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A new theory of hydrodynamics of uniaxial nematic liquid crystal films
in the presence of defects is developed. A gauge field incorporating screen-
ing is introduced, resulting in the static elastic free energy having the form
of a two-dimensional Abelian–Higgs model. Hydrodynamic equations are
derived via the standard methods of de Groot and Mazur. By working in
the vicinity of the Bogomol’nyi equations consequences for defect centre
motion are outlined.
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Liquid crystals are important for technical applications such as liquid
crystal displays. However, the dynamics of defects studied in experiments
is also used to model the evolution of defects like strings in cosmology [1].
Here we propose a theory to model the dynamics of nematic liquid crystals
with defects.

1. Description of defects

Liquid crystals are states of matter which are in between those of a
liquid and crystal. In terms of their mechanical properties they are akin to
isotropic fluids, but in terms of their optical properties they behave more like
crystals. There are various types of liquid crystals. We shall only consider
uniaxial nematics. The nematic molecule is a rod-like molecule and the
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average direction of these rods is given by a vector n with fixed length,
n = 1. The distribution of the molecules is random, but there is orientation
order. For this macroscopic continuum theory the molecules are like head-
less arrows, so n and –n have to be identified since they represent the same
physical state [2,3]. Here we study nematic liquid crystals in two-dimensional
systems. These are thin layers, or films, where the molecules align parallel
with the surface layer, i.e. the director is confined to two dimensions.

The symmetry of possible rotations of the director is spontaneously bro-
ken, since the molecules tend to align themselves in parallel with one another.
This is reflected in the form of the distortion free-energy density describing
the statics of nematics. A ground state which minimizes this density is lo-
cally aligned (with possible exceptions at singular points or lines, also called
defects) [2]. The most general form of the distortion free-energy density is

φd = 1
2K1[∇ · n]2 + 1

2K2[n · (∇× n)]2 + 1
2K3[n × (∇× n)]2 . (1)

The positive constants K1, K2, and K3 are associated respectively with
splay, twist, and bend deformation. For a classic nematic like p-azoxyanisol
(PAA) at 120◦C their values are K1 = 0.7 × 106 dyn, K2 = 0.43 × 106 dyn,
K3 = 1.7× 106 dyn [2]. As φd is even in n, the states n and −n are indeed
indistinguishable. We remark that in two dimensions the three kinds of
deformation are not independent, since there we have

[n · (∇× n)]2 = [∇ · n]2 + [n × (∇× n)]2 .

For our purpose we use a simplified version of φd with enhanced symmetry,
the one-constant approximation where one assumes K1 = K2 = K3 =: K [2]

φ1 = 1
2K ∂jnl ∂jnl . (2)

(The convention of summing over two repeated indices is used throughout,
unless mentioned otherwise.)

The ground state of the nematic is described by a direction or orientation.
Consequently in the three dimensions the manifold of such states (known also
as the vacuum manifold) has the topology of a sphere S2. However, since n

and −n are identified, this manifold is further restricted to the projective
plane. In two dimensions the manifold is a circle with opposite points on a
diameter identified, which is still homeomorphic to a circle, S1 [4].

The possible topological defects are given by the homotopy groups of
the vacuum manifold. For S1 the only non-trivial homotopy group is π1(S1)
which determines the possible types of defect points (also known as discli-
nations). These points can be considered as strings, if we see our two-
dimensional system as the cross-section of a three-dimensional one. Other
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homotopy groups for systems with different vacuum manifolds determine
walls, monopoles and textures; a brief introduction is given in [1]. π1(S1)
reflects the number of topologically distinct noncontractible loops on S1.
This homotopy group can be represented through integers, or more pre-
cisely through half-integers. Defect points are described mathematically
like vortices, and in nematics they can have half-integer winding numbers
because of the identification of n and −n. Consequently the defect points in
two-dimensional nematic liquid crystals are characterized by their winding
numbers ±1

2 ,±1,±3
2 , . . .. Schematic illustrations of director configurations

and pictures from experiments, both for various types of defects, can be
found e.g. in [3, 5, 2, 6].

To deal with the possible singularities of the director, it has been found
useful to soften the constraint n = 1. The length of the director is regulated
instead by a potential term which is added to the energy density. We take
the potential to be proportional to (|n|2−1)2. This is minimized for |n| = 1.
So the ground states remain the same, and so does the vacuum manifold of
the system.

