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In this lecture, we review the experimental situation of heavy fermions
with emphasis on the existence of a quantum phase transition (QPT) and
related non-Fermi liquid (NFL) effects. We overview the Kondo-Lattice
Model (KLM) which is believed to describe the physics of those systems.
After recalling the existing theories based on large-N expansion and various
N=2 schemes, we present two alternative approaches: (i) a spin fluctuation
Kondo functional integral approach treating the spin-fluctuation and Kondo
effects on an equal footing, and (ii) a supersymmetric theory enlarging the
usual fermionic representation of the spin into a mixed fermionic-bosonic
representation in order to describe the spin degrees of freedom as well as
the Fermi-liquid type excitations. This kind of approaches may open up
new prospects for the description of the critical phenomena associated with
the quantum phase transition in heavy-fermion systems.

PACS numbers: 75.30.Mb, 71.27.+a

1. Experimental overview

In heavy-fermion systems with 4f or 5f atoms (such as Ce or U), the
proximity of the electronic orbital to the Fermi level confers a Kondo effect at
low temperature, i.e. an on-site compensation of localized magnetic moment
by conduction electrons [1]. A direct consequence is the observation at
low temperature of a very large effective electronic mass m* derived from
the huge linear specific heat coefficient γ = C/T and a correspondingly
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large Pauli susceptibility. Simultaneously, the realization of the de Haas–
van Alphen (dH–vA) quantum oscillations [2] also concludes in favour of the
existence of heavy quasiparticles.

In addition to the Kondo effect, those systems are characterized by long-
range RKKY (Ruderman–Kittel–Kasuya–Yoshida) interactions between
neighboring local moments mediated by conduction electrons. The com-
petition between the Kondo effect and the RKKY interactions leads to the
possibility of either a non-magnetic or a long-range magnetically-ordered
ground state [3]. A zero-temperature quantum phase transition occurs gov-
erned by the value of the exchange coupling J between the spin of the con-
duction electron and the local moment. One of the most striking properties
of the heavy-fermion compounds discovered these last years is the experi-
mental possiblity to explore this quantum phase transition [4–7] by varying
the composition change (as in Ce Cu6−xAux or CexLa1−xRu2Si2), or by ap-
plying a pressure or a magnetic field. Thus a magnetic instability is observed
at xc = 0.1 in CeCu6−xAux [4], and xc = 0.08 in CexLa1−xRu2Si2 [7]. For
x = xc, where TN = 0, the observed behavior at low temperature is at odds
with that usually expected for a simple Fermi liquid (FL). In Ce Cu6−xAux,
the specific heat C depends on T as C/T ∼ − ln(T/T0), the magnetic sus-

ceptibility as χ ∼ 1 − α
√
T , and the T -dependent part of the resistivity

as ∆ρ ∼ T (instead of C/T ∼ χ ∼ const and ∆ρ ∼ T 2 in the Fermi liq-
uid state). Pressure or large magnetic fields are found to restore the FL
behavior.

The origin of this non-Fermi liquid (NFL) regime is a largely discussed
problem. The three main interpretations which have been proposed rely
on (i) a single impurity multichannel Kondo effect in which the internal
degree of freedom is provided by the 4f or 5f quadrupolar moment [8],
(ii) a distribution of the Kondo coupling due to the disorder leading to a
distribution of the Kondo temperature P (TK) [9] and (iii) the proximity of
a quantum phase transition [10–15] as is emphasized in this course.

Another important insight is provided by the Inelastic Neutron Scatter-
ing (INS) experiments carried out in systems close to the magnetic instabil-
ity. The measurements performed in pure compounds CeCu6 or CeRu2Si2
[16, 17] have shown the presence of two distinct contributions to the dy-
namic magnetic structure factor: a q-independent quasielastic component,
and a strongly q-dependent inelastic contribution peaked at the value ωmax

of the frequency. The same experiments carried out in systems with varying
concentrations as CexLa1−xRu2Si2 [18] , show a shift of ωmax to zero when
getting near the magnetic instability. Any theory aimed to describe the
quantum critical phenomena in heavy-fermion compounds should account
for the so-quoted behavior of the dynamical spin susceptibility.
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2. Theoretical overview

The model which is believed to describe the heavy-fermion systems is
the Periodic Anderson Model (PAM) defined for the case of spin 1/2 [19] as

H =
∑

kσ

εkc
†
kσckσ +E0

∑

iσ

f †iσfiσ +V
∑

iσ

(c†iσfiσ + c.c.)+U
∑

i

n↑fi n
↓
fi , (1)

where nσ
fi = f+

iσfiσ. It describes the conduction electrons ckσ with disper-
sion εk which hybridize with the localized f electrons of energy E0. The
grand canonical ensemble is used and both energies εk and E0 are measured
from the chemical potential µ. The hybridization matrix element is approxi-
mated by a constant V . U represents the on-site Coulomb repulsion between
f electrons.

In the Kondo limit, a canonical transformation allows to change the
Periodic Anderson Model into the Kondo-Lattice Model (KLM) defined as

H =
∑

kσ

εkc
†
kσckσ + J

∑

i

si.Si , (2)

where J is the on-site Kondo coupling between the spin of the conduc-

tion electrons si =
∑

σσ′ c
†
iστ σσ′ciσ′ and the localized spin represented by

Si =
∑

σσ′ f
†
iστσσ′fiσ′ in the Abrikosov pseudo-fermionic representation of

the spin imposing the constraint nfi =
∑

σ n
σ
fi = 1. That canonical trans-

formation analogous to the Schrieffer–Wolf transformation for the single-
impurity case is valid in the regime |εk| ≪ (−E0) and |εk| ≪ |E0 +U |. One

gets: J = V 2
[
− 1

E0
+ 1

E0+U

]
. In the U → ∞ limit, one has J = −V 2/E0

while in the symmetric Anderson model defined by E0 = −U/2, the result is
J = 4V 2/U . The Kondo-lattice model has been first introduced by Doniach
in 1977 [3] and we refer to the paper of Tsunetsugu et al. [20] for an extensive
review on the KLM essentially at D=1.

Let us first recall the main physical ideas behind the Kondo-lattice model:
(i) the competition between the Kondo effect and the RKKY interactions
leading to the so-called “Doniach phase diagram” and (ii) the nature of the
screening of the local moments in the lattice.

