the cases of relativistic domain walls and vortices in Minkowski space-time
can be found in [9, 13], respectively. Below we introduce such coordinates
for the nonrelativistic domain wall moving in the R3 space.

After all these remarks let us finally define the comoving coordinates.
We consider a smooth, closed or infinite surface S in the usual R3 space. It
is close to the core and its shape is similar to the shape of the domain wall.
In particular one may assume that S coincides with the core at certain time
t0. Points of S are given by ~X(σi, t), where σi (i = 1, 2), are two intrinsic
coordinates on S, and t denotes the time — we allow for motion of S in the
space. The vectors ~X,k, k = 1, 2, are tangent to S at the point ~X(σi, t)1.
They are linearly independent, but not necessarily orthogonal to each other.
At each point ~X(σi, t) of S we also introduce a third vector ~p(σi, t) which is
perpendicular to S, that is

~p ~X,k = 0.

We assume that ~p has unit length, ~p2 = 1. The three vectors ( ~X,k, ~p) form a
local basis at the point ~X(σi, t) of S. With this basis given at each point of
S, we introduce geometric characteristics of S: induced metric tensor on S

gik = ~X,i
~X,k ,

and the extrinsic curvature coefficients

Kil = ~p ~X,il .

(i, k, l = 1, 2). They appear in Gauss–Weingarten formulas

~X,ik = K,ik~p+ Γ l
ik
~X,l , ~p,k = −gilKlk

~X,i . (2.5)

Here the matrix (gik) is by definition the inverse of the matrix (gkl), i.e.

gikgkl = δi
l , and Γ l

ik are Christoffel symbols constructed from the metric gik.
The two by two matrix (Kik) is symmetric. Two eigenvalues k1, k2 of the
matrix (Ki

j), where Ki
j = gilKlj , are called extrinsic curvatures of S at the

point ~X . The local curvature radia are defined as Ri = 1/ki.

1 We use the compact notation f,k ≡ ∂f/∂σk.
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The comoving coordinates (σ1, σ2, ξ) at the time t are introduced by the
following formula

~x = ~X(σi, t) + ξ~p(σi, t). (2.6)

Here ~x = (xα), α = 1, 2, 3, are the usual Cartesian coordinates in the space
R3. ξ is the coordinate in the direction perpendicular to S. Notice that this
direction has very simple parametrization — the r.h.s. of formula (2.6) is a
linear function of ξ. We will use a compact notation for the comoving coor-
dinates: (σ1, σ2, ξ) = (σα), with α=1,2,3 and σ3 = ξ. The coordinates (σα)
are just a special case of curvilinear coordinates in R3. The corresponding
metric tensor Gαβ in R3 has the following components:

G33 = 1, G3k = Gk3 = 0, Gik = N l
iglrN

r
k ,

where
N l

i = δl
i − ξK l

i ,

i, k, l, r = 1, 2. Simple calculations give

√
G =

√
gN ,

where G = det(Gαβ), g = det(gαβ) and N = det(N i
k) is given by the

following formula

N = 1 − ξKi
i +

1

2
ξ2(Ki

iK
l
l −Ki

lK
l
i) .

Components Gαβ of the inverse metric tensor have the form

G33 = 1, G3k = Gk3 = 0, Gik = (N−1)irg
rl(N−1)kl ,

where

(N−1)ir =
1

N

(

(1 − ξK l
l )δ

i
r + ξKi

r

)

.

We see that dependence of Gαβ on the transverse coordinate ξ is explicit,
and that σ1, σ2 appear through the tensors gik, K

l
r which characterise the

surface S.
In general the coordinates (σα) have certain finite region of validity. In

particular, the range of ξ is given by the smallest positive ξ0(σi, t) for which
N = 0. It is clear that such ξ0 increases with decreasing extrinsic curvature
coefficients K l

i , reaching infinity for the planar domain wall. We assume that
the surface S (and the domain wall) is smooth enough, so that outside of
that region there are only exponentially small tails of the domain wall which
give negligible contributions to physical characteristics of the domain wall.



