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The question of Fermi liquid vs. non-Fermi liquid behavior induced by
strong correlations is one of the prominent problems in metallic local mo-
ment systems. As standard models for such systems, the SU(N)×SU(M)
Anderson impurity models exhibit both Fermi liquid and non-Fermi liq-
uid behavior, depending on their symmetry. Taking the Anderson model
as an example, these lectures first give an introduction to the auxiliary
boson method to describe correlated systems governed by a strong, short-
range electronic repulsion. It is then shown how to include the relevant
low-lying excitations (coherent spin flip and charge fluctuation processes),
while preserving the local gauge symmetry of the model. This amounts to
a conserving T -matrix approximation (CTMA). We prove a cancellation
theorem showing that the CTMA incorporates all leading and subleading
infrared singularities at any given order in a self-consistent loop expansion
of the free energy. As a result, the CTMA recovers the correct infrared
behavior of the auxiliary particle propagators, indicating that it correctly
describes both the Fermi and the non-Fermi liquid regimes of the Anderson
model.

PACS numbers: 71.27.+a, 71.10.Fd, 71.28.+d, 75.20.Hr

1. Introduction

It is a remarkable feature of interacting, itinerant fermion systems that
at low temperatures T they behave in general in much the same way as a
noninteracting Fermi gas, even though the interaction may be strong. An
extremely successful description of this phenomenon, known as Fermi liq-
uid (FL) behavior, is provided by the notion of quasiparticles, which was
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established by Landau’s phenomenological Fermi liquid theory [1]. The key
assumption is that, as the interaction is continuously turned on, there exists
a 1:1 correspondence between the low energy eigenstates of the interact-
ing system and the single-particle states of the free Fermi gas. Therefore,
the low-lying interacting states may be described approximately as single-
particle states or quasiparticles, whose decay rate 1/τ is small compared
to their excitation energy ω, 1/τ ≪ ω, and which are characterized by the
same quantum numbers as the noninteracting states. As a consequence,
Fermi liquids exhibit the same low-T thermodynamics as a noninteracting
Fermi system, e.g. a linear in T specific heat c = γT and a constant Pauli
paramagnetic susceptibility χo. However, the effective mass and other pa-
rameters may be renormalized by the interaction, resulting in an enhance-
ment of the specific heat coefficient γ and the susceptibility χo. It is at the
heart of the quasiparticle picture that at low T the Pauli exclusion principle
substantially reduces the phase space available to quasiparticle scattering.
This blocking mechanism is effective as long as the quasiparticle interaction
is shortranged in space and time, which is usually the case in three dimen-
sions because of screening. It also implies that the quasiparticle scattering
rate vanishes as 1/τ ∝ (ω2 + T 2) in the limit ω, T → 0, thus providing a
microscopic justification for the basic assumption of FL theory and leading
to an interaction contribution to the electrical resistivity which behaves as
∆ρ ∝ T 2. Obviously, the Pauli principle as the origin of FL behavior is very
robust, which explains the almost ubiquitous presence of a FL ground state
in interacting Fermi systems and the broad success of Fermi liquid theory.

In this light it is all the more exciting that in recent years a number of new
alloys have been discovered which exhibit striking deviations from this usual
behavior. These systems have in common that a localized, degenerate degree
of freedom, the magnetic moment of a magnetic ion, is dynamically coupled
to a continuum of conduction electron states. In general, such a coupling
generates the Kondo effect, characterized by resonant spin flip scattering
of electrons at the Fermi surface off the local moment. Concomitantly, the
conduction electron spin flip rate initially increases logarithmically as the
temperature is lowered, passes through a maximum at a characteristic scale,
the Kondo temperature TK , and approaches zero as T → 0, because the
effective local moment becomes screened by the conduction electron spins.
Thus, even for many strongly correlated systems of this type a Fermi liquid
description applies below TK , with usually a strongly enhanced quasiparticle
effective mass, lending the term “heavy fermion systems” to these materials.

Completely new physics may arise, however, if the quenching of the local
moments is inhibited. Two different mechanisms for the appearance of a
non-Fermi liquid ground state have been put forward:
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(1) Proximity of a quantum phase transition (QPT) to an antiferromag-
netically ordered state [2]– [5] as a function of a dopant concentration
x or of pressure. Near the QPT the quantum critical fluctuations be-
come longranged in space and time and can, thus, mediate a longrange
quasiparticle interaction, leading to a breakdown of FL theory. There
are indications for this spatially extended mechanism to be realized
near the QPT of certain Ce based compounds like CeCu6−xAux [6,7],
CeCu2Si2 [8], and CePd2Si2 [9, 10].

(2) Two-channel Kondo effect (2CK) [11,12]. The local magnetic moment
is coupled to two exactly degenerate conduction electron channels. Be-
cause of a frustration effect between the screening of the local moment
by the different conduction channels the moment quenching cannot be
complete, leading to a nonvanishing conduction electron spin scatter-
ing rate even at the lowest temperatures and subsequently to a break-
down of FL behavior. It has been suggested [13] that this mechanism,
based on single-ion dynamics rather than longrange fluctuations, may
be realized predominantly in U based materials with cubic symmetry
about the magnetic ion, such as Y1−xUxPd3 [14] or UCu5−xPtx [15],
which do not exhibit a QPT.

In both scenarios the wealth of experimental data showing non-FL behavior
at low temperatures is not consistently explained by the present theories.
Open questions within the QPT picture include, e.g., whether the local
impurity dynamics competing with the magnetic ordering can play a role,
and how the transition from the spin screened heavy FL phase to the mag-
netically ordered phase occurs alltogether. In the 2CK mechanism, on the
other hand, inter-impurity interactions could modify the single ion behav-
ior. Exact solution methods as well as numerical simulations have provided
important progress in our understanding of strongly correlated quantum
impurity systems. However, their applicability is essentially restricted to
problems involving only a single impurity, owing to integrability conditions
or limitations in the numerical effort, respectively. Therefore, more generally
applicable theoretical techniques are called for.

In the present work we focus on the single-ion dynamics. We develop
a standard field theoretical method, based on an auxiliary particle or slave
boson representation, which describes the quantum impurity dynamics in a
controlled way and at the same time has the potential of being extended to
problems of many impurities on a lattice. As a standard model of strongly
correlated electrons which, depending on its symmetry, exhibits both FL
and non-FL behavior, we consider the SU(N)×SU(M) Anderson impurity
model of a local, N -fold degenerate degree of freedom, coupled to M identical
conduction bands.
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In order to set the stage for the more formal development of the theory,
in the following section we will briefly review the striking differences in the
phenomenology of the single-channel and the multi-channel Kondo effects.
In Section 3 the slave boson representation is introduced, which provides a
particularly compact formulation of the SU(N)×SU(M) Anderson model.
We also discuss why the presence of FL or non-FL behavior in a given
quantum impurity system can already be seen from the singular infrared
dynamics of the auxiliary particles. Section 4 contains a critical assessment
of earlier approximate slave boson treatments. This will motivate our con-
serving slave boson approach (conserving T -matrix approximation, CTMA),
which is developed in Section 5. As will be seen, the results produced from
this theory are in very good agreement with known exact properties of the
model. Conclusions are drawn in Section 6. In the appendices we prove a
cancellation theorem for non-CTMA diagrams, which justifies the CTMA
on formal grounds, and derive in detail the self-consistent CTMA equations.

2. Single- and multi-channel Kondo effect

and possible physical realizations

In this section we briefly discuss how the single-channel and the two-
channel Kondo effects may arise in magnetic metals, if the interaction be-
tween the local moments can be neglected. We first discuss the usual mag-
netic, single-channel Kondo effect. A local moment is generated by an atomic
f or d level whose energy Ed lies far below the Fermi energy εF ≡ 0 and whose
electron occupation number is effectively restricted to nd ≤ 1 by a strong
Coulomb repulsion U between two electrons in the same orbital. While the
angular momentum degeneracy of the level is usually lifted by crystal field
splitting, in the absence of a magnetic field a twofold degeneracy of a level
occupied by one electron is guaranteed by time reversal symmetry (Kramers
doublet), corresponding to the spin quantum numbers m = ±1/2 of the
electron. In addition, there is a hybridization matrix element V between
the atomic orbital and the conduction electron states. Such a system is
described by the single impurity Anderson Hamiltonian

H =
∑

~k,σ

ε~k
c†~kσ

c~kσ
+ Ed

∑

σ

d†σdσ + V
∑

~k,σ

(c†~kσ
dσ + h.c.) + Ud†↑d↑d

†
↓d↓, (2.1)

where c†~kσ
and d†σ are the creation operators of a conduction electron with

dispersion ε~k
and of an electron in the local orbital with spin σ, respectively.

The low energy physics of this system is dominated by processes of second or-
der in V , by which an electron hybridizes with the conduction band and the
impurity level is subsequently filled by another electron, thereby effectively
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flipping the impurity spin. Thus, in the region of low excitation energies,
the Anderson Hamiltonian (2.1) may be mapped onto the s–d exchange (or
Kondo) model [16], the effective coupling between the impurity spin and the
conduction electron spin always being antiferromagnetic: J = |V |2/|Ed| > 0
(U ≫ |Ed|). These models have been studied extensively by means of Wil-
son’s renormalization group [17], by the Bethe ansatz method [18, 19] and
by means of a phenomenological Fermi liquid theory [20]. In this way the
following physical picture has emerged [21]: The model contains a dynam-
ically generated low temperature scale, the Kondo temperature, which is
expressed in terms of the parameters of the Anderson Hamiltonian (2.1)
as TK = D(NΓ/D)(M/N)exp{−πEd/(NΓ )}, with N (0) and D = 1/N (0)
the density of states at the Fermi energy and the high energy band cutoff,
respectively. Γ = πV 2N (0) denotes the effective hybridization or d-level
broadening, and N , M are the degeneracy of the local level and the number
of conduction electron channels (see below). In the intermediate tempera-
ture regime, T & TK , resonant spin flip scattering of electrons at the Fermi
surface off the local degenerate level leads to logarithmic contributions to the
magnetic susceptibility, the linear specific heat coefficient and the resistivity
(ρ(T ) = ρ(0) + ∆ρ(T )), χ(T ), γ(T ), ∆ρ(T ) ∝ −ln(T/TK), and to a break-
down of perturbation theory at T ≃ TK . Below TK a collective many-body
spin singlet state develops in which the impurity spin is screened by the
conduction electron spins as lower and lower energy scales are successively
approached, leaving the system with a pure potential scattering center. The
spin singlet formation is sketched in Fig. 1 a) and corresponds to a vanishing
entropy at T = 0, S(0) = 0. It also leads to saturated behavior of physical
quantities below TK , like χ(T ) = const, c(T )/T = const. and ∆ρ(T ) ∝ T 2,
i.e. to Fermi liquid behavior.

a)

b)

Fig. 1. Sketch of the renormalization group for a) the single-channel Kondo model