Concerning the point (i), the competition between the Kondo effect on
each site which tends to suppress the magnetic moment with decreasing tem-
perature and the RKKY interactions which, on the contrary, tend to mag-
netically order the local moments, leads to the well-known Doniach phase
diagram [3]. Let us call T 0

K the Kondo temperature for the single-impurity
and T 0

N (or T 0
C) the Néel (or Curie) temperatures in the absence of Kondo

effect: T 0
K = D exp (−1/ρ0J) and T 0

N ∼ (ρ0J)2, where D and ρ0 are the
bandwidth and the density of states at the Fermi level of the conduction
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electron band. Thus, at small ρ0J , T 0
N is larger than T 0

K and a long-range
magnetic order is established with, eventually, a reduction of the magnetic
moment due to the Kondo effect. Oppositely, at large ρ0J , T 0

K is larger
than T 0

N, the Kondo effect wins and the system does not order magnetically.
Therefore, the real Néel temperature TN first increases with increasing ρ0J ,
passes through a maximum and finally goes to zero at a critical value of the
coupling ρ0JC giving rise to a zero-temperature quantum critical point.

As far as the nature of the screening is concerned (point (ii)), an impor-
tant idea advanced by Nozières [21] is the possibility of an exhaustion of the
conduction electrons in the screening of the local moments. In the single-
impurity Kondo case, at low temperature, the local moment is screened by
the conduction electrons and a spin-singlet state is formed. In this so-called
Kondo effect, the number of conduction electrons in the screening cloud
formed around the impurity is equal to 1. In the Kondo lattice case, the
number of conduction electrons which are available are to be taken within
a thermal window of width kBT around the Fermi level. It should be com-
pared to the number of sites NS to be screened. Depending on the value
of the parameters, some situations may occur where the available conduc-
tion electrons are “exhausted” before achieving complete screening leaving
residual unscreened spin degrees of freedom on the impurities. That idea of
“uncomplete” Kondo effect is at the root of the supersymmetric theory that
we propose later on.

At high temperature, pertubation techniques in J may be applied leading
to the famous Kondo minimum in the resistivity as a function of tempera-
ture. Those pertubation techniques fail below the Kondo temperature and
there is a need for other techniques to solve the problem at low-temperature.
The other approaches based on the Bethe ansatz and the Renormalizaion
Group which revealed very powerful in the single-impurity case cannot be
generalized to the lattice case. In that context, there has been an intensive
search for new approaches among which the large-N and more generally the
functional integral approaches described here.

2.1. The large-N expansion

An important breakthrough in the understanding of the periodic An-
derson Model occured about 15 years ago when the idea of slave-bosons
was introduced: [22, 23] for the single-impurity case, [24–27] for the lat-
tice. In the limit of large on-site Coulomb repulsion (U → ∞), where the
double-occupancy is energetically forbidden, one can introduce a slave-boson
representation in which the two allowed states i.e. the empty or the singly-

occupied states are represented by e†i |0〉 and f †iσ|0〉. The exclusion of double-
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occupancy is expressed as

Pi = e†iei +
∑

σ

f †iσfiσ − 1 = 0 . (3)

The physical electron creation operator which creates transitions between

empty and singly-occupied sites is represented by f †iσei, while the number of

f electrons on site i of spin σ is equal to f †iσeie
†
ifiσ = f †iσfiσ provided that

the local constraint is satisfied. Hence the slave-boson representation of the
U → ∞ PAM Hamiltonian is given by

H =
∑

k,σ

εkc
†
kσckσ + E0

∑

i,σ

f †iσfiσ + V
∑

i,σ

(c†iσe
†
ifiσ + c.c.) (4)

provided that the local constraint Eq. (3) is satisfied that is enforced with
the aid of a time-independent Lagrange multiplier λi. The operators e+i and
f+

iσ obey bosonic and fermionic statistics, respectively.
It is then convenient to generalize the original PAM model from SU(2) to

SU(N) by allowing for the spin index σ in Eq. (4) to run from −S to S. That
corresponds to the situation of impurities of spin S coupled to conduction
electrons of degeneracy N with N = 2S + 1 . The corresponding SU(N)
model is interesting because it can be solved exactly in the limit N → ∞.
For this limit to make sense, the hybridization matrix element V should be

scaled as 1/
√
N therefore V = Ṽ /

√
N .

We do not give here all the details of the calculations which can be
found in the litterature. Let us say that the saddle-point approximation
which consists of taking ei and λi as site-independent (as well as time-
independent for ei) is exact in the limit N → ∞. It leads to the formation

of two quasiparticle bands of energies E±
k = 1

2εk+εf ±
√

(εk − εf )2 + 4V 2e20,

where εf = E0 +λ0. The values of e0, εf and µ are fixed by the saddle-point
equations. The two bands are split by a hybridization gap and the density
of states at the Fermi level is strongly renormalized ρ(EF) ∼ 1/TK, where
TK = D exp(E0/ρ0V

2). The specific heat coefficient γ and the magnetic
susceptibility χ are also strongly enhanced with the Wilson ratio χ/γ equal
to 1. Oppositely, the charge susceptibility is found to be unenhanced. The
ground state corresponds to a collective Kondo screening in which only a
fraction of conduction electons equal to TK/D screens each of the impurities.

Next step is to include the gaussian fluctuations around the saddle-point.
The corresponding corrections in 1/N generate effective interactions among
the quasiparticles which can be analyzed in terms of Landau paramaters.
In the case of the multichannel single-Kondo impurity problem, conserv-
ing T -matrix approximation methods [28] have been extensively used to
derive the finite temperature behavior with very accurate comparison with
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the Bethe ansatz and Conformal Field theory results. The generalization
to the case of the lattice has still to be done. All the results can be repro-
duced by starting instead from the N → ∞ Kondo lattice Hamiltonian and
performing a Hubbard–Stratonovich transformation on the coupling term
making the field Φ appear. There is then a one-to-one equivalence between

Φ0 = J
∑

kσ〈c
†
kσfkσ〉 and V e0. In all cases, no magnetic instability is found

at the order 1/N since the RKKY interactions occur at the order 1/N2 [29].
The latter point constitutes a serious drawback of the large-N expansion
which makes it inappropriate to describe the Quantum Critical Point ob-
served experimentally. The fact that the slave-boson does not carry spin
implies that spin and charge fluctuations cannot be treated on an equal
footing contrary to what happens with other slave-boson representations as
the one introduced by Kotliar and Ruckenstein that we present now.