3730 H. Arodź

The comoving coordinates are utilised to write Eq. (2.3) in a form suit-
able for calculating the curvature corrections. Laplacian ∆ in the new coor-
dinates has the form

∆φ =
1√
G

∂

∂σα

(√
GGαβ ∂φ

∂σβ

)

.

The time derivative on the l.h.s. of Eq. (2.3) is taken under the condition
that all xα are constant. It is convenient to use time derivative taken at
constant σα. The two derivatives are related by the formula

∂

∂t
|xα =

∂

∂t
|σα +

∂σβ

∂t
|xα

∂

∂σβ
,

where
∂ξ

∂t
|xα = −~p ~̇X, ∂σi

∂t
|xα = −(N−1)ikg

kr ~X,r( ~̇X + ξ~̇p) ,

the dots stand for ∂/∂t|σi . The final step consists in rescaling the transverse
variable ξ

ξ = 2l0s .

The dimensionless variable s measures the distance from the surface S in
the unit 2l0. Equation (2.3) transformed to the comoving coordinates with
ξ rescaled as above has the following form

2γl2
0

(

∂φ
∂t
|σα − 1

2l0
~p ~̇X ∂φ

∂s
− (N−1)ikg

kr ~X,r( ~̇X + 2l0s~̇p)
∂φ
∂σi

)

= 1

2

∂2φ
∂s2 + φ− φ3 + 1

2N
∂N
∂s

∂φ
∂s

+ 2l2
0

1√
gN

∂
∂σj

(

Gjk√gN ∂φ

∂σk

)

, (2.7)

which is convenient for construction of the expansion in the width.

3. The expansion in the width

We seek domain wall solutions of Eq. (2.7) in the form of expansion with
respect to l0, that is

φ = φ0 + l0φ1 + l20φ2 + . . . . (3.1)

Inserting formula (3.1) in Eq. (2.7) and keeping only terms of the lowest
order (∼ l0

0
) we obtain the following equation

1

2

∂2φ0

∂s2
+ φ0 − φ3

0 = 0 . (3.2)
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It has the well-known kink solutions

φ0 = tanh(s− s0) ,

which formally have the same form as the planar domain walls (2.4). In the
remaining part of the paper we shall consider curvature corrections to the
simplest solution

φ0 = tanh s . (3.3)

Notice that φ0 interpolates between the vacuum solutions ±1. Therefore,
the corrections φk, k ≥ 1, should vanish in the limits s→ ±∞.

Equations for the corrections φk, k ≥ 1, are obtained by expanding the
both sides of Eq. (2.7) and equating terms proportional to lk

0
. They can be

written in the form
L̂φk = fk , (3.4)

where

L̂ =
1

2

∂2

∂s2
+ 1 − 3φ2

0 =
1

2

∂2

∂s2
+

3

cosh2 s
− 2 , (3.5)

and fk depends on the lower order contributions φl, l < k. Straightforward
calculations give

f1 = ∂sφ0(K
r
r − γ~p ~̇X) , (3.6)

f2 = 3φ0φ
2

1 + 2s∂sφ0K
i
jK

j
i + ∂sφ1(K

r
r − γ~p ~̇X) , (3.7)

f3 = 2γ(∂tφ1 − gkr ~X,r
~̇X∂kφ1) + 6φ0φ1φ2 + φ3

1

+2s∂sφ1K
i
jK

j
i − 2s2∂sφ0K

r
r

(

(Ki
i )

2 − 3Ki
jK

j
i

)

− 2√
g
∂j(

√
ggjk∂kφ1) + ∂sφ2(K

r
r − γ~p ~̇X) , (3.8)

and

f4 = 2γ(∂tφ2 − 2sgik ~̇p ~X,k∂iφ1) − 2γgjk ~X,k
~̇X(∂jφ2 + 2sKi

j∂iφ1)

+3φ0φ
2

2 + 6φ0φ1φ3 + 3φ2

1φ2 + 2s∂sφ2K
i
jK

j
i

−4s3∂sφ0

(

(Kr
r )4 − (Kr

sK
s
r )

2 − 2(Kr
r )2Ki

jK
j
i

)

−2s2∂sφ1K
r
r

(

(Ki
i )

2 − 3Ki
jK

j
i

)

− 2√
g
∂j(

√
ggjk∂kφ2)

− 8s√
g
∂j(

√
gKjk∂kφ1) + 4sgjk∂jK

r
r∂kφ1 + ∂sφ3(K

r
r −γ~p ~̇X) , (3.9)

where ∂t = ∂/∂t, ∂i = ∂/∂σi.
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Notice that all Eqs. (3.4) for φk are linear. The only nonlinear equation
in our perturbative scheme is the zeroth order equation (3.2).

