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It has been shown that the particle-hole asymmetry (PHA) of DOS
leads to the first-order phase transition, a small deviation from the Lut-
tinger theorem, and to very strange behaviour of subcritical specific heat.
Because of the accuracy of the BCS thermodynamics in the thermodynamic
limit (Bogolubov) it is strange that in trying to strengthen the theory while
taking into account the tendency of DOS, we are in fact causing the dete-
rioration of the theory. The answer lies in the retardation of the electron-
phonon interaction for low temperature superconductors. Hence, if some
elements of the BCS theory are applied for HTSC, it becomes necessary to
be very careful in the question of thermodynamic properties. Moreover, the
criteria of stability of the superconducting state has been formulated, at
constant p and V as well, for one-component superconductors and isotropic
Fermi superfluids. These criteria are free of the strong connection with the
BCS model, they are purely thermodynamical. It is also shown that for
the superconducting/superfluid Fermi systems the specific heat at constant
p and V differ substantially, in contrast to any other low-temperature sys-
tems.

PACS numbers: 74.20.Fg, 74.20.–z, 74.25.Bt

1. Introduction. The outline of the problem

The basic purpose of this paper is to explain how to correlate the band
structure with the BCS pairing mechanism [1]. More exactly, it will be
done for the truncated BCS Hamiltonian, being the result of the elimination
of the phonon amplitudes by some averaging procedure. In the original
paper [1] the density of states (DOS) is used which is energy-independent
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in the pairing area |ε − µ| ≤ ~ωD, where ε denotes the electron energy,
µ — its chemical potential and ~ωD — the Debye energy. On the other hand,
it is clear that the chemical potential cannot be a reference point for DOS,
because µ is the thermodynamic function. This pseudoparadox is solved here
by the particle-hole symmetry (PHS) (for the formal introduction cf. [2],
cf. also [3]). The thermodynamics, at least for isotropic systems is fully
determined by DOS, [4]. In this case, PHS means that ν(εF −ε) = ν(ε−εF ),
where εF is the Fermi energy and ν the DOS, say per unit volume, as a
function of the energy. If this equality is not fulfilled, then we deal with
PHA. It is clear that this equality cannot be fulfilled in the case of the
paper [1], because there electron energy has the bottom, i.e. such ε0 that
ν(ε) = 0 for ε < ε0, but does not have the top. The exact PHS is possible
only in the finite system of bands such that the function ν(ε) has the center
of symmetry and the Fermi energy coincides exactly with this point. Because
the distribution of particles over states has the the form:

n(ε) = 1
2 [1 − ξ tanh(Eξ/2T )/Eξ ] , (1)

where E2
ξ = ξ2 +∆2, ξ ≡ ε−µ, T is the temperature and ∆ — the isotropic

energy gap, thus at half-filling of the band µ is exactly equal to εF and is
temperature-independent. It is true for superconducting, ∆ 6= 0, as well for
normal systems, ∆ = 0. In this case, the symmetric cut-off, with respect
to εF , of the pairing area has been assumed. On the other hand, it is easy
to show that for generalized DOS applied in [1], but still symmetric with
respect to εF , µ = εF + O[exp(−~ωD)/T ] and last term is usually neglected
in the weak-coupling theory. Hence, we apply the cut-off used in [1], because
µ = εF . These considerations illustrate the idea which can be called zeroth
principle of theoretical physics. Namely, if some quantity is equal to zero or
two quantities are equal to one another, then we are forced to explain this
fact in words. Now we know that PHS is responsible for the formula µ = εF ,
and for the normal and superconducting systems as well.

As it is clear from the summary, the presented topic leads to quite unex-
pected results. In the oral presentation, it is a unique privilege of a lecturer
to pull a rabbit out of a hat. It is possible even in a short presentation [5].
But, I think, it is improper in the systematic approach, to the lecture.