(local moment compensation) and b) the two-channel Kondo model (local moment

over-compensation). Small arrows denote conduction electron spins 1/2, a heavy

arrow a localized spin 1/2. The curved arrows indicate successive renormalization

steps.
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As an example of possible two-channel Kondo systems we discuss the
uranium based compounds mentioned in the introduction. The U4+ ions
have nominally a 5f2 configuration, i.e. an even number of electrons, which
does not allow for a Kramers degenerate ground state because of integer
total spin. However, in the cubic crystal symmetry of these materials the
orbital degeneracy may be not completely lifted, so that there can be an
approximate twofold degeneracy of the U4+ ground state, corresponding
to two different orientations of the electrical quadrupole moment of the 5f
orbital in the lattice (quadrupolar Kondo effect) [12, 13]. This degree of
freedom may be flipped by scattering of conduction electrons (which in the
cubic symmetry also have a twofold angular momentum degeneracy). The
conduction electron spin is conserved in this scattering process, leaving it as
a Kramers degenerate scattering channel degree of freedom, which we will
label by µ = 1, ...,M , M = 2. Describing the orbital degree of freedom as
a pseudospin 1/2, labelled by the quantum number σ = 1, . . . ,N , N = 2,
in analogy to the magnetic Kondo effect, we arrive at the SU(2)×SU(M)
symmetric Kondo model,

H =
∑

~k,σ,µ

ε~kc
†
~kµσ

c~kµσ + J
∑

~k,~k′,σ,σ′,µ

c†~kµσ
~S · ~τσσ′c~kµσ′

, (2.2)

where ~S is the local pseudospin operator and ~τσσ′ the vector of Pauli ma-
trices. To keep the naming uniform, we will refer to the orbital degree of
freedom as the (pseudo)spin or local moment, σ, in analogy to the magnetic
Kondo effect, and to the physical electron spin as the channel degree of
freedom, µ. In the multi-channel case, too, the conduction electrons of each
channel separately screen the impurity moment by multiple spin scattering at
temperatures below the Kondo scale TK . However, in this case, the local mo-
ment is over-compensated, since the impurity spin can never form a singlet
state with both conduction electron channels at the same time in this way,
as can be seen in Fig. 1 b). As a consequence of this frustration, there is not
a unique ground state, leading to a finite residual entropy [22,23] at T = 0 of
S(0) = kB ln

√
2 in the two-channel model. In particular, the precondition of

FL theory of a 1:1 correspondence between interacting and non-interacting
states is violated. As a consequence, characteristic singular temperature de-
pendence [22, 24] of physical quantities persists for T . TK down to T = 0:

χ(T ) ∝ −ln(T/TK), c(T )/T ∝ −ln(T/TK) and ρ(T ) − ρ(0) ∝ −
√

T/TK .
Note, however, that this behavior may be changed by any crystal field split-
ting of the quadrupolar non-Kramers ground state doublet.

In order to apply standard field theoretical methods to the multi-channel
Kondo model it is convenient to consider it as the low-energy limiting case
of a corresponding Anderson model as discussed for the single-channel case.
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Here, in addition, the conservation of the channel degree of freedom has to be
guaranteed. This can be implemented in an elegant way using an auxiliary
boson representation to be discussed in the next section.

3. Auxiliary particle representation

As discussed above, the local level of a quantum impurity in the limit of
infinitely strong local Coulomb repulsion U between electrons in the same
level allows only for at most single electron occupation of the level, nd ≤ 1.
One should note that for a realistic finite value of U the low-energy physics
of the model is effectively still confined to the part of the Hilbert space
without multiple occupancy. Therefore, the model Eq. (2.1) in the limit
U → ∞ is the generic model for the physics of quantum impurities at large
U in general.

A powerful technique for implementing the projection in Hilbert space
caused by a large Coulomb repulsion U is the method of auxiliary particles
(slave bosons, pseudofermions) [25]. Each Fock state |α〉 of the impurity is
assigned a creation operator, which can be envisaged as creating the state

out of a vacuum state |vac〉 without any impurity level at all, |α〉 = a†α|vac〉.
(E.g., for a single orbital there are four such states, |0〉 (empty orbital), | ↑〉
or | ↓〉 (orbital occupied by a single electron with spin ↑ or ↓) and |2〉 (level
occupied by two electrons with spin ↑ and ↓).) Due to the requirements of

Fermi statistics, the creation operators a†α are Fermi (Bose) operators for the
states holding an odd (even) number of electrons (or vice versa). The phys-
ical state corresponds to the sector of Fock space with exactly one auxiliary

particle,
∑

α nα = 1, where nα = a†αaα is the occupation number operator
of particles α. Compared to alternative ways of effecting the projection, the
auxiliary particle method has the advantage of making available the power-
ful machinery of quantum field theory, provided the constraint on the total
auxiliary particle number can be incorporated in a satisfactory way.

For the quantum impurity models of the Anderson type introduced in the
preceding section, only particles creating empty and singly occupied states

are needed. We define N pseudofermion creation operators f †
σ for each

of the singly occupied states (labelled by σ = 1, 2, . . . ,N) and M boson

creation operators b†µ̄ for each of the empty states created when an electron
hops from the impurity into the µ-th conduction electron band (labelled
by µ = 1, 2, . . . ,M). In terms of these operators the Hamiltonian of the
SU(N)×SU(M) Anderson model Eq. (2.1) takes the form

H =
∑

~k,σ,µ

ε~k
c†~kµσ

c~kµσ
+ Ed

∑

σ

f †
σfσ + V

∑

~k,σ,µ

(

c†~kµσ
b†µ̄fσ + h.c.

)

. (3.1)
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In order for H to be SU(M) invariant, the slave boson multiplet bµ̄ trans-
forms according to the conjugate representation of the SU(M). In addition,
the operator constraint

Q ≡
∑

σ

f †
σfσ +

∑

µ

b†µ̄bµ̄ = 1 (3.2)

has to be satisfied at all times. One might interpret the constraint as a state-
ment of charge quantization, with the integer Q the conserved, quantized
charge. Similar to quantum field theories with conserved charges, the charge
conservation is intimately related to the existence of a local gauge symmetry.
Indeed, the system defined by the Hamiltonian Eq. (3.1) is invariant under
simultaneous local U(1) gauge transformations fσ → fσeiφ(τ), bµ̄ → bµ̄eiφ(τ),
with φ(τ) an arbitrary time dependent phase.

3.1. Exact projection onto the physical Hilbert space

While the gauge symmetry guarantees the conservation of the quantized
charge Q, it does not single out any particular Q, such as Q = 1. In order
to effect the projection onto the sector of Fock space with Q = 1, one may
use a procedure first proposed by Abrikosov [26]: Consider first the grand-
canonical ensemble with respect to Q, defined by the statistical operator

ρ̂G =
1

ZG
e−β(H+λQ), (3.3)

where ZG = tr[exp{−β(H + λQ)}] is the grand-canonical partition function
with respect to Q, −λ is the associated chemical potential, and the trace
extends over the complete Fock space, including summation over Q. The
expectation value of an observable Â in the grand-canonical ensemble is
given by

〈Â〉G = tr[ρ̂GÂ]. (3.4)

The physical expectation value of Â, 〈Â〉, is to be evaluated in the canonical
ensemble where Q = 1. It can be calculated from the grand-canonical en-
semble by differentiating with respect to the fugacity ζ = e−βλ and taking
λ to infinity [27],

〈Â〉 = lim
λ→∞

∂
∂ζ tr[Âe−β(H+λQ)]

∂
∂ζ tr[e−β(H+λQ)]

= lim
λ→∞

〈QÂ〉G
〈Q〉G

. (3.5)

Projecting operators acting on the impurity states:— We list two important
results, which follow straightforwardly from Eq. (3.5): First, the canonical
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partition function in the subspace Q = 1 is

ZC = lim
λ→∞

tr[Qe−β(H+λ(Q−1))]

= lim
λ→∞

(eβλ〈Q〉G(λ))ZQ=0 , (3.6)

where the subscripts G and C denote the grand-canonical and the canoni-
cal (Q = 1) expectation value, respectively. Second, the canonical Q = 1

expectation value of any operator Â which has a zero expectation value in
the Q = 0 subspace, Â|Q = 0〉 = 0, is given by,

〈Â〉C = lim
λ→∞

〈Â〉G(λ)

〈Q〉G(λ)
. (3.7)

Note that Â|Q = 0〉 = 0 holds true for any physically observable opera-
tor acting on the impurity. Examples are the physical electron operator

d†µσ = f †
σbµ̄ or the local spin operator ~S =

∑

σσ′

1
2f †

σ~τσσ′fσ′ . In this case
the operator Q appearing in the numerator of Eq. (3.5) is not necessary to
project away the Q = 0 sector. In particular, the constrained d-electron
Green’s function is given in terms of the grand-canonical one (Gd(ω, T, λ))
as

Gd(ω) = lim
λ→∞

Gd(ω, T, λ)

〈Q〉G(λ)
. (3.8)

In the enlarged Hilbert space (Q = 0, 1, 2, ...) Gd(ω, T, λ) may be expressed
in terms of the grand-canonical pseudo-fermion and slave boson Green’s
functions using Wick’s theorem. These auxiliary particle Green’s functions,
which constitute the basic building blocks of the theory, are defined in imag-
inary time representation as

Gfσ(τ1 − τ2) = −〈T{fσ(τ1)f
†
σ(τ2)}〉G , (3.9a)

Gbµ̄(τ1 − τ2) = −〈T{bµ̄(τ1)b
†
µ̄(τ2)}〉G , (3.9b)

where T is the time ordering operator. The Fourier transforms of Gf,b may
be expressed in terms of the exact self-energies Σf,b as

Gf,b(iωn) =
{

[G0
f,b(iωn)]−1 − Σf,b(iωn)

}−1
, (3.10)

where

G0
fσ(iωn) = (iωn − Ed − λ)−1 , (3.11a)

G0
bµ̄(iωn) = (iωn − λ)−1 . (3.11b)
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Since as a consequence of the projection procedure λ → ∞ the energy eigen-
values of H + λQ scale to infinity as λQ, it is useful to shift the zero of the
auxiliary particle frequency scale by λ (in the Q = 1 sector) and to define
the “projected” Green’s functions as

Gf,b(ω) = lim
λ→∞

Gf,b(ω + λ) . (3.12)

Note that this does not affect the energy scale of physical quantities (like
the local d electron Green’s function), which is the difference between the
the pseudo-fermion and the slave-boson energy.