2.2. The different N=2 approaches

In the case of a degeneracy N = 2 (S = 1/2), Kotliar and Ruckenstein
(KR) [30] introduced 4 slave-bosons ei, piσ and di in order to keep track of
the 4 possible local configurations so that the empty |O〉i, the singly-occupied

|σ〉i and the doubly-occupied | ↑↓〉i states are represented by: |O〉i = e†i |vac〉,
|σ〉i = p†iσf

†
iσ|vac〉 and | ↑↓〉i = d†if

†
i↑f

†
i↓|vac〉, where ei, piσ and di are bosons

and fiσ fermions. Then the PAM can be written as

H =
∑

k,σ

εkc
†
kσckσ +E0

∑

i,σ

f †iσfiσ + V
∑

i,σ

(c†iσfiσziσ + c.c.) + U
∑

i

d†idi (5)

with

ziσ =
(
e†ipiσ + p†i−σdi

)
/

[√
1 − e†iei − p†i−σpi−σ

√
1 − d†idi − p†iσpiσ

]

provided that the 3 following constraints are fulfilled

Pi = e†iei +
∑

σ

p†iσpiσ − 1 = 0 ,

Qiσ = f †iσfiσ − (p†iσpiσ + d†idi) = 0 . (6)

The choice of the denominator in ziσ guarantees to recover the free electron
gaz limit at U → 0. This representation first introduced in the case of the
Hubbard model was shown at the saddle-point level to give back the varia-
tional Gutzwiller approximation (GA) as developed by Rice and Ueda [31].
It then allows to include the gaussian fluctuations around the GA solu-
tion [32, 33]. In the case of the PAM [34, 36, 39, 40], the KR representation
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already leads to interesting results at the saddle-point level as soon as stag-
gered symmetry-broken state appropriate for bipartite lattice with nesting
is allowed. Notably, at d=1 [34], the approach essentially gives the same
results as those obtained by the variational wave function approach of Gu-
lacsi, Strack and Vollhardt [35]. At infinite dimension [36], a phase transition
to the antiferromagnetic insulator is found below a critical value VC of the
hybridization matrix element consistent with the Doniach predictions and
in quantitative agreement with the d = ∞ QMC [37] and exact diagonal-
ization [38] results. The general phase diagram for the three-dimensional
case has been determined by Doradzinski and Spalek [39]. Those studies en-
lighten on the nature of the moment compensation which takes place in the
antiferromagnetic state. The study of the V -dependence of the staggered
magnetizations mf and mc shows an almost total moment compensation
of mf and mc near VC suggesting an itinerant magnetism in which f and
c electrons are part of the same quasiparticles. Oppositely, in the V → 0
limit, mf saturates while mc goes to zero indicating a local moment mag-
netism. Figure 4 of paper [39] illustrates the latter point by showing the
V -dependence of mf and mc in the antiferromagnetic insulating state.

Finally, other path integral approaches to the KLM have been pro-
posed based on different Hubbard–Stratonovich decouplings of the exchange
term [41, 42]. For the extended KLM in which the Heisenberg interactions
among neighboring sites are included, we will mention the work of Cole-
man and Andrei [42] which consists in keeping the Resonant Valence Bond

(RVB) parameter χij = J
∑

σ f
†
iσfjσ on neighboring sites at the same time

as the Kondo parameter Φ = J
∑

σ c
†
iσfiσ quoted before. This approach

leads to the stabilization of a spin-liquid state at low temperature with pos-
sible anisotropic superconducting instability. This approach has been used
in a recent paper by Iglesias, Lacroix and Coqblin [43] where they propose a
revisited version of the Doniach phase diagram in which the Kondo tempera-
ture is drastically reduced resulting of the formation of the resonant valence
bonds.

In the rest of the paper, we will develop two alternative approaches to
the Kondo-lattice model: (i) the first one consists in keeping the f and c
magnetizations at the same level as the Kondo parameter [15]. We will show
how it is possible to account for the spin-fluctuation and the Kondo effects on
an equal footing thus combining both large N and spin-fluctuation theories.
To our point of view, this approach constitutes an ideal framework to study
the quantum critical phenomena around the magnetic transition; (ii) the
second approach consists in enlarging the usual Abrikosov pseudo-fermionic
representation of the spin into a mixed fermionic-bosonic representation in
order to describe the spin degrees of freedom as well as the Fermi-liquid type
excitations [44]. The analogy of the approach with the supersymmetry the-
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ory of disordered systems leads to giving it the nickname of “supersymmetric
approach”.

3. The spin fluctuation-Kondo functional integral approach

In the grand canonical ensemble, the Hamiltonian of the Kondo-Lattice
Model (KLM) constituted by a periodic array of Kondo impurities with an
average number of conduction electrons per site nc is written as

H=
∑

kσ

εkc
†
kσckσ +J

∑

i

Si ·
∑

σσ′

c†iστσσ′ciσ′−µNS

(
1

NS

∑

kσ

c†kσckσ−nc

)
(7)

in which τ are the Pauli matrices (τ x, τ y, τ z) and τ 0 the unit matrix; J is
the antiferromagnetic Kondo interaction (J > 0).

We use the Abrikosov pseudofermion representation of the spin Si: Si =∑
σσ′

f †iστσσ′fiσ′ . The projection into the physical subspace is implemented by

a local constraint
Qi =

∑

σ

f+
iσfiσ − 1 = 0 . (8)

A Lagrange multiplier λi is introduced to enforce the local constraint Qi.
Since [Qi,H] = 0, λi is time-independent.

In this representation, the partition function of the KLM can be ex-
pressed as a functional integral over the coherent states of the Fermion fields

Z =

∫
DciσDfiσdλi exp


−

β∫

0

L(τ)dτ


 , (9)

where the Lagrangian L(τ) is given by

L(τ) = L0(τ) +H0(τ) +HJ(τ) ,

L0(τ) =
∑

iσ

c†iσ∂τciσ + f †iσ∂τfiσ ,

H0(τ) =
∑

kσ

εkc
†
kσckσ − µNS

(
1

NS

∑

kσ

c†kσckσ − nc

)
+
∑

i

λiQi ,

HJ(τ) = J
∑

i

Sfi · Sci

with Sci
=
∑
σσ′

c†iστσσ′ciσ′ and Sfi = Si .
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We perform a Hubbard–Stratonovich transformation on the Kondo inter-
action term HJ(τ). Since more than one field is implied in the transforma-
tion, an uncertainty is left on the way of decoupling. We propose to remove
it in the following way. First, we note that HJ(τ) may also be written as

HJ(τ) = −3J

8

∑

i

nfci
ncfi

+
J

2

∑

i

Sfci
· Scfi

, (10)

where Sfci
=
∑
σσ′

f †iστ σσ′ciσ′ and nfci
=
∑
σσ′

f †iστ
0
σσ′ciσ′ (respectively Scfi

and

ncfi
their Hermitian conjugate).