In the past the introduction of gauge fields has been suggested and used
to model systems with defects [7–11]. A gauge field can model screening
when many vortices are present. Here we propose a new form of the distor-
tion free-energy density which will be used later on to derive the equations of
hydrodynamics, in the same way as φd was the basis for the Ericksen–Leslie
equations which describe the hydrodynamics of nematics. It is recognized
that the Ericksen–Leslie equations do not satisfactorily incorporate disclina-
tions [2].

For two-dimensional liquid crystals the relevant gauge theory with the
vacuum manifold S1 is the Abelian–Higgs model. This is a relativistic model
formulated for three space plus one time dimension. We take on just the
static on space part. It gives us a generalized form of the one-constant
approximation φ1 in (2). When written in terms of the complex director
n = n1 + in2 relating to the two-dimensional system, it has the form

φ = 1
2KDjnDjn + 1

4λ(|n|2 − 1)2 + 1
2F 2 . (3)

The ordinary derivatives in φ1 are replaced with covariant ones, Dj =∂j−igAj

and a term in the derivatives of the gauge field A, the gauge field strength
F = ∂1A2−∂2A1, is added. We also have the potential mentioned above.
Kawasaki and Brand [11] claim to derive a free-energy density close to (3)
from (1) by carefully separating the director into singular and non-singular
pieces. These arguments are delicate, especially those, involving the number
of the degrees of freedom of the system.

Whereas φ1 is invariant under global rotations nj(r) 7→ Rjk nk(r), with
Rjk being a constant rotation matrix, φ is covariant, i.e. invariant under a
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local rotation of the form

n(r) 7→ eiϕ(r)n(r) ,

Aj(r) 7→ Aj(r) + 1
g

∂jϕ(r) . (4)

This is referred to as a gauge transformation determined by the space-
dependent phase angle ϕ(r).

The covariant energy density (3) implies that the interaction between
disclinations is screened. Mathematically the decay of the force between
two defects in a model without gauge fields is inversely proportional to the
distance between defects [12]. In the Abelian–Higgs model the force falls off
exponentially with the distance [13,14] so it has a weaker long range interac-
tion. Even though very little is known about the dynamics of disclinations in
nematics [6] it is still expected that a large number of them causes screening
and that they influence dissipative flow properties. Our model proposes to
take account of this by introducing the gauge field, which has also topological
and geometrical significance.

2. Hydrodynamic equations for nematics with defects

We derive hydrodynamic equations to model nematics with defects based
on the covariant energy density (3). We will follow the standard procedure of
hydrodynamics based on the concept of the fluxes and forces of de Groot and
Mazur [15]. This procedure was successful in deriving the usual dynamics
of nematics. The resulting equations are referred to as the Ericksen–Leslie
equations and the variables are the velocity field v and the director n. On
suppressing n they reduce to the Navier–Stokes equations. In our hydrody-
namics for defects in addition to v and n, the gauge field A is introduced.
Consequently not only additional terms are introduced into the existing
equations, but there is a new dissipative equation for A.

In this section we will employ the notation n=(n1, n2) and A=(A1, A2)
for the two-dimensional vector fields. The components are functions of the
two-dimensional coordinate r. Instead of the complex number i the covariant
derivative contains the matrix I which is given by

I =

(

0 −1
1 0

)

(I is the generator for the group of rotations in the plane). The covariant
derivative is then Dj,kl = ∂jδkl − gAjIkl. Its action on n we shall also note
in short as (Dn)jk = Dj,klnl. This expression translates into components
the complex one used in equation (3) by making the real and imaginary part
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the first and second component in the second index in (Dn)jk. Furthermore,
the expression for the gauge field strength Fjk =∂jAk−∂kAj is used instead
of F . Our theory is dissipative and does not have the relativistic invariance of
field theories. Consequently time and space components are not on an equal
footing, and we are not forced to introduce an A0 field. We will consider
A0 = 0 and time independent gauge transformations. The covariant form of
the distortion free energy density for nematics from (3) can then be rewritten
as

φ = 1
2K(Dn)jk(Dn)jk + 1

4λ(njnj − 1)2 + 1
4FjkFjk . (5)