Canonical expectation values of conduction electron operators: The canon-
ical (i.e. projected onto the Q = 1 subspace), local conduction electron Green
function is given as

Gcµσ(iωn) =
{

[G0
cµσ(iωn)]−1 − Σcµσ(iωn)

}−1
(3.13)

with

G0
cµσ(iωn) =

∑

~k

G0
cµσ(~k, iωn) =

∑

~k

(iωn + µc − ǫ~k)
−1 , (3.14)

where µc is the chemical potential of the conduction electrons. The canon-
ical, local c-electron self-energy, Σcµσ(iωn), cannot be obtained from the
grand-canonical one by simply taking the limit λ → ∞, since the c-electron
density has a non-vanishing expectation value in the Q = 0 subspace. How-
ever, it follows immediately from the Anderson Hamiltonian (2.1), that
the exact, canonical conduction electron t-matrix tσµ(iω), defined by Gc =
G0

c [1+tG0
c ], is proportional to the full, projected d-electron Green’s function,

tµσ(iω) = |V |2Gdµσ . Thus, we have as an exact relation,

Gcµσ(iωn) = G0
cµσ(iωn)

[

1 + |V |2Gdµσ(iωn)G0
cµσ(iωn)

]

, (3.15)

and by comparison with Eq. (3.13) we obtain the local conduction electron
self-energy respecting the constrained dynamics in the impurity orbital,

Σcµσ(iωn) =
|V |2Gdµσ(iωn)

1 + |V |2G0
cµσ(iωn)Gdµσ(iωn)

. (3.16)

Using phenomenological Fermi liquid theory [20] and also by means of per-
turbation theory to infinite order in the on-site repulsion [28] it has been
shown for the Fermi liquid case M = 1 of the symmetric Anderson model
(2Ed = −U) that the exact d-electron propagator Gdσ(ω) and the d-electron
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self-energy Σdσ(ω) ≡ ω−Gdσ(ω)−1 obey the following local Fermi liquid re-
lations in the limit ω → 0 − i0, T → 0,

Luttinger theorem:

∫

dω f(ω)
∂Σdσ(ω)

∂ω
Gdσ(ω) = 0 , (3.17)

Friedel–Langreth:
1

π
ImGdσ(ω) =

1

Γ
sin2

(πnd

N

)

− c

[

( ω

TK

)2
+

(πT

TK

)2
]

,

(3.18)

ImΣdσ(ω) =
Γ

sin2(πnd/N)
+ c

(

Γ

sin2(πnd/N)

)2 [

( ω

TK

)2
+

(πT

TK

)2
]

,

(3.19)

where c is a constant of O(1). Combining Eqs. (3.16), (3.18) it follows
that (for M = 1, away from particle hole symmetry) Σcσ exhibits (in an
exact theory) local Fermi liquid behavior as well, ImΣcσ(ω − i0, T = 0) =
a+b(ω/TK)2 for ω → 0. Note that this quantity is different from the grand-
canonical conduction electron self-energy and has a finite imaginary part at
the Fermi level.

The momentum dependent conduction electron Green’s function in the
presence of a single impurity is given in terms of the canonical d-electron
propagator as

Gcµσ(~k,~k′ ; iωn) = G0
cµσ(~k, iωn)

[

δ~k,~k′
+ |V |2Gd(iωn)G0

cµσ(~k′, iωn)
]

. (3.20)

The latter expression is the starting point for treating a random system of
many Anderson impurities [29].

3.2. Analytical properties and infrared behavior

The Green’s functions Gf,b,c have the following spectral representations

Gf,b,c(iωn) =

∞
∫

−∞

dω′Af,b,c(ω
′)

iωn − ω′
(3.21)

with the normalization of the spectral functions Af,b,c

∞
∫

−∞

dωAf,b,c(ω) = 1. (3.22)

Taking the limit λ → ∞ has important consequences on the analytical struc-
ture of the auxiliary particle Green’s functions:
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(1) It follows directly from the definitions Eqs. (3.12), (3.9), using Eqs.
(3.3), (3.4), that the traces appearing in the canonical functions Gf,b

are taken purely over the Q = 0 sector of Fock space1. Thus, the
backward-in-time (τ1 < τ2) or hole-like contribution to the auxiliary
propagators in Eq. (3.9) vanishes after projection, and we have

Gfσ(τ1 − τ2) = −Θ(τ1 − τ2) lim
λ→∞

〈fσ(τ1)f
†
σ(τ2)〉G , (3.23a)

Gbµ̄(τ1 − τ2) = −Θ(τ1 − τ2) lim
λ→∞

〈bµ̄(τ1)b
†
µ̄(τ2)〉G . (3.23b)

Consequently, their spectral functions Af,b have the Lehmann repre-
sentation

Afσ(ω) =
∑

m,n≥0

e−βE0
m | 〈1, n|f †

σ|0,m〉 |2 δ(ω − (E1
n − E0

m)) ,

(3.24a)

Abµ̄(ω) =
∑

m,n≥0

e−βE0
m | 〈1, n|b†µ̄|0,m〉 |2 δ(ω − (E1

n − E0
m)) ,

(3.24b)

where EQ
n are the energy eigenvalues (E0

0 ≤ EQ
n is the ground state

energy) and |Q,n〉 the many-body eigenstates of H in the sector Q
of Fock space. At zero temperature, Af reduces to Afσ(ω) =

∑

n≥0 |
〈1, n|f †

σ |0, 0〉 |2 δ(ω− (E1
n −E0

0)) and similar for Ab. It is seen that the
Af,b have threshold behavior at ω = E0 ≡ E1

0 − E0
0 , with Af,b(ω) ≡ 0

for ω < E0, T = 0. The vanishing imaginary part at frequencies ω < 0
may be shown to be a general property of all quantities involving slave
particle operators, e.g. also of auxiliary particle self-energies and vertex
functions.

(2) As will be seen in Section 4.2 (Eq. (4.2c)), physical expectation val-
ues not only involve the particle-like auxiliary propagators Eq. (3.23)
but also hole-like contributions. It is, therefore, useful to define the
“anti-fermion” and “anti-boson” propagators (in imaginary time repre-
sentation)

G−
fσ(τ1 − τ2) = −Θ(τ2 − τ1) lim

λ→∞
〈f †

σ(τ2)fσ(τ1)〉G , (3.25a)

G−
bµ̄(τ1 − τ2) = −Θ(τ2 − τ1) lim

λ→∞
〈b†µ̄(τ2)bµ̄(τ1)〉G , (3.25b)

1 This means that the auxiliary particle propagators are not calculated in the canonical
(Q = 1) ensemble. The projection onto the Q = 1 sector of Fock space is achieved
only when they are combined to calculate expectation values of physically observable

operators like Gdσ, 〈~S〉 etc. The latter can be seen explicitly, e.g., from Eq. (4.2c),
2nd equality.
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whose spectral functions have the Lehmann representations

A−
fσ(ω) =

∑

m,n≥0

e−βE1
m | 〈0, n|fσ|1,m〉 |2 δ(ω − (E0

n − E1
m)) ,

(3.26a)

A−
bµ̄(ω) =

∑

m,n≥0

e−βE1
m | 〈0, n|bµ̄|1,m〉 |2 δ(ω − (E0

n − E1
m)) .

(3.26b)

E1
0 is the ground state energy in the Q = 1 sector. The expressions

(3.24) and (3.26) immediately imply a relation between Af,b and A−
f,b,

A−
f,b(ω) = e−βωAf,b(ω) . (3.27)

(3) The property of only forward-in-time propagation (Eqs. (3.23), (3.24))
means that the auxiliary particle propagators Gf,b are formally identi-
cal to the core propagators of the well-known X-ray threshold problem
[29–31]. Thus, the knowledge of the infrared behavior of the latter may
be directly applied to the former. In particular, the spectral functions
are found (see below) to diverge at the threshold E0 in a power law
fashion (infrared singularity)

Af,b(ω) ∼ |ω − E0|−αf,bθ(ω − E0) (3.28)

due to a diverging number of particle-hole excitation processes in the
conduction electron sea as ω → Eo.

For the single channel case (M = 1), i.e. the usual Kondo or mixed
valence problem, the exponents αf and αb can be found analytically from the
following chain of arguments: Anticipating that in this case the impurity spin
is completely screened by the conduction electrons at temperature T = 0,
leaving a pure-potential scattering center, the ground state |1, 0〉 is a slater
determinant of one-particle scattering states, characterized by scattering
phase shifts ησ in the s-wave channel (assuming for simplicity a momentum
independent hybridization matrix element V ). To calculate the fermion
spectral function Afσ(ω) at T = 0 from Eq. (3.24a), one needs to evaluate

〈1, n | f †
σ | 0, 0〉, which is just the overlap of two slater determinants, an

eigenstate of the fully interacting Kondo system, |1, n〉, on the one hand,
and the ground state of the conduction electron system in the absence of the
impurity combined with the decoupled impurity level occupied by an electron

with spin σ, f †
σ|0, 0〉, on the other hand. As shown by Anderson [30], the
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overlap of the two ground state slater determinants, 〈1, 0 | f †
σ | 0, 0〉, tends

to zero in the thermodynamic limit (orthogonality catastrophe). Analogous
relations hold for the boson spectral function Ab(ω). As a result, the long-
time relaxation into the interacting ground state is inhibited, leading to the
infrared power law divergence of the spectral functions, Eq. (3.28).

The X-ray threshold exponents can be expressed in terms of the scatter-
ing phase shifts at the Fermi level by the exact relation [33]

αf,b = 1 −
∑

σ′

(ηf,b σ′

π

)2
. (3.29)

Here the ηfσ′ (ηbσ′) are the scattering phase shifts of the single-particle
wave functions in channel σ′ of the fully interacting ground state |1, 0〉,
relative to the wave functions of the free state f †

σ|0, 0〉 ( b†|0, 0〉 ). Via the
Friedel sum rule, the scattering phase shifts are, in turn, related to the
change ∆ncσ′ of the average number of conduction electrons per scattering
channel σ′ due to the presence of the impurity: ηf,b σ′ = π∆ncσ′ . Obviously,
∆ncσ′ is equal and opposite in sign to the difference of the average impurity

occupation numbers of the states |1, 0〉 and f †
σ|0, 0〉 ( b†|0, 0〉 ). Thus, in the

pseudofermion propagator Gfσ we have the phase shifts,

ηfσ′ = −π
(nd

N
− δσσ′

)

(3.30)

and in the slave boson propagator Gb,

ηb = −π
nd

N
, (3.31)

where nd denotes the total occupation number of the impurity level in the

interacting ground state. (The term δσσ′ in ηf σ′ appears because f †
σ|0, 0〉 has

impurity occupation number 1.) For example, in the Kondo limit nd → 1
and for a spin 1/2 impurity (N = 2) this leads to resonance scattering,
ηf,b σ′ = π/2. As a result, one finds [34] for the threshold exponents

αf =
2nd − n2

d

N
, (3.32a)

αb = 1 − n2
d

N
. (3.32b)

These results have been found independently from Wilson’s numerical renor-
malization group approach [35, 36] and using the Bethe ansatz solution
and boundary conformal field theory [37]. It is interesting to note that
(i) the exponents depend on the level occupancy nd (in the Kondo limit



Fermi and Non-Fermi Liquid Behavior in Quantum... 3795

nd → 1, αf = 1/N and αb = 1 − 1/N , whereas in the opposite, empty
orbital, limit nd → 0, αf → 0 and αb → 1); (ii) the sum of the exponents

αf + αb = 1 + 2nd(1−nd)
N ≥ 1.