The Kondo interaction term is then given by any linear combination
of J

∑
i

Sfi · Sci (with a weighting factor x) and of the term appearing in

the right-hand side of equation (10) (with a weighting factor (1-x)). x is
chosen so as to recover the usual results obtained within the slave-boson
theories [24–27]. One can check that this is the case for x = 1/3. The
Kondo interaction term is then given by

HJ(τ) = JS

∑

i

(Sfi
· Sci

+ Sfci
· Scfi

) − JC

∑

i

nfci
ncfi

(11)

with JS = J/4 and JC = J/3 .

Performing a generalized Hubbard–Stratonovich transformation on the
partition function Z makes the fields Φi, Φ

∗
i (for charge) and ξfi

, ξci
appear

(omitting the fields associated to Sfci
, Scfi

). We get

Z =

∫
dΦidΦ

∗
i dξfi

dξci
DciσDfiσdλi exp


−

β∫

0

L′(τ)dτ


 (12)

with

L′(τ) = L0(τ) +H0(τ) +H ′
J(τ) ,

H ′
J(τ) =

∑

iσσ′

(
c†iσ, f

†
iσ

)(−JSiξfi
· τ σσ′ JCΦ

∗
i τ

0
σσ′

JCΦiτ
0
σσ′ −JSiξci

· τ σσ′

)(
ciσ′

fiσ′

)

+JC

∑

i

Φ∗
iΦi + JS

∑

i

ξfi
.ξci

.
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3.1. Saddle point

The saddle-point solution is obtained for space and time independent
fields Φ0, λ0, ξf0

and ξc0 . In the magnetically-disordered regime (ξf0
=

ξc0 = 0), it leads to renormalized bands α and β as schematized in figure 1.

Noting σ
(∗)
0 = JCΦ

(∗)
0 and εf = λ0, α

†
kσ|0〉 and β†kσ|0〉 are the eigenstates of

G−1σ
0 (k, τ) =

(
∂τ + εk σ∗0
σ0 ∂τ + εf

)
(13)

with respectively the eigenenergies (∂τ+E−
k ) and (∂τ+E+

k ). In the notations:

xk = εk − εf , y±k = E±
k − εf and ∆k =

√
x2

k + 4σ2
0 , we get

y±k = (xk ± ∆k) /2 . (14)

2σ0

kF

µ

εF=0
2|yF|

εk

α

β

k0 

Fig. 1. Energy versus wave-vector k for the two bands α and β. Note the presence

of a direct gap of value 2σ0 and of an indirect gap of value 2 |yF|.

Let us note U †
kσ the matrix transforming the initial basis (c†kσ, f

†
kσ) to the

eigenbasis (α†
kσ, β

†
kσ). The Hamiltonian being Hermitian, the matrix Ukσ is

unitary : UkσU
†
kσ = U †

kσUkσ = 1. In the notation U †
kσ =

(
−vk uk

uk vk

)
, we

have

uk =
−σ0/y

−
k√

1 + (σ0/y
−
k )2

=
1

2

[
1 +

xk

∆k

]
,

vk =
1√

1 + (σ0/y
−
k )2

=
1

2

[
1 − xk

∆k

]
. (15)
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The saddle-point equations together with the conservation of the number of
conduction electrons are written as

σ0 =
1

NS
JC

∑

kσ

ukvk nF(E−
k ) ,

1 =
1

NS

∑

kσ

u2
k nF(E−

k ) ,

nc =
1

NS

∑

kσ

v2
k nF(E−

k ) . (16)

Their resolution leads to

|yF| = D exp [−2/ (ρ0JC)] ,

2ρ0σ
2
0/ |yF| = 1 ,

µ = 0 , (17)

where yF = µ−εF and ρ0 is the bare density of states of conduction electrons
(ρ0 = 1/2D for a flat band). Noting y = E − εF, the density of states at
the energy E is ρ (E) = ρ0

(
1 + σ2

0/y
2
)
. If nc < 1, the chemical potential is

located just below the upper edge of the α band. The system is metallic.
The density of states at the Fermi level is strongly enhanced towards the
bare density of states of conduction electrons: ρ(EF)/ρ0 = (1 + σ2

0/y
2
F) ∼

1/(2ρ0 |yF|). That corresponds to the flat part of the α band in figure 1. It is
associated to the formation of a Kondo or Abrikosov–Suhl resonance pinned
at the Fermi level resulting of the Kondo effect. The low-lying excitations
are quasiparticles of large effective mass m∗ as observed in heavy-fermion
systems. Also note the presence of a hybridization gap between the α and
the β bands. The direct gap of value 2σ0 is much larger than the indirect
gap equal to 2|yF|. The saddle-point solution transposes to N=2 the large-N
results obtained within the slave-boson mean-field theories [24–27].

3.2. Gaussian fluctuations

We now consider the gaussian fluctuations around the saddle-point so-
lution. Following Read and Newns [23], we take advantage of the local U(1)
gauge transformation of the Lagrangian L′(τ)

Φi → ri exp(iθi) ,

fi → f ′i exp(iθi) ,

λi → λ
′

i + i ∂θi/∂τ .

We use the radial gauge in which the modulus of both fields Φi and Φ∗
i are the

radial field ri, and their phase θi (via its time derivative) is incorporated into
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the Lagrange multiplier λi which turns out to be a field. Use of the radial
instead of the Cartesian gauge bypasses the familiar complications of infrared
divergences associated with unphysical Goldstone bosons. We let the fields
fluctuate away from their saddle-point values : ri = r0 + δri, λi = λ0 + δλi,
ξfi

= δξfi
and ξci

= δξci
. After integrating out the Grassmann variables in

the partition function in equation (12), we get

Z =

∫
DriDλiDξfi

Dξci
exp [−Seff ] , (18)

where the effective action is

Seff = −
∑

k,iωn

ln DetG−1(k, iωn)+β [ JC

∑

i

r2i +JS

∑

i

ξfi
·ξci

+NS(µnc−λ0)]

with :
[
G−1(iωn)

]σσ′

ij
=

(
A11 A12

A21 A22

)
,

where

A11 = [(−iωn − µ)δij − tij ]δσσ′ − JSiξfi
.τ σσ′δij ,

A12 = A21 = (σ0 + JCδri)δσσ′δij ,

A22 = [−iωn + εf + δλi]δσσ′δij − JSiξci
.τ σσ′δij .