Now comes the crucial point: operator L̂ has a zero-mode, that is a
normalizable function ψ0(s) such that

L̂ψ0 = 0 .

This function can be obtained by differentiating φ0(x
3) given by formula (2.4)

with respect to a/2l0 and putting a = 0,

ψ0 =
1

cosh2 s
. (3.10)

This zero-mode owes its existence to invariance of Eq. (3.2) with respect to
translations in s, therefore it is often called the translational zero-mode. Let
us multiply Eqs. (3.4) by ψ0(s) and integrate over s. Because

∞
∫

−∞

dsψ0L̂φk = 0 ,

we obtain the consistency (or integrability) conditions

∞
∫

−∞

dsψ0(s)fk(s) = 0 . (3.11)

The operator L̂ appears also in the expansion in width for relativistic domain
walls [9]. Using standard methods [9,15] one can obtain the following formula
for vanishing in the limits s→ ±∞ solutions φk of Eqs. (3.4):

φk = G[fk] + Ck(σ
i, τ)ψ0(s) , (3.12)

where

G[fk] = −2ψ0(s)

s
∫

0

dxψ1(x)fk(x) + 2ψ1(s)

s
∫

−∞

dxψ0(x)fk(x) . (3.13)

Here ψ0(s) is the zero-mode (3.10) and

ψ1(s) =
1

8
sinh(2s) +

3

8
tanh s+

3

8

s

cosh2 s
(3.14)

is the other solution of the homogeneous equation

L̂ψ = 0 .
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The second term on the r.h.s. of formula (3.12) obeys the homogeneous
equation L̂φk = 0. It vanishes when s→ ±∞.

One can worry that φk, k ≥ 1, given by formulas (3.12), (3.13) do not
vanish when s→ ±∞ because the second term on the r.h.s. of formula (3.13)
is proportional to ψ1 which exponentially increases in the limits s → ±∞.
However, the integrals

s
∫

−∞

dxψ0fk

vanish in that limit, see the consistency conditions (3.11). Moreover, quali-
tative analysis of Eq. (2.7) shows that fk ∼ (polynomial in s) × exp(−2|s|)
for large |s|, hence those integrals behave like (polynomial in s)×exp(−4|s|)
for large |s| ensuring that φk exponentially vanish when |s| → ∞.

We have explicitly solved Eqs. (3.4). The solutions (3.12) contain as yet
arbitrary functions Ck(σ

i, t), and also ~X(σi, t) giving points of the comoving
surface S — Ki

l , gik follow from ~X . It turns out that the conditions (3.11)
are so restrictive that they essentially fix these functions. The consistency
condition with k = 1 is equivalent to

γ~p ~̇X = Kr
r , (3.15)

where we have used formulas (3.6), (3.10). Thus we have obtained equation
for ~X . It is of the same type as Allen–Cahn equation [16], but in our
approach it describes motion of the auxiliary surface S only. Equation (3.15)
should be compared with Nambu–Goto equation for a relativistic membrane
obtained in the relativistically invariant version of our model [9]. We shall see
below that the remaining consistency conditions do not give more restrictions
for ~X at least up to the fourth order — they can be saturated by the functions
Ck(σ

i, t). We expect that this is true to all orders but we have not attempted
to provide a proof.

Let us now proceed with the discussion of the perturbative corrections:
Taking into account the condition (3.15) we have f1 = 0. Therefore

φ1 =
C1(σ

i, t)

cosh2 s
. (3.16)

Equation (3.4) with k = 1 does not provide more information.
The second order contribution φ2 is given by formula (3.12) with k = 2.