For the PHS case, δµ ≡ µs − µn, where µs and µn denote the chemical
potentials of the superconducting and the normal phases, respectively, is
exactly equal to zero. In the case of PHA δµ = O(∆2). In fact, it cannot
be O(∆), as a result of gauge invariance of the theory. On the other hand,
there is no special reason that the first order term of the series development
with respect to ∆2 of µs vanishes. The last quantity is obtained from the
particle number balance, i.e. from the condition that DOS multiplied by
Eq.(1) and integrated over the energy gives the real particle number. The
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attempt to do δµ = O(∆4) leads to a condition imposed on the parameters
which describe PHA and the coupling constant. This condition is slightly
different at low temperatures, T ≪ Tc, where Tc is the critical temperature,
and subcritical temperatures, as we will see.

Let us do a little thermodynamics. If δµ is equal to zero then δΩ ≡
δ(−pV ) is the difference of the free energies in the superconducting and
normal states, [4]. It is convenient to express δΩ by the function f(T,∆)
so that δΩ = −(∂N/∂µ)nf(T,∆), where N is the particle number and the
subscript “n” denotes that we deal with the derivative in the normal state,
at constant V and T . Taking the difference of the free energies per particle,
one finds that:

δµ(T, ρ) − (∂ ln ρ/∂µ)nf(T,∆) < 0, (2)

[4], where the inequality is the stability condition of the superconducting
phase at constant V , ρ = N/V . The quantity δµ was taken at constant
ρ, because the free energy is the thermodynamic potential at constant V
and the particle number is conserved. In superconductors, in a vanishing
external magnetic field, the lattice plays the role of the piston, sustaining
the constant volume, cf. e.g. [6], at least for usual superconductors.

The quantity δΩ is always negative at ∆ 6= 0 and DOS constant in
the pairing area, [2, 6]. This quantity preserves its form, characteristic for
energy-independent DOS, provided that PHA terms of DOS do not tend to
infinity too strongly if the energy tends to infinity. It is so, because in the
integral determining δΩ, subintegral function, tends suitably quickly to zero
and the integral does not need any cut-off. When the PHA term of DOS is
linear with respect to ε− εF , the influence of such a term on δΩ vanishes as
a result of bilateral symmetry with respect to ε− εF . Such PHA terms will
be considered in a later part of this work.

Let us consider a system at constant p. Formally, the vast majority of
experiments in low-temperature solid state physics are performed with a
constant p. On the other hand, in some cases solids preserve their form and,
hence, the experiment is performed with a constant V .

For the electrons, a constant p denotes, as yet very hypothetical case
of soft lattice, irresistible with respect to the external pressure. On the
other hand, the experiments on the superfluid 3He are possible though more
difficult, at a constant p.

At a constant p, the difference of the thermodynamic potentials in the
superconducting and normal states, taken per particle is δµ(T, p), [4]. We
have:

δµ(T, p) ≡ µs(T, ρ) − µn(T, ρ′) = δµ(T, ρ) + (∂µ/∂ρ)nδρ + O(∆4),

where ps(ρ) = pn(ρ′) and, consequently, δρ = ρ − ρ′. Because now δΩ =
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−pδV = vpV δρ, v = ρ−1, as the variation appears at constant p, thus

δµ(T, p) = δµ(T, ρ) − f(T,∆)(∂ ln p/∂µ)n < 0 (3)

is the stability condition of the superconducting state at constant p. In
the proof of Eq.(3), the fact that the density of the normal Fermi system
integrated over the virtual Fermi energy up to the actual one, gives the
pressure of the system with the accuracy O(T 2), [4]. At the weak coupling
limit, this correction is actually quite unimportant.

Let us go on to our bands and DOS. Besides the classical BCS model,
with the pairing appearing in the narrow band of electrons, |ε− εF | < ~ωD,
we will also consider a band of fully paired electrons. Such a band was
introduced for the consideration of electrons paired in a narrow band char-
acteristic for HTSC [7,8]. Theorists working with itinerant low-temperature
electrons have been corrupted by the easy simplicity of the thermodynam-
ics of the degenerate Fermi gas, and still have the tendency to express the
subsequent corrections to the main result by subsequent derivatives of DOS.
Unfortunately, it does not appear for the gas with pairing, because of the
nonexponential tail of the particle distribution function (1). Hence, DOS
per unit volume will be chosen in the form:

2N(0)(1 + aε), (i)
2N(εF )[1 + a(ε − εF )], (ii)

(4)

for the band considered in refs [7,8], and for the band considered in Ref. [1],
respectively. In the case (i), it is convenient to choose the bandwidth as our
unit of energy; hence a ≥ −1. On the other hand, in the model (ii), DOS
at |ε − εF | ≥ ~ωD is quite arbitrary and |a|~ωD ≤ 1. PHS in the model (i)
denotes that εF = 1/2 and a = 0, whereas in (ii) only that a = 0. It is easy
to see that at a 6= 0 the quantity contains the nonanalitycal term O(∆2 ln ∆),
enhancing the first term common to Eqs (2,3) with respect to the second
ones. Disregarding this, in refs [7,8] the erroneous result concerning µs was
obtained.

It is worth emphasizing that Eqs (2,3) as well as the inequalities therein
were obtained in a purely thermodynamic base, besides a concrete model
of superconductivity. The inequalities (2,3) should be fulfilled for supercon-
ductivity to be stable at constants V and p, respectively. Usually, in the
theory of HTSC, theorists treat the superconductivity as a noble state, in
contrast to the normal one, that it would stable besides any inequality to be
fulfilled. This author knows only three papers discussing the stability of the
superconducting versus normal state: the paper [1] and two his own [9, 10].

At T = 0, PHA leads to µs = εF + O[∆2(a ln ∆ + b)], where b is propor-
tional to (1 − 2εF ) for (i), and vanishes for the (ii) model, respectively. It
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denotes, under PHA, the small deviation from the Luttinger theorem [11].
This theorem, proved for normal Fermi liquids, extended its validity to su-
perconducting Fermi liquids with the S-pairing [12] and also on the pseu-
doisotropic Fermi liquids with the P -pairing, [13]. This pairing, BWV, has
been determined in the papers [14,15]. In the papers [12,13], the result is a
consequence of PHA. To the best of the author knowledge, the fact that we
deal with the violation of the Luttinger theorem for DOS (4), (ii), has been
remarked in the note [14] though without the words PHA. This author, in-
dependently of Ref. [3], remained in the position of Monsieur Jourdain who
did not know that he spoke in prose.

In fact, we deal with the interaction Hamiltonian in a separable form
−λB+B/V , where λ is the coupling constant, V the volume of the system.
Also, we deal with:

B ≡
∑

p

ap↑a−p↓, (5)

where the summation over p runs over the momenta in the pairing area. In
the formula (5), the operator ap↑ is the annihilation operator of the fermion
with the momentum p and the spin up, + denotes the Hermitean conjugate
and the arrow ↓ – the spin down. Hence, we are restricted to the S-pairing
from the point of view of momenta and spins as well.

The extension of this result to other types of pairing as well as nonsep-
arable interactions is very easy. In this case, the equation for the chemical
potential is firmed from the equality of the particle density, ρ, to the product
of the functions (1) and (4) integrated over the whole range of one-particle
energies. In this case, the gap energy is equal to ∆ only in the pairing area;
out of it it should be set equal to zero [1, 6]. Note that in the case (i) the
entire band is the pairing area. The gap equation, for our separable inter-
action, has the form of the equality of the inverse coupling constant, λ−1,
and the integral over the pairing area of the product of the function (4)
and the function tanh(Eξ/2T )/Eξ . Hence, it is convenient to introduce the
dimensionless coupling constant, λN(0), (i), and λN(εF ), (ii). In this case,
N(0), N(εF ) passes to unity whereas λ – into the dimensionless coupling
constant, κ. It is easy to see that the equations for the chemical potential,
value of the energy gap, and the thermodynamic potential Ω preserve the
same form for the pseudoisotropic BWV pairing.