Expanding up to the second order in the Bose fields, one obtains the Gaus-

sian corrections S
(2)
eff to the saddle-point effective action

S
(2)
eff =

1

β

∑

q,iων

[
(
δr, δλ

)
D−1

C (q, iων)

(
δr
δλ

)

+
(
δξz

f , δξz
c

)
D

‖−1
S (q, iων)

(
δξz

f

δξz
c

)

+
(
δξ+f , δξ+c

)
D⊥−1

S (q, iων)

(
δξ−f
δξ−c

)

+
(
δξ−f , δξ−c

)
D⊥−1

S (q, iων)

(
δξ+f
δξ+c

)]
, (19)

where the boson propagators split into the following charge and longitudinal
spin parts

D−1
C (q, iων) =

(
JC [1 − JC(ϕ2(q, iων) + ϕm(q, iων))] −JCϕ1(q, iων)

−JCϕ1(q, iων) −ϕff (q, iων)

)
,

D
‖−1
S (q, iων) =

(
J2

Sϕ
‖
ff (q, iων) JS [1 + JSϕ

‖
cf (q, iων)]

JS [1 + JSϕ
‖
fc(q, iων)] J2

Sϕ
‖
cc(q, iων)

)
(20)
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and equivalent expression for the transverse spin part D⊥−1
S (q, iων). The

expression of the different bubbles are given in the Appendix. The charge
boson propagator DC(q, iων) associated with the Kondo effect is equiva-
lent to that obtained in the 1/N expansion theories. The originality of the

approach is to simultaneously derive the spin propagator D
‖−1
S (q, iων) and

D⊥−1
S (q, iων) associated with the spin-fluctuation effects. Note that in the

magnetically disordered phase, the charge and spin contributions in Seff are
totally decoupled.

3.3. Dynamical spin susceptibility

The next step is to consider the dynamical spin susceptibility. For that
purpose, we study the linear response Mf to the source-term −2Sf · B

(we consider B colinear to the z-axis). The effect on the partition function
expressed in equation (12) is to change the Hamiltonian H ′

J(τ) to H ′B
J (τ)

H ′B
J (τ) =

∑

iσσ′

(
c†iσ, f

†
iσ

)(−JSiξfi
· τσσ′ JCΦ

∗
i τ

0
σσ′

JCΦiτ
0
σσ′

∑
α=x,y,z

(−JSiξ
α
ci
−Bδαz).τ

α
σσ′

)(
ciσ′

fiσ′

)

+JC

∑

i

Φ∗
iΦi + JS

∑

i

ξfi
.ξci

. (21)

Introducing the change of variables ξα
ci

= ξα
ci
− iB/JS , we connect the f

magnetization and the ff dynamical spin susceptibility to the Hubbard–
Stratonovich fields ξfi

Mz
f = − 1

β

∂ lnZ

∂Bz

= i
〈
ξz
fi

〉
,

χαβ
ff = − 1

β

∂2 lnZ

∂Bα∂Bβ
= −

〈
ξα
fi
ξβ
fi

〉
+
〈
ξα
fi

〉 〈
ξβ
fi

〉
. (22)

Using the expression (20) for the boson propagator D
‖−1
S (q), we get for the

longitudinal spin susceptibility

χ
‖
ff (q, iων) =

ϕ
‖
ff (q, iων)

1 − J2
S [ϕ

‖
ff (q, iων)ϕ

‖
cc(q, iων) − ϕ

‖2
fc(q, iων) − 2

JS
ϕ
‖
fc(q, iων)]

(23)
and equivalent expression for the transverse spin susceptibility χ⊥

ff (q, iων).

The diagrammatic representation of equation (23) is shown in figure 2. The
different bubbles ϕff (q, iων), ϕcc(q, iων) and ϕfc(q, iων) are evaluated from
the expressions of the Green’s functions
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Fig. 2. Diagrammatic representation of equation (23) for the dynamical spin sus-

ceptibility χff (q, ω).

Gff (k, iωn) = u2
kGαα(k, iωn) + v2

kGββ(k, iωn) ,

Gcc(k, iωn) = v2
kGαα(k, iωn) + u2

kGββ(k, iωn) ,

Gcf (k, iωn) = Gfc(k, iωn) = −ukvk[Gαα(k, iωn) −Gββ(k, iωn)] , (24)

where Gαα(k, iωn) andGββ(k, iωn) are the Green’s functions associated with

the eigenstates α†
kσ|0〉and β†kσ|0〉. In the low-frequency limit, one can easily

check that the dynamical spin susceptibility may be written as

χff (q, iων) =
χαα(q, iων) + χαβ(q, iων)

1 − J2
Sχαα(q, iων)χαβ(q, iων)

(25)

for both the longitudinal and the transverse parts

χαα(q, iων) =
1

β

∑

k

nF(E−
k ) − nF(E−

k+q)

iων − E−
k+q + E−

k

,

χαβ(q, iων) =
1

β

∑

k

(u2
kv

2
k+q + v2

ku
2
k+q)

nF(E−
k ) − nF(E+

k+q)

iων − E+
k+q + E−

k

.

3.4. Physical discussion

From equation (25), one can see that the dynamical spin susceptibility
is made of two contributions χintra(q, iων) and χinter(q, iων)

χff (q, iων) = χintra(q, iων) + χinter(q, iων) (26)
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with

χintra(q, iων) =
χαα(q, iων)

1 − J2
Sχαα(q, iων)χαβ(q, iων)

, (27)

χinter(q, iων) =
χαβ(q, iων)

1 − J2
Sχαα(q, iων)χαβ(q, iων)

. (28)

χintra(q, iων)and χinter(q, iων) respectively represent the renormalized particle-
hole pair excitations within the lower α band, and from the lower α to the
upper β band. The latter expression is reminiscent of the behavior proposed
by Bernhoeft and Lonzarich [45] to explain the neutron scattering observed
in UPt3 with the existence of both a “slow” and a “fast” component in
χ”(q, ω)/ω due to spin-orbit coupling. Also in a phenomenological way, the
same type of feature has been suggested in the duality model developed by
Kuramoto and Miyake [46]. To our knowledge, the proposed approach pro-
vides the first microscopic derivation from the Kondo-lattice model of such a
behavior. The bare intraband susceptibility χαα(q, ω) is well approximated
by a Lorentzian

χ−1
αα

(q, ω) = ραα(q)−1

(
1 − i

ω

Γ0(q)

)
, (29)

where ραα = χ′
αα

(q, 0) and Γ0(q) is the relaxation rate of order |yF| = TK.
This corresponds to the Lindhard continuum of the intraband particle-hole
pair excitations χ”

αα
(q, ω) 6= 0 as shown in figure 3. In the same way, one can

schematize the low-frequency behavior (ω << ω0(q) of the bare interband
susceptibility by

χ′−1
αβ (q, ω) = ραβ(q)−1

(
1 − ω

ω0(q)