Physically the system is understood as a layer with a small but homogeneous
thickness, and the vector fields are confined to the plane, as indicated above.
The energy of the whole system is written as Φ =

∫

d3xφ.
Instead of equation (4) the gauge transformation, under which the energy

density is invariant, now looks like

nj(r) 7→ Rjk(r)nk(r) ,

Aj(r) Ikl 7→ Aj(r) Ikl + 1
g

(∂jRki(r)) R−1
il (r) , (6)

where Rjk(r) is a two-dimensional rotation matrix. As a consequence Fjk is
again invariant and the covariant derivative of the director transforms like
(Dn)jk(r) 7→ Rkl(r) (Dn)jl(r).

The dynamics of nematics requires the following two variables appropri-
ate for isotropic fluids in addition to the director n(r) and the gauge field
A(r): the fluid velocity v(r) = (v1(r), v2(r)) and the pressure p(r) (dis-
cussed further below). The density ρ of the fluid is assumed to be constant.
This implies the incompressibility condition

∂jvj = 0 . (7)

The acceleration of the fluid is given by the derivative of the tensor of the
total stress σ(r) (by Newton’s law combined with the definition of the stress
tensor in dfi = d2Sj σji, which the force dfi on a surface element d2Sj).

ρ ∂tvj = ∂lσlj . (8)

The total stress is split into the elastic stress σ
e (also called the Ericksen

stress) and the viscous stress σ
v

σ = σ
e + σ

v . (9)

In addition to (7) and (8) the dynamics of nematics requires equations for the
first-order time derivatives of the director and gauge field. These, together
with the expressions for elastic and viscous stress as functions of the above
mentioned variables, are derived in what follows.
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2.1. The entropy source

From the expression of the entropy source for a flowing nematic liquid
the hydrodynamic fluxes and forces are identified. For small fluxes the forces
are linear in the fluxes. The aim is to find these linear equations or consti-
tutive relations. Their proportionality factors are of the form of a viscosity
coefficient multiplied by a monomial in the hydrodynamic variables. The
viscosity coefficients need to be determined phenomenologically.

The dissipation (product of temperature and entropy source) is the de-
crease in stored free energy. Its contributions are the kinetic and distortion
energy. Any external fields (electric, magnetic or gravity) are not taken into
account.

T Ṡ = −
d

dt

∫

d3x
(

1
2ρ vjvj + φ

)

, (10)

where S is the entropy.
To calculate the first term of the right hand side we use the fluid accel-

eration equation (8). On using integration by parts we obtain

−
d

dt

∫

d3x ρ vjvj =

∫

d3xσjk ∂jvk + surface terms . (11)

To calculate the second term of the right hand side in (10) we perform
two types of variations of the distortion energy density. One is a variation of
the energy density by changing the orientation of the director and the gauge
field. The transformations are n 7→ n

′ + δn and A 7→ A
′ + δA. Through

partial integration we get for the energy

δΦ =

∫

d3x
(

−hn
j δnj − hA

j δAj

)

+ surface terms (12)

with

hn
j = ∂l

∂φ

∂(∂lnj)
−

∂φ

∂nj
= K(DDn)llj − λ(nlnl − 1)nj , (13)

hA
j = ∂l

∂φ

∂(∂lAj)
−

∂φ

∂Aj
= ∂lFlj − Kg(Dn)jk Ikl nl . (14)

Usually, h
n is called the molecular field; here we mark it as related to the

director n. The additional expression which appears in our model has the
analogous notation h

A and is called the molecular field related to the gauge
field A. The double application of the covariant derivative in (13) is explic-
itly given by (DDn)lmj = Dl,jkDm,kini. We notice that the two molecular
field are non-zero only out of equilibrium, as the Euler–Lagrange equations
belonging to φ are h

n = 0 and h
A = 0.
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The second variation of the energy density consists of displacing the
liquid without changing the director orientation. The variation parameter
is u(r) which gives the displacement of the coordinate r to r

′ = r + u(r).
The director transforms such that

n(r) 7→ n
′(r′) = n

′(r + u) = n(r) . (15)

The transformation of r to r’ causes the derivative operator to transform
as ∂j 7→ ∂′

j = (δjk − ∂juk(r))∂k. Gauge invariance is obtained by imposing
the same transformation on the gauge field. All calculations are just up to
linear order in u. This gives the following results for the variation of the
variables:

δ (∂jnk) = ∂′

jn
′

k(r
′) − ∂jnk(r) = −∂lnk ∂jul ,

δAj = A′

j(r
′) − Aj(r) = −Al ∂jul ,

δ (∂jAk) = ∂′

jA
′

k(r
′) − ∂jAk(r) = −∂lAk ∂jul − ∂jAl ∂kul (16)

and by using the anti-symmetry of Fjk in the term involving δ(∂jAk), we
get the variation of the energy. The result is written in terms of the elastic
stress σ

e, which is the usual variable obtained from this kind of variation.

δΦ =

∫

d3xσe
jk ∂juk , (17)

σe
jk = −K(Dn)jl(Dn)kl − FjlFkl − p δjk . (18)

The function p = p(r) is a Lagrange multiplier that enforces the incompress-
ibility condition (7) on the displacement given by u(r). It is called pressure
and has the negative sign reflecting that generally the stress tensor σ for
an isotropic fluid without friction reduces to σjk = −δjkp where p is the
ordinary pressure.

The total variation is obtained by adding (12) and (17). This gives the
total time derivative

−
d

dt

∫

d3xφ =

∫

d3x
(

−σe
jk ∂jvk + hn

j ṅj + hA
j Ȧj

)

+ surface terms , (19)

where u̇ was replaced by v, ṅ is understood as the material time derivative,
the rate of change of the director as experienced by a moving molecule, and
is written in terms of covariant quantities

ṅj = (Dn)0j + vl(Dn)lj . (20)

Analogously Ȧ is defined by

Ȧj = F0j + vl Flj . (21)
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Under gauge transformations ṅ behaves like n, and Ȧ is invariant.
Finally we get the entropy source by putting (11) and (19) into equation

(10)

T Ṡ =

∫

d3x
[

σv
jk ∂jvk + hn

j ṅj + hA
j Ȧj

]

+ surface terms , (22)

where equation (9) was used to replace the total and elastic stress by the
viscous stress.

2.2. The balance of torques

From the entropy source (22) the hydrodynamic fluxes and forces could
be identified already. However we continue to follow de Gennes’ derivation
and rewrite it further by splitting the viscous stress into a symmetric and
an anti-symmetric part.

σvs
jk = 1

2

(

σv
jk + σv

jk

)

, (23)

Γj = −εjkl σ
v
kl , (24)

where εjkl is Levi–Civita’s anti-symmetric symbol. The same is done for the
tensor formed by the derivative of the velocity

sjk = 1
2 (∂jvk + ∂kvj) , (25)

ωj = 1
2εjkl ∂kvl . (26)

(For the cross products the variables like v and σ
v are seen as three-

dimensional where the components relating to the third dimension are zero.
As a result Γ and ω are perpendicular to the plane of our two-dimensional
system.) This allows us to write

σv
jk ∂jvk = σvs

jk sjk − Γj ωj . (27)

We will now show that Γ may be identified as the torque density and can
be written as Γ = n×h

n. To further this aim the first step is a variation of
the energy density for a constant director rotation around the axis parallel
to δω with a small rotation angle |δω|

n 7→ n + δω × n . (28)

This is a gauge rotation as given in equation (6), but with a constant rotation
matrix, and so the corresponding variation of the gauge field is zero. By
separating into volume and surface terms and using the molecular field h

n
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of (13), we get a change of the energy ΦV =
∫

V
d3xφ of any part V of our

system given by

δΦV =



−

∫

V

d3xhn
j εjkl nl +

∫

∂V

d2Si
∂φ

∂(∂inj)
εjkl nl



 δωk (29)

due to the variation. The second integral inside the bracket is the torque on
the director on the surface. Since the energy density is invariant under the
gauge rotation (28), we have δΦV = 0, and the torque on the director can
be replaced by the first integral inside the bracket. The second contribution
to the torque comes from the stress on the surface through

∫

εjkl rk dfl =
∫

εjkl rkσil d
2Si, and so the total torque on the volume V is

Tj =

∫

V

d3x εjkl nk hn
l +

∫

∂V

εjkl rkσil d
2Si . (30)