We stress that the above derivation of the infrared exponents αf,b holds
true only if the impurity complex acts as a pure potential scattering center
at T = 0. This is equivalent to the statement that the conduction electrons
behave locally, i.e. at the impurity site, like a Fermi liquid. Conversely,
in the multi-channel (non-FL) case, N ≥ 2, M ≥ N , the exponents have
been found from a conformal field theory solution [24] of the problem in the
Kondo limit to be αf = M/(M + N), αb = N/(M + N), which differ from
the FL values. Thus, one may infer from the values of αf,b as a function of
nd, whether or not the system is in a local Fermi liquid state.

4. Mean field and non-crossing approximations

For physical situations of interest, the s−d hybridization of the Anderson
model (2.1) is much smaller than the conduction band width, N (0)V ≪ 1,
where N (0) = 1/D is the local conduction electron density of states at the
Fermi level. This suggests a perturbation expansion in N (0)V . A straight-
forward expansion in terms of bare Green’s functions is not adequate, as it
would not allow to capture the physics of the Kondo screened state, or else
the infrared divergencies of the auxiliary particle spectral functions discussed
in the last section. In the framework of the slave boson representation, two
types of nonperturbative approaches have been developed. The first one
is mean field theory for both the slave boson amplitude 〈b〉 and the con-
straint (〈Q〉 = 1 rather than Q = 1). The second one is resummation of the
perturbation theory to infinite order.

4.1. Slave boson mean field theory

Slave boson mean field theory is based on the assumption that the slave
bosons condense at low temperatures such that 〈bµ̄〉 6= 0. Replacing the
operator bµ̄ in H+λQ by 〈bµ̄〉 (see Ref. [38]), where λ is a Lagrange multiplier
to be adjusted such that 〈Q〉 = 1, one arrives at a resonance level model
for the pseudofermions. The position of the resonance, Ed + λ, is found
to be given by the Kondo temperature TK , and is thus close to the Fermi
energy. The resonance generates the low energy scale TK , and leads to
local Fermi liquid behavior. While this is qualitatively correct in the single-
channel case, it is in blatant disagreement with the exactly known behavior
in the multi-channel case. The mean field theory can be shown to be exact
for M = 1 in the limit N → ∞ for a model in which the constraint is
softened to be Q = N/2. However, for finite N the breaking of the local
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gauge symmetry, which would be implied by the condensation of the slave
boson field, is forbidden by Elitzur’s theorem [39]. It is known that for finite
N the fluctuations in the phase of the complex expectation value 〈bµ̄〉 are
divergent and lead to the suppression of 〈bµ̄〉 to zero (see also [40]– [42]).
This is true in the cartesian gauge, whereas in the radial gauge the phase
fluctuations may be shown to cancel at least in lowest order. It has not
been possible to connect the mean field solution, an apparently reasonable
description at low temperatures and for M = 1, to the high temperature
behavior (T ≫ TK), dominated by logarithmic temperature dependence, in
a continuous way [38]. Therefore, it seems that the slave boson mean field
solution does not offer a good starting point even for only a qualitatively
correct description of quantum impurity models.

4.2. 1/N expansion vs. self-consistent formulation

The critical judgement of mean field theory is corroborated by the re-
sults of a straightforward 1/N -expansion in the single channel case, keeping
the exact constraint, and not allowing for a finite bose field expectation
value [43]. Within this scheme the exact behavior of the thermodynamic
quantities (known from the Bethe ansatz solution) at low temperatures as
well as high temperatures is recovered to the considered order in 1/N . Also,
the exact auxiliary particle exponents αf,b are reproduced in order 1/N ,
using a plausible exponentiation scheme [44].

In addition, dynamical quantities like the d-electron spectral function
and transport coefficients can be calculated exactly to a desired order in 1/N
within this approach. However, as clear-cut and economical this method
may be, it does have serious limitations. For once, the experimentally
most relevant case of N = 2 or somewhat larger is not accessible in 1/N
expansion. Secondly, non-Fermi liquid behavior, being necessarily non-
perturbative in 1/N , cannot be dealt with in a controlled way on the basis
of a 1/N -expansion. To access these latter two regimes, a new approach
non-perturbative in 1/N is necessary.

We conjecture that this new approach is gauge invariant many-body the-
ory of pseudofermions and slave bosons. As long as gauge symmetry violat-
ing objects such as Bose field expectation values or fermion pair correlation
functions do not appear in the theory, gauge invariance of physical quantities
can be guaranteed in suitably chosen approximations by the proper match
of pseudofermion and slave boson properties, without introducing an addi-
tional gauge field. This requires the use of conserving approximations [45],
derived from a Luttinger-Ward functional Φ. Φ consists of all vacuum skele-
ton diagrams built out of fully renormalized Green’s functions Gb,f,c and the
bare vertex V . The self-energies Σb,f,c are obtained by taking the functional
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derivative of Φ with respect to the corresponding Green’s function (cutting
the Green’s function line in each diagram in all possible ways),

Σb,f,c =
δΦ

δGb,f,c
. (4.1)

Irreducible vertex functions, figuring as integral kernels in two-particle Bethe–
–Salpeter equations, are generated by second order derivatives of Φ.

The choice of diagrams for Φ defines a given approximation. It should
be dictated by the dominant physical processes and by expansion in a small
parameter, if available. As noted before, in the present context, we may take
the hybridization V to be a small quantity (dimensionless parameter NoV ).
This suggests to start with the lowest order (in V ) diagram of Φ, which is
second order (see Fig. 2). The self-energies generated from this obey after
analytic continuation to real frequencies (iω → ω − i0) and projection the
following equations of self-consistent second order perturbation theory

Σ
(NCA)
fσ (ω − i0) = Γ

∑

µ

∫

dε

π
[1 − f(ε)]A0

cµσ(ε)Gbµ̄(ω − ε − i0) , (4.2a)

Σ
(NCA)
bµ̄ (ω − i0) = Γ

∑

σ

∫

dε

π
f(ε)A0

cµσ(ε)Gfσ(ω + ε − i0) , (4.2b)

G
(NCA)
dµσ (ω − i0) =

∫

dε e−βε[Gfσ(ω + ε − i0)Abµ̄(ε)

−Afσ(ε)Gbµ̄(ε − ω + i0)]

=

∫

dε [Gfσ(ω + ε − i0)A−
bµ̄(ε) − A−

fσ(ε)Gbµ̄(ε − ω + i0)] ,

(4.2c)

where A0
cµσ = 1

π ImG0
cµσ/N (0) is the (free) conduction electron density of

states per spin and channel, normalized to the density of states at the Fermi
level N (0), and f(ε) = 1/(exp(βε)+1) denotes the Fermi distribution func-
tion. Together with the expressions (3.10), (3.11) for the Green’s functions,
Eqs. (4.2a)–(4.2c) form a set of self-consistent equations for Σb,f,c, com-
prised of all diagrams without any crossing propagator lines and are, thus,
known as the “non-crossing approximation”, in short NCA [46, 47]. At zero
temperature and for low frequencies Eqs. (4.2a) and (4.2b) may be con-
verted into a set of linear differential equations for Gf and Gb [48], which

allow to find the infrared exponents as αf = M
M+N ; αb = N

M+N , independent
of nd. For the single channel case these exponents do not agree with the
exact exponents derived in Section 3. This indicates that the NCA is not
capable of recovering the local Fermi liquid behavior for M = 1. A numeri-
cal evaluation of the d-electron Green’s function, which is given by the local
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σσ

Φ =

Σ    = Σ    = G  =f b dσ
σ µ µ

σ µ σ µ

c
f

b

µ

Fig. 2. Diagrammatic representation of the generating functional Φ of the NCA.

Also shown are the pseudoparticle self-energies and the local electron Green’s func-

tion derived from Φ, Eqs. (19)–(21). Throughout this article, dashed, wavy and

solid lines represent fermion, boson, and conduction electron lines, respectively. In

the diagram for Σfσ the spin labels are shown explicitly to demonstrate that there

are no coherent spin fluctuations taken into account.

self-energy Σc divided by V 2 and hence is given by the boson-fermion bub-
ble within NCA (Fig. 2), shows indeed a spurious singularity at the Fermi
energy [49]. The NCA performs somewhat better in the multi-channel case,
where the exponents αf and αb yield the correct non-Fermi liquid expo-
nents of physical quantities as known from the Bethe ansatz solution [19]
and conformal field theory [24]. However, the specific heat and the residual
entropy are not given correctly in NCA. Also, the limiting low temperature
scaling laws for the thermodynamic quantities are attained only at temper-
atures substantially below TK , in disagreement with the exact Bethe ansatz
solution.

4.3. Low-temperature evaluation of the self-consistency equations

In order to enter the asymptotic power law regime of the auxiliary spec-
tral functions, the self-consistent scheme, in particular the NCA, must be
evaluated for temperatures several orders of magnitude below TK , the low
temperature scale of the model. The equations are solved numerically by
iteration. In the following we describe the two main procedures to make the
diagrammatic auxiliary particle technique suitable for the lowest tempera-
tures.

The grand-canonical expectation value of the auxiliary particle number
appearing in Eq. (3.8) is given in terms of the grand-canonical (unprojected)
auxiliary particle spectral functions Af,b(ω, λ) by,

〈Q〉G(λ) =

∫

dω
[

f(ω)
∑

σ

Afσ(ω, λ) + b(ω)
∑

µ

Abµ̄(ω, λ)
]

, (4.3)

where f(ω), b(ω) are the Fermi and Bose distribution functions, respectively.
Substituting this into the expression (3.6) for the canonical partition function
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we obtain after carrying out the transformation ω → ω + λ, and taking the
limit λ → ∞

e−βFimp(T ) ≡ ZC

ZQ=0
= lim

λ→∞
eβλ〈Q〉G(λ)

=

∫

dωe−βω
[

∑

σ

Afσ(ω) +
∑

µ

Abµ̄(ω)
]

. (4.4)

By definition Fimp = − 1
β ln(ZC/ZQ=0) is the impurity contribution to the

Free energy.
The numerical evaluation of expectation values like 〈Q〉G(λ → ∞)

(Eq. (4.4)) or Gdµσ(ω, λ → ∞) (Eq. (4.2c)) is non-trivial, (1) because at
T = 0 the auxiliary spectral functions Af,b(ω, T ) are divergent at the thresh-
old frequency E0, where the exact position of E0 is a priori not known, and
(2) because the Boltzmann factors e−βω diverge strongly for ω < 0. There-
fore, we apply the following transformations:

(1) Before performing the projection ω → ω + λ, λ → ∞ we re-define
the frequency scale of all auxiliary particle functions Af,b according to
ω → ω + λ0, where λ0 is a finite parameter. In each iteration λ0 is
then determined such that