)
, (30)

where ραβ = χ′
αβ

(q, 0) and ω0(q) is a characteristic frequency-scale of the in-

terband transitions. The value of ω0(q) is strongly structure-dependent. In
the simple case of a cubic band structure εk = −2t(cos kx + cos ky + cos kz)
(tight-binding scheme including nearest-neighbor hopping), we find a weakly
wave-vector dependent frequency around q=Q of order of ω0 =2 |yF|/(ρ0JC).
The latter result does not stand for more complicated band structures as
obtained by de Haas–van Alphen studies combined with band structure cal-
culations in heavy-fermion compounds. In the following, we will leave ω0(q)
as a parameter. Figure 3 shows the continuum of interband particle-hole
excitations χαβ” 6= 0. Due to the presence of the hybridization gap in the
density of states, the latter continuum displays a gap equal to 2σ0, the value
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Fig. 3. Continuum of the intraband and interband electron-hole pair excitations

χ
′′

αα
(q, ω) 6= 0 and χ

′′

αβ
(q, ω) 6= 0. Note the presence of a gap in the interband

transitions equal to the indirect gap of value 2 |yF| at q = kF , and to the direct gap

of value 2σ0 at q = 0.

of the direct gap at q = 0, and 2 |yF|, the value of the indirect gap at q = Q

(close to kF). More precisely, we have

χ′′
αβ(0, ω) = 4ρ0

σ2
0

ω
√
ω2 − 4σ2

0

at 2σ0 < ω < D ,

χ′′
αβ(Q, ω) = 2ρ0

1

1 + ω2/(2σ0)2
at 2 |yF| < ω < 2D . (31)

Far from the antiferromagnetic wave-vector Q = (π, π, π), χff (q, ω) is
dominated by the intraband transitions. In the low frequency limit, the
frequency dependence of χ

′′

intra(q, ω) can be approximate to a Lorentzian

χ
′′

ff (q, ω) ≈ χ
′′

intra(q, ω) = ω
χ

′

intra(q)Γintra(q)

ω2 + Γintra(q)2
(32)

with

Γintra(q) = Γ0(q)(1 − I(q)) ,

χ
′

intra(q) =
ραα(q)

(1 − I(q))
. (33)

I(q) = J2
Sχ

′
αα(q, 0)χ′

αβ(q, 0). One has: χ′
αα(0, 0) = ραα(0) = ρ(EF ) and

χ′
αβ(0, 0) = ρ0. The contribution expressed in equation (32) is consistent

with the standard Fermi liquid theory. Note that the product Γintra(q)χ
′

intra(q)
= ραα(q)Γ0(q) is independent of I.
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Oppositely, at the antiferromagnetic wave-vector Q, χff (q, ω) is driven
by the interband contribution and we get

χ
′′

ff (Q, ω) ≈ χ
′′

inter(Q, ω) = ω
Iχ′

interΓinter

(ω − ωmax)2 + Γ 2
inter

, (34)

with

ωmax = ω0(1 − I) ,

Γinter = ω2
0(1 − I)/Γ0 ,

χ′
inter = ραβ/(1 − I) , (35)

where ω0, ραβ , Γ0 and I are the values of ω0(q), ραβ(q) and Γ0(q) and I(q)
at q = Q. The role of the interband transitions have already been pointed
out in previous works [47]. However, while the previous studies indicate the
presence of an inelastic peak at finite value of the frequency related to the
hybridization gap whatever the interaction J is, we emphasize that the renor-
malization of χαβ(Q, ω) into χinter(Q, ω) leads to a noteworthy renormaliza-
tion of the interband gap. Due to the damping introduced by intraband tran-
sitions, χ

′′

inter(Q, ω) takes a finite value at frequency much smaller than the
hybridization gap. The relaxation rate Γinter vanishes and the susceptibility
χ′

inter diverges at the antiferromagnetic transition with again the product
Γinterχ

′
inter independent of I. Remarkably, the value ωmax of the maximum

of χ”
inter(Q, ω)/ω is at the same time pushed to zero. This excitation can

be analyzed as an excitonic mode which softens at the magnetic transition.
Such a behaviour has been effectively observed in Ce1−xLaxRu2Si2 [18] with
a reduction of Γinter and ωmax respectively by a factor 4 and 6 when x goes
from 0 to 0.075 so when it gets closer to the magnetic instability occuring
at x = 0.08. It is likely that this mode is called to play a role in the critical
phenomena observed near the magnetic transition.

4. The supersymmetric approach

Traditionally, the spin is described either in fermionic or bosonic rep-
resentation. If the former representation, used for instance in the 1/N ex-
pansion of the Anderson or the Kondo-lattice models, appears to be well
adapted for the description of the Kondo effect, it is also clear that the
bosonic representation lends itself better to the study of local magnetism.
Quite obviously the physics of heavy-fermions is dominated by the duality
between Kondo effect and localized moments. This constitutes the motiva-
tion to introduce a new approach to the Kondo lattice model (KLM) which
relies on an original representation of the impurity spin 1/2 in which the
different degrees of freedom are represented by fermionic as well as bosonic
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variables. The former are believed to describe the Fermi liquid excitations
while the latter account for the residual spin degrees of freedom.

In order to include the Fermi liquid excitations as well as the residual
spin degrees of freedom, the proposition is to enlarge the representation of
the spin operator as follows

Sa =
∑

σσ′

b†στ
a
σσ′bσ′ + f †στ

a
σσ′fσ′ = Sa

b + Sa
f , (36)

where b†σ and f †σ are respectively bosonic and fermionic creation operators
and τa (a = (+,−, z)) are Pauli matrices. Eq. (1) corresponds to a mixed
fermionic-bosonic representation between Schwinger bosons and Abrikosov
pseudo-fermions. To restrict the dimension of the Hilbert space to two, we
introduce the following local constraints

nf + nb = 1 . (37)

The constraint restricts the Hilbert space to the two states of the form:

| ↑〉 = (Xb†↑ + Y f †↑)|0〉, | ↓〉 = (Xb†↓ + Y f †↓)|0〉, where X2 + Y 2 = 1 to

guarantee the state normalization to 1 and |0〉 represents the vacuum of
particles: bσ |0〉 = fσ |0〉 = 0. X and Y are parameters controlling the weight
of boson and fermion statistics in the representation: they will be fixed later
on by the dynamics. The constraint can be viewed as a charge conservation
of the following SU(1|1) fermion-boson rotation symmetry leaving the spin
operator invariant (

f ′†σ , b
′†
σ

)
=
(
f †σ, b

†
σ

)
V † , (38)

where V † is an unitary supersymmetric matrix (V V † = V †V = 1). One
can easily check that the representation satisfies the standard rules of SU(2)
algebra: | ↑〉 and | ↓〉 are eigenvectors of S2 and Sz with eigenvalues 3/4
and ±1/2 respectively, [S+, S−] = 2Sz and [Sz, S±] = ±S± provided that
the local constraints expressed in Eq. (2) are satisfied.