Using the results (3.15), (3.16) from the first order we obtain the following
formula

φ2 = ψ2(s)C
2

1 (σi, t) + ψ3(s)K
i
jK

j
i +

C2(σ
i, t)

cosh2 s
, (3.17)
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where

ψ2(s) = − sinh s

cosh3 s
,

ψ3(s) =
−4

cosh2 s

s
∫

0

dx
xψ1(x)

cosh2 x
+ 4ψ1(s)

s
∫

−∞

dx
x

cosh4 x
.

ψ3(s) can easily be evaluated, e.g., numerically. Also the higher order cor-
rections involve only rather simple integrals of elementary functions.

The consistency condition (3.11) with k = 2 does not give any restrictions
— it can be reduced to the identity 0 = 0. More interesting is the next
condition, that is the one with k = 3. It can be written in the form of the
following inhomogeneous equation for C1(σ

i, t)

γ(∂tC1 − gkr ~X,r
~̇X∂kC1) −

1√
g
∂j(

√
ggjk∂kC1) −Ki

jK
j
i C1

=
1

2
(
π2

6
− 1)Kr

r

(

(Ki
i )

2 − 3Ki
jK

j
i

)

. (3.18)

This equation determines C1 provided that we fix initial data for it. The
consistency condition coming from the fourth order (k = 4) is equivalent to
the following homogeneous equation for C2

γ(∂tC2 − gkr ~X,r
~̇X∂kC2) −

1√
g
∂j(

√
ggjk∂kC2) −Ki

jK
j
iC2 = 0 . (3.19)

The perturbative scheme presented above is not quite straightforward.
Therefore we would like to add several explanations. The formulas presented
above give a whole family of domain wall solutions. To obtain one concrete
domain wall solution we have to choose initial position of the auxiliary sur-
face S. Its positions at later times are determined from Eq. (3.15). We also
have to fix initial values of the functions C1, C2 and to find the correspond-
ing solutions of Eqs. (3.18), (3.19). The approximate domain wall solution
φ is given by formula (3.17). Notice that we are not allowed to choose the
initial profile of the domain wall arbitrarily because the dependence on the
transverse coordinate s is explicitly given by formulas (3.3), (3.16), (3.17).
Any choice of the initial data gives an approximate domain wall solution.
Of course such a choice should not lead to large perturbative corrections at
least in certain finite time interval. Therefore one should require that at the
initial time l0C1 ≪ 1, l2

0
C2 ≪ 1, l0K

i
j ≪ 1. The domain wall is located close

to the surface S because for large |s| the perturbative contributions vanish
and the leading term tanh s is close to one of the vacuum values ±1.
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The presented formalism is invariant with respect to changes of coor-
dinates σ1, σ2 on S. In particular, in a vicinity of any point ~X of S we
can choose the coordinates in such a way that gik = δik at ~X. In these
coordinates Eq. (3.15) has the form

γv =
1

R1

+
1

R2

, (3.20)

where v is the velocity in the direction perpendicular to S and R1, R2 are
the main curvature radia of S at the point ~X.

Let us present a simple example: take S to be a sphere of radius R.
Then R1 = R2 = −R(t), v = Ṙ and Eq. (3.20) gives

R(t) =

√

R2

0
− 4

γ
(t− t0),

where R0 is the initial radius. Our approximate formulas are expected to be
meaningful as long as R(t)/l0 ≫ 1. Equations (3.18), (3.19) reduce to

γ∂tC1 −
1

R2

(

1

sin θ
∂θ(sin θ∂θC1) +

1

sin2 θ
∂2

φC1

)

− 2

R2
C1 = 2(

π2

6
− 1)

1

R3
,

γ∂tC2 −
1

R2

(

1

sin θ
∂θ(sin θ∂θC2) +

1

sin2 θ
∂2

φC2

)

− 2

R2
C2 = 0 .

In the last equation θ, φ are the usual spherical coordinates on S (we apol-
ogize for using letter φ also in this meaning). If we take the simplest initial
data at t = t0, namely C1 = C2 = 0, then the last equation implies that
C2 = 0 also for t > t0 while C1 > 0. The Cartesian coordinate frame is
located at the center of the sphere S and ~p is the outward normal to S;
s = (r −R(t))/2l0, where r is the radial coordinate in R3.