∫

dωe−βω
[

∑

σ

Afσ(ω) +
∑

µ

Abµ̄(ω)
]

= 1 , (4.5)

where Af,b(ω) = limλ→∞ Af,b(ω + λ0, λ) is now an auxiliary spectral
function with the new reference energy. It is seen by comparison with
Eq. (4.4) that λ0(T ) = Fimp(T ) = FQ=1(T ) − FQ=0(T ), i.e. λ0 is the
chemical potential for the auxiliary particle number Q, or equivalently
the impurity contribution to the Free energy. The difference of the Free
energies becomes equal to the threshold energy E0 = EGS

Q=1 −EGS
Q=0 at

T = 0. More importantly, however, the above way of determining a
“threshold” is less ad hoc than, for example, defining it by a maximum
in some function appearing in the NCA equations. It is also seen
from Eq. (4.5) that this procedure defines the frequency scale of the
auxiliary particles such that the T = 0 threshold divergence of the
spectral functions is at the fixed frequency ω = 0. This substantially
increases the precision as well as the speed of numerical evaluations.
Eq. (3.8) for the projected d-electron Green’s function becomes

Gd(ω) = lim
λ→∞

eβλGd(ω, T, λ). (4.6)
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(2) The divergence of the Boltzmann factors implies that the self-consis-
tent solutions for Af,b(ω) vanish exponentially ∼ eβω for negative fre-
quencies, confirming their threshold behavior. It is convenient, not to
formulate the self-consistent equations in terms of Af,b like in earlier

evaluations [50], but to define new functions Ãf,b(ω) and ImΣ̃f,b(ω)
such that

Af,b(ω) = f(−ω) Ãf,b(ω) , (4.7)

ImΣf,b(ω) = f(−ω) ImΣ̃f,b(ω). (4.8)

After fixing the chemical potential λ0 and performing the projection
onto the physical subspace, the canonical partition function (Eq. (3.6))
behaves as limλ→∞ eβ(λ−λ0) ZC(T ) = 1, and from Eq. (3.27) we have

A−
f,b(ω) = f(ω)Ãf,b(ω). In this way all exponential divergencies are

absorbed by one single function for each particle species. The NCA
equations in terms of these functions are free of divergencies of the
statistical factors and read

ImΣ̃fσ(ω − i0) = Γ
∑

µ

∫

dε
f(−ε)(1 − f(ω − ε))

1 − f(ω)

×A0
cµσ(ε)Ãbµ̄(ω − ε) , (4.9)

ImΣ̃bµ̄(ω − i0) = Γ
∑

σ

∫

dε
f(ε)(1 − f(ω + ε))

1 − f(ω)

×A0
cµσ(ε)Ãfσ(ω + ε) , (4.10)

〈Q〉(λ0, λ → ∞) =

∫

dωf(ω)
[

∑

σ

Ãfσ(ω)+
∑

µ

Ãbµ̄(ω)
]

=1 , (4.11)

ImGdσ(ω − i0) =

∫

dε[f(ε + ω)f(−ε) + f(−ε − ω)f(ε)]

×Ãfσ(ε + ω)Ãb(ε) . (4.12)

The real parts of the self-energies Σf , Σb are determined from ImΣf ,
ImΣb through a Kramers–Kroenig relation, and the auxiliary functions
Ãfσ(ω) = 1

π ImΣ̃fσ(ω − i0)/[(ω + λ0 − i0 − Ed − ReΣfσ(ω − i0))2 +

ImΣfσ(ω− i0)2], Ãbµ̄(ω) = 1
π ImΣ̃bµ̄(ω− i0)/[(ω +λ0− i0−ReΣbµ̄(ω−

i0))2 + ImΣbµ̄(ω − i0)2], thus closing the above set of equations.

The method described above allows to solve the NCA equations effec-
tively for temperatures down to typically T = 10−4TK . It may be shown
that the same procedure can also be applied to self-consistently compute
vertex corrections beyond the NCA (see Section 5).
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5. Conserving T -matrix approximation

5.1. Dominant contributions at low energy

In order to eliminate the shortcomings of the NCA mentioned above,
the guiding principle should be to find contributions to the vertex functions
which renormalize the auxiliary particle threshold exponents to their cor-
rect values, since this is a necessary condition for the description of FL and
non-FL behavior, as discussed in Section 3. Furthermore, it is instructive to
realize that in NCA any coherent spin flip and charge transfer processes are
neglected, as can be seen explicitly from Eqs. (4.2a), (4.2b) or from Fig. 2.
These processes are known to be responsible for the quantum coherent col-
lective behavior of the Anderson impurity complex below TK . The existence
of collective excitations in general is reflected in a singular behavior of the
corresponding two-particle vertex functions. In view of the tendency of
Kondo systems to form a collective spin singlet state, we are here interested
in the spin singlet channel of the pseudofermion-conduction electron vertex
function and in the slave boson-conduction electron vertex function. It may
be shown by power counting arguments (compare Appendix A) that there
are no corrections to the NCA exponents in any finite order of perturbation
theory [51]. Thus, we are led to search for singularities in the aforemen-
tioned vertex functions arising from an infinite resummation of terms. From
the preceding discussion it is natural to perform a partial resummation of
those terms which, at each order in the hybridization V , contain the maxi-
mum number of spin flip or charge fluctuation processes, respectively. This
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Ω−ωµσ Ω−ω’µ’σ
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(cf)T

(2)
(cb)T

ν ’ω’

µ ω−Ωσ µ’σ ω’−Ω

ν ω
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c c
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Fig. 3. Diagrammatic representation of the Bethe–Salpeter equation for (1) the

conduction electron–pseudofermion T -matrix T (cf), Eq. (5.1), and (2) the conduc-

tion electron-slave boson T -matrix T (cb), Eq. (5.2). T (cb) is obtained from T (cf) by

interchanging f ↔ b and c ↔ c†.
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amounts to calculating the conduction electron–pseudofermion vertex func-
tion in the “ladder” approximation definied in Fig. 3, where the irreducible
vertex is given by V 2Gb. In analogy to similar resummations for an inter-
acting one-component Fermi system, we call the total c–f vertex function
T -matrix T (cf). The Bethe–Salpeter equation for T (cf) reads (Fig. 3 (1)),

T
(cf) µ
στ,σ′τ ′(iωn, iω′

n, iΩn) = +V 2Gbµ̄(iωn + iω′
n − iΩn)δστ ′δτσ′

−V 2T
∑

ω′′

n

Gbµ̄(iωn + iω′′
n − iΩn)

×Gfσ(iω′′
n) G0

cµτ (iΩn − iω′′
n) T

(cf) µ
τσ,σ′τ ′(iω

′′
n, iω′

n, iΩn) . (5.1)

A similar integral equation holds for the charge fluctuation T -matrix T (cb)

(Fig. 3 (2)),

T
(cb) σ
µν,µ′ν′(iωn, iω′

n, iΩn) = +V 2Gfσ(+iωn + iω′
n − iΩn)δµν′δνµ′

−V 2T
∑

ω′′

n

Gfσ(iωn + iω′′
n − iΩn)

×Gbµ̄(iω′′
n) G0

cνσ(−iω′′
n − iΩn) T

(cb) σ
νµ,µ′ν′(iω

′′
n, iω′

n, iΩn) . (5.2)

In the above Bethe–Salpeter equations σ, τ , σ′, τ ′ represent spin and µ,
ν, µ′, ν ′ channel indices. Inserting NCA Green’s functions for the inter-
mediate state propagators of Eq. (5.1) and solving it numerically, we find
at low temperatures and in the Kondo regime (nd & 0.7) a pole of T (cf)

in the singlet channel (see Appendix A) as a function of the center-of-mass
(COM) frequency Ω, at a frequency which scales with the Kondo tempera-
ture, Ω = Ωcf ≃ −TK . This is shown in Fig. 4. The threshold behavior of

the imaginary part of T (cf) as a function of Ω with vanishing spectral weight
at negative frequencies and temperature T = 0 is clearly seen. In addition,
a very sharp structure appears, whose broadening is found to vanish as the
temperature tends to zero, indicative of a pole in T (cf) at the real frequency
Ωcf , i.e. the tendency to form a collective singlet state between the conduc-
tion electrons and the localized spin. Similarly, the corresponding T -matrix
T (cb) in the conduction electron–slave boson channel, evaluated within the
analogous approximation, develops a pole at negative values of Ω in the
empty orbital regime (nd . 0.3). In the mixed valence regime (nd ≃ 0.5)
the poles in both T (cf) and T (cb) coexist. The appearance of poles in the
two-particle vertex functions T (cf) and T (cb), which signals the formation of
collective states, may be expected to influence the behavior of the system in
a major way.
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Fig. 4. Imaginary part of the conduction electron–pseudofermion T -matrix T (cf)

as a function of the COM frequency Ω for the single-channel case M = 1, N = 2,

evaluated by inserting NCA solutions for the intermediate state propagators (Ed =

−0.67D, Γ = 0.15D, T = 4 · 10−3TK). The contribution from the pole positioned

at a negative frequency Ω = Ωcf ≃ −TK (compare text) is clearly seen.

5.2. Self-consistent formulation: CTMA

On the level of approximation considered so far, the description is not yet
consistent: In the limit of zero temperature the spectral weight of T (cf) and
T (cb) at negative frequencies Ω should be strictly zero (threshold property).
Nonvanishing spectral weight at Ω < 0 like a pole contribution for negative
Ω in T (cf) or T (cb) would lead to a diverging contribution to the self-energy,
which is unphysical. However, recall that a minimum requirement on the ap-
proximation used is the conservation of gauge symmetry. This requirement
is not met when the integral kernel of the T -matrix equation is approxi-
mated by the NCA result. Rather, the approximation should be generated
from a Luttinger–Ward functional. The corresponding generating functional
is shown in Fig. 5. It is defined as the infinite series of all vacuum skele-
ton diagrams which consist of a single ring of auxiliary particle propagators,
where each conduction electron line spans at most two hybridization vertices
(Fig. 5). As shown in Appendix A by means of a cancellation theorem, the
CTMA includes, at any given loop order, all infrared singular contributions
to leading and subleading order in the frequency ω.

The first diagram of the infinite series of CTMA terms corresponds to
NCA (Fig. 2). The diagram containing two boson lines is excluded, since it
is not a skeleton. Although the spirit of the present theory is different from
a large N expansion, it should be noted that the sum of the Φ diagrams
containing up to four boson lines includes all terms of a 1/N expansion up
to O(1/N2) [52]. By functional differentiation with respect to the conduc-
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+ 1
3

NCA

Φ =

+   . . .