In the representation introduced before, the partition function of the
three-dimensional KLM can be written as the following path integral

Z =

∫
DciσDfiσDbiσdλi exp

(
−

β∫

0

dτ

(
L(τ) + H +

∑

i

λiPi

))
(39)

with

L(τ) =
∑

iσ

(c†iσ∂τ ciσ + f †iσ∂τfiσ + b†iσ∂τ biσ)
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and
H =

∑

kσ

εkc
†
kσckσ + J

∑

i

(Sfi
+ Sbi

).si − µ
∑

i

nci
.

The time-independent Lagrange multiplier λi is introduced to enforce the
local constraints Pi = nfi

+nbi
−1 = 0. Performing a Hubbard–Stratonovich

transformation and neglecting the space and time dependence of the fields
in a self-consistent saddle-point approximation, we have

Z =
∑

n=1,2

∫
dηdη∗Cn (σ0, λ0, η, η∗)Zn(η, η∗)

Zn(η, η∗) =
∑

σ

∫
DciσDfiσDbiσ exp


−

β∫

0

dτ(L(τ) + H′
nσ)


 (40)

with

H′
nσ =

∑

k

(f †kσ, c
†
kσ, b

†
kσ)Hnσ

0




fkσ

ckσ

bkσ


 ,

Hnσ
0 =




εf σ0 0
σ0 εk η
0 η∗ εf


 ,

where Cn (σ0, λ0, η, η∗) is an integration constant. εf is the saddle-point
values of the Lagrange multiplier λi. Note the presence of a Grassmannian
coupling η between ciσ and biσ, in addition to the usual coupling σ0 be-
tween ciσ and fiσ responsible for the Kondo effect. In the following, H0 is

indifferently used for any Hnσ
0 . H0 is of the type

(
a σ
ρ b

)
in which a,b

(ρ,σ) are matrices consisting of commuting (anticommuting) variables. Note
the supersymmetric structure of the matrix H0 similar to the supermatrices
appearing in the theory of disordered metals [48].

H0 being Hermitian, the matrix U † transforming the original basis
ψ† =

(
f †, c†, b†

)
to the basis of eigenvectors Φ† =

(
α†, β†, γ†

)
is unitary

(UU † = U †U = 1). Φ† = ψ†U † with U † a supersymmetric matrix.
α† and β† are the fermionic eigenvectors whose eigenvalues, determined from
det[(a− E) − σ(b− E)−1ρ] = 0, are

E∓ =
(εk + εf ) ∓

√
(εk − εf )2 + 4(σ2

0 + ηη∗)

2
.

γ† is the bosonic eigenvector whose eigenvalue, determined from det[(b−E)
−ρ(a−E)−1σ] = 0 is Eγ = εf .
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In this scheme, σ0 and λ0 are slow variables that we determine by solv-
ing saddle-point equations, while η, η∗ are fast variables defined by a local
approximation. As we will see, the latter approximation incorporates part
of the fluctuation effects. Indeed, performing the functional integration of
Eq. (40) over the fermion and boson fields [48] yields a superdeterminant
(SDet) form written as follows

Z(η, η∗) = S Det (∂τ +H0) ,

where

SDet (∂τ +H) =
Det (G−1 − σDρ)

Det (D−1)
, (41)

G−1 = ∂τ + a and D−1 = ∂τ + b .

Expanding to second order in η, η∗ allows us to define the propagator
Gηη∗(k, iωn) associated to the Grassmann variable η and hence the closure
relation for x2

0 = 〈ηη∗〉

x2
0 =

1

β

∑

k,iωn

Gηη∗(k, iωn) , (42)

with

Gηη∗(k, iωn) =
J[

1 − JΠ0
cb(k, iωn)

]

and

Π0
cb =

1

β

∑

q,iωn

Gcc(k + q, iωn + iων)D(q, iωn) .

Contrary to [49] which assumes x2
0 = 0 leading to a two-fluid model

description, the closure equation Eq. (42) defines a finite x2
0. This parameter

x2
0 plays a major role in controlling the relative weights of fermion and boson

statistics. It is directly connected to the X and Y parameters introduced in
the initial representation of the states

X2 = x2
0/(σ

2
0 + x2

0) and Y 2 = σ2
0/(σ

2
0 + x2

0) .

The resolution of the saddle-point equations, keeping the number of par-
ticles conserved, leads to

yF = −D exp [−1/(2Jρ0)] ,

1 =
2ρ0(σ

2
0 + x2

0)

−yF
,

µ = −(σ2
0 + x2

0)

D
. (43)
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Where yF = µ−εf and ρ0 = 1/2D is the bare density of states of conduction
electrons. From that set of equations, we find : εf = 0.

The resulting spectrum of energies is schematized in figure 4. At zero
temperature, only the lowest band α is filled with an enhancement of the den-
sity of states at the Fermi level (and hence of the mass) unchanged from the

standard slave-boson theories
ρ(EF )

ρ0
= 1 +

(σ2
0 + x2

0)

y2
F

= 1 +
D

(−yF )
≫ 1.

This large mass enhancement is related to the flat part of the α band as-
sociated with the formation of the Abrikosov–Suhl resonance pinned at the
Fermi level. While this feature was already present in the purely fermionic
description, it is to be noted that the formation of a dispersionless bosonic
band within the hybridization gap is an entirely new result of the theory.

α

β
γ

µ

kF

εf=0

k

Ek

Fig. 4. Sketch of energy versus wave number k for the three bands α, β, γ resulting

of the diagonalization of supersymmetric H0.

The relative weight of boson and fermion statistics in the spin represen-
tation is related to x2

0 : nb/nf = x2
0/σ

2
0 . It is then interesting to follow the

J-dependence of x2
0 as determined by the closure equation (42). The result

is shown in Fig. 5. This bell-shaped curve can be interpreted in the light
of the exhaustion principle mentioned in the introduction. In the limit of
large J , the Kondo temperature-scale TK = D exp [−1/(2Jρ0)] is of order
of the bandwidth. One then expects a complete Kondo screening as can be
checked by remarking that the weight of c in the α quasiparticle at the Fermi
level (noted v2

kF
) just equals the added weights of f and b at the Fermi level

(respectively noted u2
kF

and ρ2
1): v

2
kF
/(u2

kF
+ ρ2

1) = y2
F/(σ

2
0 + x2

0) = 1. The
Kondo effect being complete in that limit, there is no residual unscreened
spin degrees of freedom: it is then natural to derive a zero value of x2

0 (and
hence of nb). The opposite limit at small J corresponds to the free case of
uncoupled impurity spins and conduction electrons. It also leads to: x2

0 = 0.
The finite value of x2

0 between these two limits with a maximum reflects the
incomplete Kondo screening effect in the Kondo lattice, the unscreened spin
degrees of freedom being described by bosons.
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Fig. 5. J/D-dependence of the coupling x2
0

= 〈ηη∗〉 fixing the relative weight of

fermion and boson statistics. The unit on the vertical-axis is D2.