4. Remarks

We would like to make several general remarks about the expansion in
width.

1. We have used l0 as a formal expansion parameter. It is a dimensionful
quantity, hence it is hard to say whether its value is small or large.
What really matters is smallness of the corrections l0φ1, l

2
0
φ2. This is

the case if l0C1 ≪ 1, l2
0
C2 ≪ 1 and l0K

i
j ≪ 1, as seen from formulas

(3.1), (3.16) and (3.17).

2. Notice that an assumption that S coincides with the core for all times
in general would not be compatible with the expansion in width. If we
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assume that C1 = 0 = C2 at certain initial time t0, Eq. (3.18) implies
that C1 6= 0 at later times unless the r.h.s. of it vanishes. Then, it
follows from formulas (3.1), (3.3) and (3.16) that φ does not vanish at
s = 0, that is on S.

3. The question of convergence of the expansion (3.1) has not been anal-
ysed. Actually we think that the expansion can turn out to be con-
vergent, in spite of the fact that more frequent in field theory are
asymptotic expansions. Moreover, this problem seems to be within
the reach of the present day mathematical techniques.

4. Finally, we would like to stress that we have abandoned effects which
come from perturbations of the exponential tails of the domain wall.
For example, if we have a domain wall in the form of cylinder with
very large radius and small height (and with rounded edges), then the
top and bottom parts are flat, and according to Eq. (3.20) they do not
move. In our approximation the domain wall shrinks from the sides
where the mean curvature 1/R1+1/R2 does not vanish. Now, in reality
the top and bottom parts interact with each other. This interaction is
very small only if the two flat parts are far from each other. We have
neglected it altogether assuming the tanh s asymptotics for large s.
Thus, our approximate solution takes into account only the effects of
curvature.

I would like to thank the organizers for the possibility to present this
work, and for stimulating atmosphere during the School.

REFERENCES

[1] For introduction to the topic see, e.g., P.M. Chaikin, T.C. Lubensky, Principles
of Condensed Matter Physics, Cambridge University Press, 1995.

[2] T.W.B. Kibble, J. Phys. A9, 1387 (1976); Phys. Rep. 67, 183 (1980).

[3] W. Żurek, Nature 317, 505 (1985); Acta Phys. Pol. B24, 1301 (1993); Phys.
Rep. 276, 178 (1996).

[4] H.B. Nielsen, P. Olesen, Nucl. Phys. B61, 45 (1973).

[5] D. Förster, Nucl. Phys. B81, 84 (1974).

[6] R. Gregory, Phys. Lett. B206, 199 (1988).

[7] S.M. Barr, D. Hochberg, Phys. Rev. D39, 2308 (1989).

[8] M. Anderson, F. Bonjour, R. Gregory, J. Stewart, Phys. Rev. D56, 8014
(1997).



Bridging the Dimensional Gap: from Kink in One Dimension to. . . 3737

[9] H. Arodź, Nucl. Phys. B450, 174 (1995); Nucl. Phys. B509, 273 (1998).

[10] N.G. van Kampen, Stochastic Processes in Physics and Chemistry, North-
Holland Publ.Comp., Amsterdam 1987, Chapt.8,§7.

[11] H. Arodź, talk given at the Conference "Particles, Fields and Gravitation",
Łódź, April 15–19, 1998. To be published in the series American Institute of
Physics Conference Proceedings.

[12] H. Arodź, in preparation.

[13] H. Arodź, Nucl. Phys. B450, 189 (1995); H. Arodź, A.L. Larsen, in prepara-
tion.

[14] H. Arodź, R. Pełka, work in progress.

[15] G.A. Korn, T.M. Korn, Mathematical Handbook, IInd Edition, McGraw-Hill
Book Comp., New York 1968, Chapt.9.3-3.

[16] S.M. Allen, J.W. Cahn, Acta Metall. 27, 1085 (1979); A.J. Bray, Adv. Phys.
43, 357 (1994).