++ 11
44

spin charge
fluctuations

+ 1
5

+ 1
5

Fig. 5. Diagrammatic representation of the Luttinger–Ward functional generating

the conserving T -matrix approximation (CTMA). The terms with the conduction

electron lines running clockwise (labelled “spin fluctuations”) generate the T -matrix

T (cf), while the terms with the conduction electron lines running counter-clockwise

(labelled “charge fluctuations”) generate the T -matrix T (cb).

tion electron Green’s function and the pseudofermion or the slave boson
propagator, respectively, the shown Φ functional generates the ladder ap-
proximations T (cf), T (cb) for the total conduction electron–pseudofermion
vertex function and for the total conduction electron–slave boson vertex
function (Fig. 3). The auxiliary particle self-energies are obtained in the
conserving scheme as the functional derivatives of Φ with respect to Gf

or Gb, respectively (Eq. (4.1)). This defines a set of self-consistency equa-
tions, which we term conserving T -matrix approximation (CTMA), where
the self-energies are given as nonlinear and nonlocal (in time) functionals
of the Green’s functions, while the Green’s functions are in turn expressed
in terms of the self-energies. The CTMA equations are derived explicitly in
Appendix B. The solution of these equations requires that the T -matrices
have vanishing spectral weight at negative COM frequencies Ω. Indeed, the
numerical evaluation shows that the poles of T (cf) and T (cb) are shifted to
Ω = 0 by self-consistency, where they merge with the continuous spectral
weight present for Ω > 0, thus renormalizing the threshold exponents of the
auxiliary spectral functions.
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The self-consistent solutions are obtained by first solving the linear Bethe–
Salpeter equations for the T -matrices by matrix inversion, computing the
auxiliary particle self-energies from T (cf) and T (cb), and then constructing
the fermion and boson Green’s functions from the respective self-energies.
This process is iterated until convergence is reached. We have obtained re-
liable solutions down to temperatures of the order of at least 10−2TK both
for the single-channel and for the two-channel Anderson model. Note that
TK → 0 in the Kondo limit; in the mixed valence and empty impurity
regimes, significantly lower temperatures may be reached, compared to the
low temperature scale of the model.

(1) (2)

Fig. 6. (1) Pseudofermion and slave boson spectral functions Af and Ab in the

Kondo regime (N = 2; Ed = −0.05, Γ = 0.01 in units of the half-bandwidth D),

for a) the single-channel (M = 1) and b) the multi-channel (M = 2) case. In

a) the symbols represent the results of NRG for the same parameter set, T = 0.

The slopes of the dashed lines indicate the exact threshold exponents as derived in

Section 3 for M = 1 and as given by conformal field theory for M = 2. The insets

show magnified power law regions. (2) CTMA results (symbols with error bars)

for the threshold exponents αf and αb of Af and Ab, N = 2, M = 1. Solid lines:

exact values (Section 3), dashed lines: NCA results (Section 4.2).

As shown in Fig. 6 (1) a), the auxiliary particle spectral functions ob-
tained from CTMA [53] are in good agreement with the results of a numeri-
cal renormalization group (NRG) calculation [35] (zero temperature results),
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given the uncertainties in the NRG at higher frequencies. Typical behav-
ior in the Kondo regime is obtained: a broadened peak in Ab at ω ≃ |Ed|,
representing the hybridizing d-level and a structure in Af at ω ≃ TK . Both
functions display power law behavior at frequencies below TK , which at finite
T is cut off at the scale ω ≃ T . The exponents extracted from the frequency
range T < ω < TK of our finite T results compare well with the exact result
also shown (see insets of Fig. 6 (1a)). A similar analysis has been performed
for a number of parameter sets spanning the complete range of d-level occu-
pation numbers nd. The extracted power law exponents are shown in Fig. 6
(2), together with error bars estimated from the finite frequency ranges over
which the fit was made. The comparatively large error bars in the mixed
valence regime arise because here spin flip and charge fluctuation processes,
described by the poles in T (cf) and T (cb), respectively, are of equal impor-
tance, impeding the convergence of the numerical procedure. In this light,
the agreement with the exact results (solid curves) is very good, the exact
value lying within the error bars or very close in each case.

In the multi-channel case (N ≥ 2, M ≥ N) NCA has been shown [51] to
reproduce asymptotically the correct threshold exponents, αf = M/(M +
N), αb = N/(M + N), in the Kondo limit. Calculating the T -matrices
using NCA Green’s functions (as discussed in the single-channel case) we
find again a pole in the singlet channel of T (cf). However, in this case the
CTMA does not renormalize the NCA exponents in the Kondo limit of the
two-channel model, i.e. the threshold exponents obtained from the CTMA
solutions are very close to the exact ones, αf = 1/2, αb = 1/2, as shown in
Fig. 6 (1) b).

The agreement of the CTMA exponents with their exact values in the
Kondo, mixed valence and empty impurity regimes of the single-channel
model and in the Kondo regime of the two-channel model may be taken as ev-
idence that the T -matrix approximation correctly describes both the FL and
the non-FL regimes of the SU(N)×SU(M) Anderson model (N=2, M=1,2).
Therefore, we expect the CTMA to correctly describe physically observable
quantities of the SU(N)×SU(M) Anderson impurity model as well. As a
check, we have calculated the static spin susceptibility χ of the two-channel
Anderson model in the Kondo regime by solving the CTMA equations (see
Appendix B) in a finite magnetic field H coupled to the impurity spin and
taking the derivative of the magnetization M = 1

2gµB〈nf↑ − nf↓〉 with re-
spect to H. The resulting χ(T ) = (∂M/∂H)T is shown in Fig. 7. It is seen
that CTMA correctly reproduces the exact [19] logarithmic temperature de-
pendence below the Kondo scale TK . In contrast, the NCA solution recovers
the logarithmic behavior only far below TK . Other physical quantities will
be calculated for the Anderson model in forthcoming work.
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Fig. 7. Static susceptibility of the two-channel Anderson impurity model: CTMA

and NCA results (Ed = −0.8D, Γ = 0.1D, Landé factor g = 2).

6. Conclusion

We have presented a novel technique to describe correlated quantum im-
purity systems with strong onsite repulsion, which is based on a conserving
formulation of the auxiliary boson method. The conserving scheme allows to
preserve the conservation of the local charge Q without taking into account
time dependent fluctuations of the gauge field λ. Taking, as a result, λ as a
time independent quantity represents a great simplification of this approach.
As a standard diagram technique this method has the potential to be appli-
cable to problems of correlated systems on a lattice as well, while keeping
the full dynamics of the pseudofermion and slave boson fields. By including
the leading infrared singular contributions (spin flip and charge fluctuation
processes), this technique allows to correctly describe physical quantities,
like the magnetic susceptibility, both in the Fermi and in the non-Fermi liq-
uid regime, over the complete temperature range, including the crossover to
the correlated many-body state at the lowest temperatures.

We wish to thank S. Böcker, T.A. Costi, S. Kirchner, A. Rosch, A. Ruck-
enstein and Th. Schauerte for stimulating discussions. S. Böcker has per-
formed part of the numerical solutions. This work is supported by DFG
through SFB 195 and by the Hochleistungsrechenzentrum Jülich through a
grant of computer time on a Cray T3E parallel computer.
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Appendix A

Infrared cancellation of non-CTMA diagrams

The CTMA is not only justified on physical grounds by the inclusion of
the maximum number of spin flip and charge fluctuation processes at any
given order of perturbation theory, but also by an infrared cancellation of
all diagrams not included in the CTMA. In the following we will prove this
cancellation theorem.

(1) Power counting. Each auxiliary particle loop carries a factor of the
fugacity exp(−βλ), which vanishes upon projection onto the Q = 1
subspace, λ → ∞. Therefore, an arbitrary f or b self-energy diagram
consists of one single line of alternating fermion and boson propagators,
with the hybridization vertices connected by conduction electron lines
in any possible way, as shown in Fig. 8 (see also [46]). Such a fermion
self-energy skeleton diagram of loop order L is calculated as

Σ
(L)
f (ω) = (−1)3L−1+Lsp NLsp MLch ΓL

×
∫

dε1

π
. . .

dεL

π
f(ε1) . . . f(εL)A0

c(s1ε1) . . . A0
c(sLεL)

×Gb(ω + ω1)Gf (ω + ω1 + ω′
1) . . .

× . . . Gb

(

ω +

k
∑

i=1

ωi +

k−1
∑

i=1

ω′
i

)

Gf

(

ω +

k
∑

i=1

(ωi + ω′
i)

)

. . .

× . . . Gb(ω + ωL) , (A.1)

where Gf,b are the renormalized , i.e. power law divergent auxiliary
particle propagators, and Lsp and Lch denote the number of spin (or
fermion, c–f) loops and the number of channel (or c–b) loops contained
in the diagram, respectively. Spin and channel indices are not shown
for simplicity. Each of the auxiliary particle frequencies ωi, ω′

i coincides
with one of the integration variables εj , j = 1, . . . , L, in such a way

Fig. 8. Typical pseudofermion self-energy skeleton diagram of loop order L = 6,

containing Lsp = 1 spin (or fermion) loop and Lch = 1 channel loop.
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that energy is conserved at each hybridization vertex. This implies
that the sign of the frequency carried by a c-electron line is si = +, if
the c-electron line runs from right to left, and si = −, if it runs from
left to right in Fig. 8. An analogous expression holds for the slave
boson self-energy diagrams. By substituting xj = εj/ω, j = 1, . . . , L
and factoring out ω−αf,(b) from each fermion (boson) propagator, the
infrared behavior of the term Eq. (A.1) is deduced as

ImΣ
(L)
f,b (ω) = Cωαf,b+L(1−αf−αb), (A.2)

where C is a finite constant. Clearly, when the NCA solutions are
inserted for the propagators Gf,b, i.e. αf +αb = 1, their power law be-
havior is just reproduced by any term of the form Eq. (A.1). However,
this is no longer the case for the exact propagators in the Fermi liquid
regime (M < N), where in general αf + αb > 1. Thus, the infinite
resummation of terms to arbitrary loop order is unavoidable in this
case.