As we will see in the model (ii), the expression of the gap at T = 0,
∆(0), through κ and ~ωD remains at a 6= 0 as it does for a = 0. It is a result
of the bilateral symmetry with respect to |ε−εF |. Such a situation does not
appear in the model (i), even if we take into account that DOS on the Fermi
surface per unit spin and volume is not in this case N(0) but N(0)(1+aεF ).
Note that εF is in this instance the variable determined by the value of
doping. The ratio Tc/∆(0), where Tc is the critical temperature such that
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∆(Tc) = 0, still preserves its value given in Ref. [1] if one neglects the
strong coupling corrections. In the subcritical region, the order parameter,
expressed in terms of Tc and the parameter a preserves its classical form [1,6]
with accuracy up to O[(aTc)

2] in the expansion coefficients. This result, in
the light of the theory of similarity and dimension, one can understand due to
the fact that aTc is the single dimensionless parameter. On the other hand,
the square appears by the virtue of the gauge invariance. The parameter a
can be of the order of 1/~ωD or 1/εF , provided that the electron-phonon
interaction influences or does not influences, respectively, the band energy.
Hence, the correction O[(aTc)

2] is negligibly small in the weak coupling limit.
As a result, in the subcritical region ∆2 = O(τ), where τ ≡ (Tc − T )/Tc. In
turn, because δµ = O(∆2), the subcritical f(T,∆) is O(τ2), [1, 6], and the
formulae (2) and (3) represent the thermodynamical potentials, per particle,
at constant V and p, respectively, thus we deal with the first order phase
transition.

For such quantities as these, the subcritical stability condition is
δµ(T, ρ) < 0, at constant V and p as well [2, 3]. Hence, simple thermo-
dynamics, [4], shows that the latent heat of the transition from the super-
conducting to the normal state is always negative at PHA by virtue of the
stability conditions. The same sign of the latent heat appears in the phase
transition of superconductors but in the external magnetic field, cf. e.g. [6].
In this case, because of the Meissner effect and the full penetration of the
normal metal by the dc magnetic field, the condition of the transition has
the form δf = H2

c (T )/8π, [6]. Here δf denotes the variation s → n of the
thermodynamic potentials per unit volume and Hc(T ) – temperature de-
pendent critical field. The negative sign of the latent heat is caused here
by diminishing Hc(T ) as a function of temperature. The subcritical sta-
bility condition, δµ = O(∆2) < 0, has a nonanalitycal dependence on Tc,
leading to the inverse coupling constant κ in the coefficient at ∆2 in δµ.
That and the negative sign of the term at τ2 in the subcritical expansion of
∆2, [1, 6], lead to serious troubles with the subcritical specific heat of the
system. Namely, if the parameter a is O(1/~ωD) or O(1/εF ) as it should be,
then because of the proportionality of δµ to 1/κ, the total specific heat of
the Fermi system can attain negative values in the subcritical region. Note
that it is easier for this to occur at very small values of κ. The negative
specific heat is possible only for systems with long-range forces, where the
sum of the energies of the macroscopic parts of the system differs from the
total energy. For our system, that contradicts the thermodynamics. The
negative specific heat corresponds to the maximum of the thermodynamic
potential, not to the minimum as should be the case [4]. If we represent the
canonical statistical sum as a Laplace transform of DOS of the whole sys-
tem, then the specific heat at constant V is equal to the squared dispersion
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energy divided by T 2, [4], provided that we are able to differentiate within
the integral. As a result of the Leibniz theorem, this is possible only if DOS
of an entire system suffers the discontinuity.

Because f(T,∆) is O(∆2) at low temperatures and O(∆4) at subcritical
temperatures whereas δµ is always O(∆2), there exists a region in which
inequalities (2) and (3) are fulfilled at low T but are not fulfilled at subcritical
T . Hence, the superconductivity is stable at low T , but ceases to be stable
at some T < Tc. In such cases, the unique reaction of the system is to
attain the minimum of the proper thermodynamic potential. It results in
the jump from ∆ 6= 0 to ∆ = 0, to the normal system. This jump is
accompanied by the jump of µ. We deal with the first order phase transition
including the jump of the order parameter and the impossibility for “s” and
“n” phases to coexist. Such kinds of transitions were called the sudden death
of superconductivity in football/soccer terms [10]. A full description of this
effect has been performed in Ref. [5]. The jumps of the order parameter
∆ have been observed in several cases, [16, 17]. They were observed either
directly [16] or via the jump of the penetration depth of the magnetic field
e.g. in In3Au. That was caused by nuclear ferromagnetism appearing in
milikelvin temperatures [17]. Of course, it is rather impossible for the jump
of the penetration depth to appear without the the jump of ∆. To summarize
our results on the jump of the order parameter and the negative subcritical
specific heat we can say that at a large variety of parameters, a, κ and εF