On the other hand the torque is given by the rate of change of the angular
momentum L, i.e. L̇ = T . It is calculated from L̇ =

∫

V
d3x ρ r×v̇ by putting

in the total stress from (8), integrating by parts and by using the equations
(9) and (24) to rewrite the volume integral. We then get

L̇j =

∫

∂V

εjkl rkσil d
2Si +

∫

V

d3x (Γj − εjkl σ
e
kl) . (31)

The term in σ
e is zero. This is based on the fact that the energy density is

invariant, i.e. δΦV = 0, under coordinate rotation r 7→ r + δω × r (without
changing the director) around the axis δω with a small rotation angle. This
variation is the same as that carried out in equations (15) to (18) with
u(r) = ω × r. (It is also valid for any part V of the system.) Hence δΦV

can be obtained from (17) where ∂juk = εjkl ωl.
Comparing equations (30) and (31) and using the fact that they are valid

for any volume V within the system, we can conclude that

Γ = n × h
n . (32)

By using equation (27) and (32) in (22), the new form of the entropy
source is obtained as

T Ṡ =

∫

d3x
[

σvs
jk sjk + hn

j Nj + hA
j Ȧj

]

+ surface terms , (33)

where we have introduced the vector N , the rate of change of the director
with respect to the background fluid

N = ṅ − ω × n . (34)
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Since ω is perpendicular to the plane of the film containing n, ω×n behaves
in the same way as n under gauge rotation (and so does ṅ); so N rotates
like n for a change of gauge.

The entropy source (33) displays three types of dissipation: dissipation
by shear flow, by rotation of the director with respect to the background
fluid, and by change of the gauge field.

2.3. The linear equations between fluxes and forces

In the entropy source (33) each contribution is identified as a product
of a flux with the conjugate force. We choose them in the same way as
de Gennes [2]: sii, s12, N , and Ȧ as hydrodynamic fluxes conjugate to the
forces σvs

ii , 2σvs
12, h

n, and h
A respectively (the factor 2 reflects that σvs

12 s12

occurs twice). In the limit of weak fluxes, the forces are linear functions of
the fluxes. We can express this in the form











σvs
ii

2σvs
12

hn
j

hA
k











=











· · ·

constituent

matrix

· · ·





















sll

s12

Np

Ȧq











. (35)

A priori this matrix is a tensor constructed from the variables of the
problem. This gives the matrix a large number of possible terms. However,
certain conditions restrict the form of the matrix. We look at the behaviour
of the fluxes and forces under time reversal. From equation (8) and (18)
it can be seen that the components of σ and σ

e are even under time re-
versal, and so σ

v is even too. The same goes for the other hydrodynamic
forces, whereas all the fluxes are odd. The Onsager reciprocal relations [15]
then imply that the constituent matrix is symmetric. We demand that the
matrix be compatible with the local symmetry of uniaxial nematics (D∞h).
This excludes derivatives, the gauge field and certain tensor types from the
matrix. Furthermore the matrix elements need to be such that the equa-
tions are invariant under director inversion n 7→ −n, which is essential for
nematics. (This inversion leaves the gauge field unchanged, since n 7→ −n

corresponds to a gauge transformation with constant phase angle ϕ = π.)
The only scalar invariant is |n|2, but outside the core of a disclination it is
of value one and near the defect centre it is small; like in the Ericksen–Leslie
theory it will not be used in the constituent matrix.

With these conditions (35) translates into the following equations

σvs
ij = α1 ninjnknlskl + 1

2γ2 (niNj + njNi)

+ α4 sij + 1
2 (α5 + α6) (niskj + njski) nk , (36)
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hn
i = γ1Ni + γ2njsji , (37)

hA
i = β1Ȧ1 + β2ninjȦj . (38)

The viscosity coefficients αi in σ
vs are set up with the result for σ

v in mind.
From equations (23) and (24) we know that σv

ij = σvs
ij −

1
2εijkΓk. Hence with

the help of equations (36), (32), and (37) we obtain the total viscous stress

σv
ij = α1 ninjnknlskl + α2 niNj + α3 njNi

+ α4 sij + α5 ninkskj + α6 njnkski , (39)

where α2 and α3 are defined such that γ1 = α3 − α2 and γ2 = α3 + α2. (In
addition we have the relation γ2 = α6 − α5 [2].) The coefficients αi and γi

are viscosities known from the Ericksen–Leslie theory [2]. The coefficients
βi, related to the dissipation of the gauge field, are new and have been
introduced by us.