Largely discussed in the litterature [20] is the question concerning the
Fermi surface sum rule: do the localized spins of the Kondo lattice con-
tribute to the counting of states within the Fermi surface or do they not?
Depending on the answer, one expects large or small Fermi surfaces. The
supersymmetric theory leads to a firm conclusion in favour of the former.
One can check that the number of states within the Fermi surface is just
equal to nc + nb + nf , i.e. nc + 1. The Fermi surface volume includes a
contribution of one state per localized spin in addition to that of conduction
electrons [20, 50]. The latter conclusion appears sensible if one recalls that
the KLM is an effective Hamiltonian derived from the periodic Anderson
model (PAM).

Let us now consider the response functions to some external fields namely
the dynamical spin susceptibility χab(q, ω) and the frequency-dependent op-
tical conductivity σab(ω) (a, b = x, y, z). For that purpose, we introduce
the Matsubara correlation functions associated with the operator Oa(q, τ):

χab(q, iων) =
∫ β

0 dτ expiωντ
〈
TτOa(q, τ)Ob(−q, 0)

〉
. The operator related

to the spin-spin correlation function is the a-component of the spin ex-
pressed in the mixed representation introduced in the paper by Sa(q) =∑

k,σ,σ′ f
†
k+q,στ

a
σσ′fk,σ′ + b†k+q,στ

a
σσ′bk,σ′ . As usual, the dynamical spin sus-

ceptibility is then derived from the spin-spin correlation function by the
analytical continuation iων → ω + i0+. In the same way, the operator re-
lated to the current-current correlation function is the a-component of the

c-current. In the case of a cubic lattice: Ja
c (q) = 2

∑
k,σ,σ′ sin kac

†
k+q,σck,σ.

The frequency-dependent optical conductivity is then obtained from the
current-current correlation function by the analytical continuation follow-
ing: σab(ω) =

[
χab(q, ω + i0+) − χab(q, i0+)

]
/ iω.
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By expanding the previous expressions in the basis of the eigenstates
(α†β†γ†) of H0, we have computed the frequency dependence of χab(Q, ω)
at the antiferromagnetic wavevector Q and σab(ω) at zero temperature.
The two response functions show very different frequency dependence. The
frequency-scale at which the dynamical spin susceptibility takes noticeable
values is much smaller than for the optical conductivity. This can be under-
stood in the following way. The bosonic γ-band is called to play a role only
when spin is concerned namely for the dynamical spin susceptibility. That
feature comes from the fact that the spin is related to both fermionic and
bosonic operators while the c-current is simply expressed within fermionic
operators. Therefore, one can show that the dynamical spin susceptibility
involves transitions between all three bands α, β and γ. The main con-
tribution for χab(Q, ω) is due to the particle-hole pair excitations from the
fermionic α to the bosonic γ band. Oppositely, the optical conductivity is
associated with transitions between fermionic bands only. As can be seen
in figure 6, a gap appears in the frequency dependence of σ(ω) equal to
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Fig. 6. Frequency-dependence of the optical conductivity σ(ω) at T = 0 for D = 0.8

and TK = 0.001.

the direct gap between the α and β bands. The latter result agrees with
the predictions of the dynamical mean-field theory in the limit of infinite
dimensions [51]. The whole discussion clarifies the physical content of the
novel bosonic mode brought by the supersymmetric approach. That mode is
related to the spin excitations. It introduces new features in the dynamical
spin susceptibility by comparison to the standard slave-boson theories while
it does not affect the optical conductivity.
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5. Conclusion

Important progress has been made the last years in the understanding
of the Kondo-lattice model with the development of new functional integral
approaches. They have enlightened as to the nature of the ground state
and the existence of collective modes. They open up new prospects for
the description of the critical phenomena associated to the quantum phase
transition in heavy-fermion systems. A complete study of the quantum
phase transition will probably requires the use of the Group Renormalization
techniques for which the functional integral approaches presented here might
constitute the framework.

We would like to thank N.R. Bernhoeft, P. Coleman, P.A. Lee, G.G.
Lonzarich, K. Miyake, M.J. Rozenberg, J. Spalek for many interesting and
helpful discussions.

Appendix A

The expressions of the different bubbles appearing in the expression of the
boson propagators (cf. Eq. (20) are given here (with i=1, 2, m or ff)

ϕi(q, iων) = ϕi(q, iων) + ϕi(−q,−iων) ,

ϕ1(q, iων) = − 1

β

∑

kσ,iωn

Gσ
cf0

(k + q, iωn + iων)G
σ
ff0

(k, iωn) ,

ϕ2(q, iων) = − 1

β

∑

kσ,iωn

Gσ
cc0

(k + q, iωn + iων)G
σ
ff0

(k, iωn) ,

ϕm(q, iων) = − 1

β

∑

kσ,iωn

Gσ
cf0

(k + q, iωn + iων)G
σ
cf0

(k, iωn) ,

ϕ
‖
ff (q, iων) = − 1

β

∑

kσ,iωn

Gσ
ff0

(k + q, iωn + iων)G
σ
ff0

(k, iωn) ,

ϕ‖
cc(q, iων) = − 1

β

∑

kσ,iωn

Gσ
cc0

(k + q, iωn + iων)G
σ
cc0

(k, iωn) ,

ϕ
‖
fc(q, iων) = − 1

β

∑

kσ,iωn

Gσ
fc0

(k + q, iωn + iων)G
σ
fc0

(k, iωn) , (44)
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ϕ⊥
ff (q, iων) = − 1

β

∑

kσ,iωn

G↑
ff0

(k + q, iωn + iων)G
↓
ff0

(k, iωn) ,

ϕ⊥
cc(q, iων) = − 1

β

∑

kσ,iωn

G↑
cc0

(k + q, iωn + iων)G
↓
cc0

(k, iωn) ,

ϕ⊥
fc(q, iων) = − 1

β

∑

kσ,iωn

G↑
fc0

(k + q, iωn + iων)G
↓
fc0

(k, iωn) , (45)

where Gσ
cc0

(k, iωn), Gσ
ff0

(k, iωn) and Gσ
fc0

(k, iωn) are the Green’s functions

at the saddle-point level obtained by inversing the matrix Gσ
0 (k, τ) defined

in equation (13).
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