the system suffers one of these diseases, with the last being the most serious.
Unfortunately, we are unable to simply reject our result because of un-

satisfactory approximation methods. It was shown by Bogolubov [18] that
the BCS solution [1] is exact in the thermodynamic limit, N , V → ∞ so
that N/V → const 6= 0 (cf. also the monograph [19]). Note that in the
proof [18, 19], the interaction Hamiltonian can even be a nonseparable one,
and there is no condition under which DOS is constant or fulfills PHS in the
area of pairing. It is easy to understand why this coincidence occurs follow-
ing the ideas of Bogolubov, Zubarev and Tserkovnikov, [20], for our simple
interaction Hamiltonian. Our interaction Hamiltonian can be represented in
the form:

−λ〈B〉(B+ + B)/V − λ〈B〉2/V − λ(B+ − 〈B〉)(B − 〈B〉)/V ,

where 〈B〉 is some real number. Next, adding the interaction Hamiltonian
in the above form the band energy of the electrons, one should perform the
thermodynamic perturbation procedure for the grand partition function,
with respect to the last term. In turn, 〈B〉 is chosen so that it is equal to
the thermodynamic grand partition average of the operators B and B+, with
the Hamiltonian being the sum of the two first terms above plus the band
term. Note that it is possible to make the average value of the operators B
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and B+ equal to one another using the gauge transformation of the Fermi
operators. If this is chosen, the quantities

a+
p↑ap↑ − a+

−p↓a−p↓,

i.e. seniority operators, [21], commute with the basic Hamiltonian in our
perturbation procedure, and the perturbation terms, in all orders, will not
contribute to the potential Ω, because they do not diverge as V does in
the thermodynamic limit. This is so, because for our basic Hamiltonian the
thermodynamical Wick’s theorem still holds [22]. Moreover the unique av-
erages unequal to zero are: 〈a+

pσapσ〉, σ =↑, ↓, and 〈apσa−p−σ〉, 〈a+
−p−σa+

pσ〉.
These selection rules diminish the number of summations over p in the para-
metrically ordered powers of our perturbation term. In turn, it leads to the
prevailing of the terms V in the denominator and to our conclusion. It is
very easy to extend this proof to nonseparable interactions.