(2) Infrared cancellation. As discussed in Section 5.2, the CTMA is equiv-
alent to the self-consistent summation of all skeleton free energy dia-
grams, where a conduction electron line spans at most two hybridiza-
tion vertices (Fig. 5). Thus, any skeleton self-energy diagram not in-
cluded in CTMA contains at least one conduction electron “arch” which
spans four (or more) vertices, with four conduction lines reaching from
inside to outside of the arch as shown in Fig. 9(a). For each such di-
agram there exists another skeleton, which differs from Fig. 9(a) only
in that the end points of two conduction lines inside the arch are in-
terchanged (Fig. 9(b)). The corresponding permutation of fermionic

ω1 ω2 ω3 ω4

ω’

ω
+

(a) ω1 ω2 ω3 ω4

ω

ω’

(b)

(d)ω1 ω2 ω3 ω4

ω

ω’

(c) ω1 ω2 ω3 ω4

ω

ω’

+

Fig. 9. Set of contributions to skeleton diagrams not contained in CTMA which

cancel in the infrared limit to leading and subleading order in the external fre-

quency, ω → 0.
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operators implies a relative sign between the terms Fig. 9(a) and (b).
Without loss of generality we now assume ω > 0 for the external fre-
quency of the self-energy. The leading infrared singular behavior of the
term (A.1) arises from those parts of the integrations, where the argu-
ments of the Gf , Gb are such that the divergences of all propagators
lie within the integration range. This implies at least −ω ≤ εj ≤ 0,
j = 1, . . . , L. Therefore, the terms corresponding to Fig. 9(a), (b)
differ only in the frequency arguments of the Green’s functions inside
the arch, and at temperature T = 0 the leading infrared behavior of
their sum reads,

Σ
(L,a)
f (ω) + Σ

(L,b)
f (ω)ω→0= (−1)3L−1+Lsp NLspMLchΓL

×
0

∫

−ω

dε1

π
. . .

dεL

π
F (ω, {εj}) [Gf (ω̄ + ω′ + ω1)Gb(ω̄ + ω′ + ω1 + ω2)

−Gf (ω̄ + ω′ + ω3)Gb(ω̄ + ω′ + ω3 + ω2)] . (A.3)

Here ω̄ denotes the sum of all frequencies ω, εj entering the diagram-
matic part, Fig. 9, from the left, and F (ω, {εj}) consists of all terms
which are not altered by interchanging the c-electron lines. In the in-
frared limit, ω1 − ω3 → 0, the term in square brackets may be written
as

d

dω̄
[Gf (ω̄ + ω′)Gb(ω̄ + ω′ + ω2)](ω1 − ω3) (A.4)

and upon performing the integrations over ω1, ω3 the difference (ω1 −
ω3) leads to an additional factor of ω. A similar cancellation of
the leading infrared singularity occurs between the terms shown in
Fig. 9(c), (d). In an analogous way it may be shown that combining
the terms Fig. 9 (a)–(d) leads to a factor of ω2 compared to the power
counting result for one single term. Thus, the infrared singularity of
all non-CTMA terms of loop order L is weaker than the Lth order
CTMA terms by at least O(ω2),

Σ
(L,a)
f,b (ω) + . . . + Σ

(L,d)
f (ω)

ω→0∝ ωαf,b+L(1−αf−αb)+2. (A.5)

It should be emphasized that in the above derivation, L appears only
as a parameter and, thus, the cancellation theorem holds for arbitrarily
high loop order L. This proves that the CTMA captures the leading
and subleading infrared singularities (ω → 0) at any given order L.
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Appendix B

CTMA equations

In this appendix we give explicitly the self-consistent equations which de-
termine the auxiliary particle self-energies within CTMA. For that purpose,
it is useful to define conduction electron-fermion and conduction electron-
boson vertex functions T (cf) (±), T (cb) (±) without (+) or with (−) an alter-
nating sign between terms with even and odd number of rungs (compare
Fig. 3). In the Matsubara representation, these vertex functions, to be
labelled “even” (+) and “odd” (−) below, are given by the following Bethe–
Salpeter equations:

T
(cf) (±) µ

σ,τ (iωn, iω′
n, iΩn) = U

(cf) µ
σ,τ (iωn, iω′

n, iΩn)

±V 2 1

β

∑

ω′′

n

Gbµ̄(iωn + iω′′
n − iΩn)

×Gfσ(iω′′
n) G0

cµτ (iΩn − iω′′
n) T

(cf) (±) µ
τ,σ(iω′′

n, iω′
n, iΩn) , (B.1a)

U
(cf) µ

σ,τ (iωn, iω′
n, iΩn) = −V 4 1

β

∑

ω′′

n

Gbµ̄(iωn + iω′′
n − iΩn)

×Gfσ(iω′′
n) G0

cµτ (iΩn − iω′′
n) Gbµ̄(iω′

n + iω′′
n − iΩn) , (B.1b)

and

T
(cb) (±)σ

µ,ν(iωn, iω′
n, iΩn) = U

(cb) σ
µ,ν(iωn, iω′

n, iΩn)

±V 2 1

β

∑

ω′′

n

Gfσ(iωn + iω′′
n − iΩn)

×Gbµ̄(iω′′
n) G0

cνσ(iω′′
n − iΩn) T

(cb) (±)σ
ν,µ(iω′′

n, iω′
n, iΩn) , (B.2a)

U
(cb) σ

µ,ν(iωn, iω′
n, iΩn) = −V 4 1

β

∑

ω′′

n

Gfσ(iωn + iω′′
n − iΩn)

×Gbµ̄(iω′′
n) G0

cνσ(iω′′
n − iΩn) Gfσ(iω′

n + iω′′
n − iΩn) . (B.2b)

Note that, in addition to the alternating sign, these vertex functions differ
from the T -matrices defined in Eqs. (5.1), (5.2) in that they contain only
terms with two or more rungs, since the inhomogeneous parts U (cf) and
U (cb) represent terms with two bosonic or fermionic rungs, respectively. The
terms with a single rung correspond to the NCA diagrams and are evaluated
separately (see below).

The spin degrees of freedom of T (cf) (±) are uniquely determined by the
spin indices σ, τ of the ingoing conduction electron and pseudofermion
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1T
NCA

Σ =f
(cf) +

+

+

(cf)T 2
(cb)T 1

(cb)T 2

NCA
Σ =b

+

Fig. 10. Diagrammatic representation of the CTMA expressions for pseudoparticle

self-energies Σf and Σb. The first term drawn on the righthand side of Σf and

Σb, respectively, is the NCA diagram. The diagrammatic parts T
(cf)
1,2 , T

(cb)
1,2 are

explained in the text.

lines (Fig. 3). It is instructive to note that in the spin S = 1/2 case
(N = 2) the singlet and triplet vertex functions (which correspond to the
two-particle Green’s functions in the singlet channel, φ s ∼ ∑

σ〈T{(cσf−σ −
c−σfσ)(c†σf †

−σ − c†−σf †
σ)}〉, and in the triplet channel with magnetic quan-

tum number m = 0,±1, φ t
m=0 ∼ ∑

σ〈T{(cσf−σ + c−σfσ)(c†σf †
−σ + c†−σf †

σ)}〉,
φ t

m=±1 ∼ 〈T{c± 1
2
f± 1

2
c†
± 1

2

f †

± 1
2

}〉, respectively) may be identified in the fol-

lowing way,

T (cf) s =
∑

σ

T
(cf) (−)
σ,−σ , (B.3a)

T
(cf) t
m=0 =

∑

σ

T
(cf) (+)
σ,−σ , (B.3b)

T
(cf) t
m=±1 = T

(cf) (+)

± 1
2
,± 1

2

. (B.3c)

Analogous relations hold for the conduction electron-boson vertex func-
tion in terms of the channel degrees of freedom µ, ν. The total CTMA
pseudoparticle self-energies, as derived by functional differentiation from the
generating functional Φ, Fig. 5, are shown in Fig. 10 and consist of three
terms each,

Σfσ(iωn) = Σ
(NCA)
fσ (iωn) + Σ

(cf)
fσ (iωn) + Σ

(cb)
fσ (iωn) , (B.4)

Σbµ̄(iωn) = Σ
(NCA)
bµ̄ (iωn) + Σ

(cf)
bµ̄ (iωn) + Σ

(cb)
bµ̄ (iωn) . (B.5)

The first term of Σf and Σb represents the NCA self-energies, Eqs. (4.2a),
(4.2b). The second and third terms arise from the spin and the charge
fluctuations, respectively, and are given for pseudofermions by
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Σ
(cf)
fσ (iωn) = M

1

β

∑

Ωn

G0
c(iΩn − iωn)T

(cf)
1 (iωn, iωn, iΩn) , (B.6a)

Σ
(cb)
fσ (iωn) = −M V 2 1

β2

∑

ω′

nω′′

n

G0
c(iωn − iω′

n)Gb(iω
′
n)

×T
(cb)
2 (iω′

n, iω′′
n, iω′

n + iω′′
n − iωn)G0

c(iωn − iω′′
n)Gb(iω

′′
n) , (B.6b)

and for slave bosons by

Σ
(cf)
bµ̄ (iωn) = −N V 2 1

β2

∑

ω′

nω′′

n

G0
c(iω

′
n − iωn)Gf (iω′

n)

×T
(cf)
2 (iω′

n, iω′′
n, iω′

n + iω′′
n − iωn)G0

c(iω
′′
n − iωn)Gf (iω′′

n) , (B.7a)

Σ
(cb)
bµ̄ (iωn) = N

1

β

∑

Ωn

G0
c(iωn − iΩn)T

(cb)
1 (iωn, iωn, iΩn) , (B.7b)

where the vertex functions appearing in these expressions are defined as

T
(cf)
1 =

N + 1

2
T (cf) (+) +

N − 1

2
T (cf) (−) − N U (cf) , (B.8a)

T
(cf)
2 =

N + 1

2
T (cf) (+) − N − 1

2
T (cf) (−) − U (cf) , (B.8b)

T
(cb)
1 =

M − 1

2
T (cb) (+) +

M + 1

2
T (cb) (−) − M U (cb) , (B.9a)

T
(cb)
2 =

M − 1

2
T (cb) (+) − M + 1

2
T (cb) (−) − U (cb) . (B.9b)

These combinations of the even and odd vertex functions ensure the proper
spin and channel summations in the self-energies. For the sake of clarity, the
spin and channel indices as well as the frequency variables are not shown
explicitly. In Eqs. (B.8a), (B.9a) the terms with two rungs, N U (cf), M U (cb),
have been subtracted, since they would generate non-skeleton self-energy
diagrams. Likewise, in Eqs. (B.8b), (B.9b) the two-rung terms have been
subtracted in order to avoid a double counting of terms in the self-energies.