In summary we have the hydrodynamics of nematic liquid crystals with
defects given by the three dissipative equations (8), (37), (38), corresponding
to the three hydrodynamic variables, the velocity field v, the director field n,
and the gauge field A. In addition we have the incompressibility condition
(7) giving rise to the pressure variable p. To specify the three hydrodynamic
equations in detail we need the total stress σ in (9), the elastic stress σ

e

in (18), the viscous stress σ
v in (39), the rate of change of the director N

in (34), the material time derivatives ṅ and Ȧ in (20) and (21), and the
molecular fields h

n and h
A in (13) and (14).

If the gauge field is zero, the original form of the Ericksen–Leslie equa-
tions is obtained for the director and velocity field from (8) and (37), together
with the incompressibility condition. Since the original equations due to the
dissipation were not invariant under a global rotation, the new equations are
not invariant under gauge transformation. If we require gauge invariance we
can keep only the diagonal terms in the constituent matrix in (35). Instead
of (37) and (38) the dissipative equations for the director and gauge field
become

hn
i = γ1Ni , (40)

hA
i = β1Ȧi (41)

and the viscous stress from (39) reduces to

σv
ij = 1

2γ1 (njNi − niNj) + α4 sij . (42)

(The γ1 term is invariant under gauge rotation because we work in only two
dimensions.)
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In a first attempt to solve these equations we truncated the system by
assuming zero velocity, i.e. the configuration of the system changes through
reorientation of the molecules without displacing them. We then have to
consider just the two dissipative equations (40) and (41), and this is a sim-
plification used earlier [16].

3. Hydrodynamics of defects in the Abelian–Higgs model

In this section we summarize very briefly how the general equations for
the hydrodynamics of nematics with defects derived in the previous section
are used to find the dynamics of disclination points in a simplified system
with zero velocity field. A detailed account of the related calculations and
results can be found in [17].

First we consider the distortion free-energy density (3). For a certain
value of the gauge coupling g, the Bogomol’nyi limit, a configuration of
disclinations with winding numbers of the same sign is a static solution.
In general, of course, several defects are not a static solution, and there is
a force between them which makes them move. However, if the coupling
deviates only slightly from the Bogomol’nyi limit we can still assume that
the configuration takes on the form of a static solution at every instant.
Such a configuration change over time is known as quasi-static motion and
is induced by the force due to the deviation from the Bogomol’nyi limit.
A solution with defects in the Bogomol’nyi limit can be parameterized by
the defect positions [18]. The motion of the configuration is then given
equivalently by the motion of the defect positions in the space of possible
static solutions (also known as moduli space). The concept of quasi-static
motion was developed by Manton [19] and has been applied by Samols and
Dziarmaga [20–22].

Physically a defect is a macroscopic region with a certain topological
charge. Mathematically this is modelled as a topological defect point with
a core region and a well defined centre point (providing the defect position
coordinate). If the distance between the defects is large compared to the
core size, a static multi-defect solution in the Bogomol’nyi limit is found
to a good approximation by superposition of solutions with single defects
in different positions. A static solution for several defects with overlapping
core regions is modelled by a single defect solution which is modified such
that it allows for disintegration of this defect into smaller ones.

In both cases, for large distances or overlapping cores, the static solution
in the Bogomol’nyi limit can be parameterized by the defect positions. Their
dynamics is given by the field equations (40) and (41). These are reduced
to equations just for the defect positions by projection on the moduli space.
The moduli space is spanned by zero-modes of the linear operator given by
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linearization of equations (40) and (41) in the field variables n and A. It
turns out that the zero-modes are derivatives of the defect solutions with
respect to the defect coordinates. The result of the projection is a set of
equations in the defect positions and their first time derivatives.

We derive and solve these equations for both cases mentioned above. For
defects with overlapping cores they indicate that an unstable disclination
with higher winding number can disintegrate into smaller ones which move
away from one another radially with exponentially increasing speed (as long
as their core regions overlap). Two disclination far apart from one another
move on a straight line, where their distance increases logarithmically with
time. Disclinations with smaller winding number have faster motion.
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