Let us explain why the “exact” theory constitutes to deteriorate if the
energy dependence of DOS is taken into account. As it was mentioned,
the unpleasant effects connected with the specific heat become relatively
stronger if κ → 0. Hence, the strong coupling is not a proper reason. Our
results are exact for the instantaneous interaction, without any retardation,
i.e. at ∆ε ≪ ~/t. Here ∆ε is the energy interval at which DOS is changed
substantially, and t is the retardation time. The ∆ε is of order of ~ωD or εF ,
for the DOS influenced by the electron-phonon interaction or not, respec-
tively. We find the relation vF ∆p ∼ ~ωD, where vF is the Fermi velocity
and ∆p the radial uncertainty of the electron momentum [6]. This estima-
tion is the result of the characteristic energy denominator in the element of
the phonon induced interelectron interaction as well as the growth of DOS
for phonons with ω as ω2. From this estimation and from the Heisenberg
relations, we find the range of such interelectron interaction, ∆r ∼ vF /ωD.
By dividing this quantity by the velocity of phonons vφ we obtain the re-
tardation time t ∼ vF /vφωD. By substituting this quantity into the strong
inequality which must be fulfilled, we find that the opposite strong inequal-
ity holds, because vF /vφ ≫ 1. Hence, it is impossible for the electrons to
feel the difference in the value of DOS. To some extent, the electrons average
their DOS in the pairing domain, (ii). As a result, it is impossible to con-
sider the details of the band structure with phonon mediated interelectron
attraction out of the Eliashberg equations, [23]. All the above considera-
tions concern the case (ii), they are not true for (i), if the mechanism of the
interelectron attraction is undetermined. Note that it is rather hopeless to
introduce the retardation into the Hubbard mechanism, [24]. Even if PHA
does not play an important role, then the jump of the specific heat differs
substantially at constant p and ρ, in contrast to all classical low temperature
systems, cf. Eqs (2) and (3). This is so, because the specific heat at constant
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ρ and p is proportional to the second derivative of (2) and (3) with regard
to the temperature, respectively. Moreover, (d ln p/d ln ρ) is equal to 5/3
and 2 for the three- and two-dimensional parabolic bands. The role of the
retardation in such phenomena as well as the importance of the difference
between Cv and Cp have been emphasized for the first time in our paper [5].
The temperature dependence of ∆µ is a subject of recent interest, because
of the measurements of the work function [25, 26], particularly at T <≈ Tc.
If the O(τ) behaviour of the variation of the work function [25] leads to the
same behaviour of δµ, then we deal with first order transition, because of
(2) and (3). This is because it is hard to expect that the terms of δΩ can
compensate for the O(τ) term in any model of superconductivity. On the
other hand, δµ refers to a single electron.

Because of the long-range Coulomb forces, one should maintain the
electroneutrality, i.e. one should introduce the chemical potential for the
atom [27]. Note that the number of electrons sustained in the system at a
constant voltage depends not only on its size but also on its form; the result
in [27] is valid for the spherical specimen, [5].

The outline of our problem shows that the vast majority of our results
can be qualitatively understood with the help of the principles of the physics
of condensed matter as well as the knowledge of the BCS model. In fact, it
is most difficult to explain why some of the BCS results coincide with ours.
The next tree chapters of our paper serve as the workshop for this outline.
In the second chapter the low-temperature properties will be discussed, in
the third chapter — the subcritical properties. The last chapter will be de-
voted to the discussion of the compressibilty of the one-component system,
expressed by (∂N/∂µ)s. This quantity jumps at Tc, as it should do for the
first-order phase transition. Note that the jump of the compressibility of
superconductors in a dc magnetic field at Tc, expressed by the jump of their
volume at constant p, was observed almost half a century ago, [28]. An
attempt was made to explain the difference between the elastic modulae of
the superconducting and normal metallic crystals [29]. Unfortunately, this
paper looks strange, because the difference in the superconducting and nor-
mal states is the linear function of ∆. This result allows for the suspicion
that the gauge invariance of the theory was not fulfilled. Let us mention
that measurements of this difference have been made starting from the early
sixties, [30]. The most curious feature appearing in this part of the paper
is the difference between the compressibility of the normal and the super-
conducting system even in the PHS case, which contradicts the widespread
belief. This belief was accepted even under the sanction of the Fermi liquid
theory, in the BCS and BWV cases as well, [12, 13, 31]. The coincidence of
the compressibilities for the normal and superfluid system in these papers
results from the exact coincidence of the static long-wavelength autocorrela-
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tion function of the density in both cases. In turn, the last quantity should
be given by −(∂ρ/∂µ)T because in the static quasihomogeneous field u we
deal with the heterogeneous equilibrium by the condition µ + u = const.
To determine the autocorrelation functions in refs [12, 13, 31] procedure of
eliminating integrations far from the Fermi surface is applied, in the equa-
tion for vertex and the autocorrelation functions. It occurs in the particle-
particle and the particle-hole channels. Both of them are important for the
superconducting liquid. For normal liquid the last channel is important.
In the particle-particle channel, the price for elimination is the introduc-
tion of proper irreducible amplitudes, being the functions of angle between
quasiparticles on the Fermi surface. Its Legendre amplitudes are propor-
tional to (2l+1)[ln(ζ/Cl)]