We now turn to the analytic continuation to real frequencies of the ex-
pressions derived above. Transforming the Matsubara summations into con-
tour integrals shows that integrations along branch cuts of auxiliary particle
Green’s functions carry an additional factor exp(−βλ) as compared to in-
tegrations along branch cuts of physical Green’s functions, which vanishes
upon projection onto the the physical Fock space, λ → ∞. Thus, as a gen-
eral rule, only integrations along branch cuts of the c-electron propagators
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contribute to the auxiliary particle self-energies. Therefore, by performing
the analytic continuation, iωn → ω − i0 ≡ ω in all frequency variables, we
obtain the advanced pseudofermion self-energy,

Σ
(cf)
fσ (ω) = M

∫

dε

π
f(ε − ω)A0

c(ε − ω)πN (0)T
(cf)
1 (ω, ω, ε) , (B.10a)

Σ
(cb)
fσ (ω) = −MΓ

∫

dε

π

∫

dε′

π
f(ε − ω) f(ε′ − ω)

×A0
c(ω − ε)Gb(ε) πN (0)T

(cb)
2 (ε, ε′, ε + ε′ − ω)A0

c(ω − ε′)Gb(ε
′) ,

(B.10b)

and the advanced slave boson self-energy,

Σ
(cf)
bµ̄ (ω) = −NΓ

∫

dε

π

∫

dε′

π
f(ε − ω) f(ε′ − ω)

×A0
c(ε − ω)Gf (ε)πN (0)T

(cf)
2 (ε, ε′, ε + ε′ − ω)A0

c(ε
′ − ω)Gf (ε′),(B.11a)

Σ
(cb)
bµ̄ (ω) = −N

∫

dε

π
f(ε − ω)A0

c(ω − ε)πN (0)T
(cb)
1 (ω, ω, ε), (B.11b)

where the vertex functions are given by Eqs. (B.8), (B.9) with

T
(cf) (±) µ

σ,τ (ω, ω′, Ω) = U
(cf) (±) µ

σ,τ (ω, ω′, Ω)

±(−Γ )

∫

dε

π
f(ε − Ω)

×Gbµ̄(ω + ε − Ω)Gfσ(ε)A0
cµτ (Ω − ε)T

(cf) (±) µ
τ,σ(ε, ω′, Ω), (B.12a)

πN (0) U
(cf) (±) µ

σ,τ (ω, ω′, Ω) = +Γ 2

∫

dε

π
f(ε − Ω)

×Gbµ̄(ω + ε − Ω)Gfσ(ε)A0
cµτ (Ω − ε)Gbµ̄(ω′ + ε − Ω) , (B.12b)

and

T
(cb) (±)σ

µ,ν(ω, ω′, Ω) = U
(cb) (±)σ

µ,ν(ω, ω′, Ω)

±(+Γ )

∫

dε

π
f(ε − Ω)

×Gfσ(ω + ε − Ω)Gbµ̄(ε)A0
cνσ(ε − Ω) T

(cb) (±)σ
ν,µ(ε, ω′, Ω) , (B.13a)

πN (0) U
(cb) (±)σ

µ,ν(ω, ω′, Ω) = −Γ 2

∫

dε

π
f(ε − Ω)

×Gfσ(ω + ε − Ω)Gbµ̄(ε)A0
cνσ(ε − Ω) Gfσ(ω′ + ε − Ω) . (B.13b)
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In the above expressions, like in the NCA equations (4.2), we have used the
dimensionless conduction electron spectral density, A0

c(ω) = 1
π ImG0

cµσ(ω −
i0)/N (0), and we have suppressed obvious spin and channel indices. All
frequency variables are to be understood as the limit ω ≡ ω− i0. The equa-
tions (B.10), (B.11), supplemented by the vertex functions Eqs. (B.8), (B.9),
(B.12), (B.13) form, together with the NCA contributions Eqs. (4.2a), (4.2b)
and the definitions of the auxiliary particle Green’s functions, Eqs. (3.10),
(3.11), the closed set of self-consistent CTMA equations [53]. It is seen
that in these equations only those branches of the T -matrix vertex func-
tions appear which are advanced with respect to all three frequency vari-
ables, although in general the T -matrix consists of 23 independent analytical
branches. This simplification is a consequence of the exact projection onto
the physical sector of Fock space. Inspection of the analytically continued
CTMA equations also shows that the slave boson self-energy is obtained
from the pseudofermion self-energy, including the proper signs, by simply
replacing Gf ↔ Gb and inverting the frequency argument of A0

c in all ex-
pressions.

Eqs. (B.10)–(B.13) may be rewritten in terms of the spectral functions

without threshold, Ãf,b, in a straight forward way as explained in Section 4.3,
thus avoiding divergent statistical factors in the d-electron Green’s function.
The CTMA equations are solved numerically by iteration. In each iteration
step the NCA and the T -matrix contributions are computed separetely. We
solve the linear T -matrix Bethe–Salpeter Equations (B.12) by discretization
of the frequency integrals and subsequent solution of the resulting multidi-
mensional linear equations. Because of the formulation given above, where
first the vertex parts T (cf) (±) and T (cf) (±), comprised of all T -matrix di-
agrams with two or more rungs, are calculated and in a second step the
non-skeleton two-rung contributions are subtracted (Eqs. (B.8), (B.9)), each
term of the T -matrix equations involves at most one frequency integration.
The resulting numerical effort is manageable: One complete iteration within
the self-consistent scheme has been done on a parallel computer within ap-
proximately 5–10 s CPU time.

REFERENCES

[1] L.D. Landau, Sov. Phys. JETP 3, 920 (1956); 5, 101 (1957); 8, 70 (1959).

[2] A.J. Millis, Phys. Rev. B48, 7183 (1993).

[3] T. Moriya, T. Takimoto, J. Phys. Soc. Japan 64, 960 (1995).

[4] A. Rosch et al., Phys. Rev. Lett. 79, 159 (1997).

[5] For non-FL behavior near a quantum spin-glass transition, see S. Sachdev,
N. Read, R. Oppermann, Phys. Rev. B52, 10286 (1995).



3816 J. Kroha, P. Wölfle

[6] H. v. Löhneysen et al., Phys. Rev. Lett. 72, 3262 (1994); B. Bogenberger,
H. v. Löhneysen, Phys. Rev. Lett. 74, 1016 (1995).

[7] H. v. Löhneysen, J. Phys. Condens. Matter 8, 9689 (1996).

[8] F. Steglich, J. Phys. Condens. Matter 8 9909 (1996).

[9] F.M. Grosche, S.R. Julian, N.D. Mathur, G.G. Lonzarich, Physica B
223+224, 50 (1996).

[10] S.R. Julian et al., J. Phys. Condens. Matter 8 9675 (1996).

[11] P. Nozierès, A. Blandin, J. Phys. (Paris) 41, 193 (1980).

[12] A comprehensive overview appears in D.L. Cox, F. Zawadowski, Adv. Phys.,
in press (1998); (cond-mat/9704103).

[13] D.L. Cox, Phys. Rev. Lett. 59, 1240 (1987); Physica C 153, 1642 (1988).

[14] M.B. Maple et al., J. Low Temp. Phys. 95, 225 (1994); 99, 223 (1995);
M.B. Maple et al., J. Phys. Condens. Matter 8, 9773 (1996).

[15] R. Chain, M.B. Maple, J. Phys. Condens. Matter 8, 9939 (1996).

[16] J.R. Schrieffer, P.A. Wolff, Phys. Rev. B149, 491 (1966).

[17] K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

[18] N. Andrei, K. Furuya, J.H. Löwenstein, Rev. Mod. Phys. 55, 331 (1983).

[19] P.B. Wiegmann, A.M. Tsvelik, Pis’ma Zh. Eksp. Teor. Fiz. 38, 489 (1983)
[JETP Lett. 38, 591 (1983)].

[20] P. Nozières, J. Low. Temp. Phys. 17, 31 (1974).

[21] For a review see A.C. Hawson, The Kondo Problem to Heavy Fermions, C.U.P.,
Cambridge 1993.

[22] N. Andrei, C. Destri, Phys. Rev. Lett. 52, 364 (1984).

[23] A.M. Tsvelik, J. Phys. C 18, 159 (1985).

[24] I. Affleck, A.W.W. Ludwig, Nucl. Phys. 352, 849 (1991); B360, 641 (1991);
Phys. Rev. B48, 7297 (1993).

[25] S.E. Barnes, J. Phys. F 6, 1375 (1976); 7, 2637 (1977).

[26] A.A. Abrikosov, Physics 2, 21 (1965).

[27] P. Coleman, Phys. Rev. B29, 3035 (1984).

[28] K. Yamada, Prog. Theor. Phys. 53, 970 (1975); Prog. Theor. Phys. 54, 316
(1975); Prog. Theor. Phys. 55, 1345 (1976); K. Yosida, K. Yamada, Prog.
Theor. Phys. 53, 1286 (1975).

[29] D.L. Cox, N.E. Bickers, J.W. Wilkins, Phys. Rev. B36, 2036 (1987).

[30] P.W. Anderson, Phys. Rev. Lett. 18, 1049 (1967).

[31] P. Nozières, C.T. De Dominicis, Phys. Rev. 178, 1073, 1084, 1097 (1969).

[32] G.D. Mahan, Many-Particle Physics, 2nd ed., Plenum Press, New York 1990,
p. 732, gives an overview.

[33] K.D. Schotte, U. Schotte, Phys. Rev. 185, 509 (1969).

[34] B. Menge, E. Müller-Hartmann, Z. Phys. B73, 225 (1988).

[35] T.A. Costi, P. Schmitteckert, J. Kroha, P. Wölfle, Phys. Rev. Lett. 73, 1275
(1994).



Fermi and Non-Fermi Liquid Behavior in Quantum... 3817

[36] T.A. Costi, P. Schmitteckert, J. Kroha, P. Wölfle, Physica (Amsterdam) 235–

240C, 2287 (1994).

[37] S. Fujimoto, N. Kawakami, S.K. Yang, J. Phys. Korea 29, S136 (1996).

[38] D.M. Newns, N. Read, J. Phys. C 16, 3273 (1983); Adv. Phys. 36, 799 (1988).

[39] S. Elitzur, Phys. Rev. D12, 3978 (1975).

[40] A. Jevicki, Phys. Lett. B71, 327 (1977).

[41] F. David, Commun. Math. Phys. 81, 149 (1981).

[42] I.D. Lawrie, J. Phys. A 18, 1141 (1985).

[43] B. Jin, Y. Kuroda, J. Phys. Soc. Japan 57, 1687 (1988).

[44] T. Matsuura et al., J. Phys. Soc. Japan 66, 1245 (1997).

[45] G. Baym, L.P. Kadanoff, Phys. Rev. 124, 287 (1961); G. Baym, Phys. Rev.
127 1391 (1962).

[46] H. Keiter, J.C. Kimball, J. Appl. Phys. 42, 1460 (1971); N. Grewe, H. Keiter,
Phys. Rev. B24, 4420 (1981).

[47] Y. Kuramoto, Z. Phys. B53, 37 (1983); H. Kojima, Y. Kuramoto, M. Tachiki,
Z. Phys. 54, 293 (1984); Y. Kuramoto, H. Kojima, Z. Phys. 57, 95, (1984);
Y. Kuramoto, Z. Phys. 65, 29, (1986).

[48] E. Müller-Hartmann, Z. Phys. B57, 281 (1984).

[49] T.A. Costi, J. Kroha, P. Wölfle, PRB 53, 1850 (1996).

[50] N.E. Bickers, Rev. Mod. Phys. 59, 845 (1987); N.E. Bickers, D.L. Cox, J.W.
Wilkins, Phys. Rev. B36, 2036 (1987).

[51] D.L. Cox, A.E. Ruckenstein, Phys. Rev. Lett. 71, 1613 (1993).

[52] F. Anders, N. Grewe, Europhys. Lett. 26, 551 (1994); F. Anders, J. Phys.
Condens. Matter 7, 2801 (1995).

[53] J. Kroha, P. Wölfle, T.A. Costi, Phys. Rev. Lett. 79, 261 (1997).