−1, with Cl representing some constants such that
Cl ≪ ζ, where ζ is the cut-off energy. In the actual pairing channel, i.e.
for l = 0 and 1 for BCS and BWV systems, respectively, Cl = ∆/2, [12, 13]
we suspect that the elimination of integrations far from the Fermi surface
is accurate only up the terms proportional to large logarithms ln(2ζ/∆). It
seems as though this is the only possible escape from the paradox, because
the theories [12, 13, 31] are the extensions of the Gorkov approach, [32] to
the important quasiparticle interaction in the paring channel. Because of
the character of this outline, our “workshop” will be rather free of physical
comments, they will replaced by mathematical ones. The single exception
will be the comment connected with the stability conditions in the concrete
form, because of possible projection out of BCS and BWV systems. Con-
sequently, in this outline, the questions connected with the phase transition
for BWV system have been omitted. They can be found in our paper [5].
In our workshop, both motives (i) and (ii) will be paralleled, if possible.

2. The low-temperature properties

Let us establish the general equation for the chemical potential, express-
ing it by the functional equation depending on ∆ and T as parameters.
For the case (i) we do it for the DOS (4), for (ii) — for DOS in the form
2N(ε)g(ε−εF ), g(0) = 1. In our final calculations we will put g(x) = 1+ax,
for |x| < ωD. After relatively simple calculations, especially in the case (i),
we find

2εF − 1 + a

(

ε2 − 1

2

)

= − a

1
∫

0

dεF
ξ2

Eξ
tanh

(

Eξ

2T

)

− 2T ln
cosh(E1−µ/2T )

cosh(Eµ/2T )
, (6i)
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ωD−∆µ
∫

0

dξg(εF + ξ + ∆µ)R(ξ, T ) −
ωD+∆µ

∫

0

dξg(εF − ξ + ∆µ)R(ξ, T )

= G(εF + ωD) + G(εF − ωD) − 2G(εF ) , (6ii)

where R(ξ, T ) ≡ ξ
Eξ

tanh
(

Eξ

2T

)

.

In Eq. (6i), Eµ = [µ2 + ∆2]1/2, etc., and the last term is equal to
(1 + aµ)(E1−µ − Eµ) + O[exp(−εF /T )]. In Eq. (6ii) ∆µ ≡ µ − εF and
G(ε) is the primary function of g(ε). The r.h.s. of this equation is the sec-
ond difference of the function G(ε) at ε = εF . Note that ~ is hereafter equal
put to unity.

If a = 0, then at T ≪ εF one finds

µ =
1

2
+

(

εF − 1

2

)[

1 +
∆2

εF (1 − εF )

]1/2

≈ εF +
∆2(2εF − 1)

4εF (1 − εF )
+ O(∆4) . (7i)

Since f(0,∆) = ∆2/4 and (∂ ln ρ/∂µ)n ≈ 1/εF whereas (∂ ln p/∂µ)n ≈
2/εF , by virtue of Eqs (2) and (3), the superconductivity is stable for ε < 2/3
and 3/4, at constant V and p, respectively at low temperatures (L.T.), T ≪
∆(0). In the subcritical temperatures this stability occurs for ε < 1/2. In
the case (ii) for g = 1, in the pairing area, we find µ = εF +O(exp(−ωD/T )).
PHS can be broken if the pairing area is nonsymmetric with respect to εF

but this is meaningless for the phonon mediated interelectron attraction.
For the normal system, we have [4]:

µn = εF − a(πT )2

6(1 + aεF )
+ O(T 4), (8i)

whereas in the case (ii) one should put εF = 0 into the denominator. Let us
discuss the L.T solutions for δµ. First, let us rewrite the formula (6ii) for
DOS (4) restricting ourselves to the terms O(δµ), i.e. O(∆2). We have

(

1 − ∆2

2ω2
D

+
a∆µ

2

)

∆µ = a



ω2
D −

ωD
∫

0

dξξ2 tanh(Eξ/2T )

Eξ



 + O(∆6), (9ii)

where ∆µ ≡ µs − εF . Note that this formula is valid if T ≪ ωD. From this
point, throughout the paper, ∆µ or δµ without their arguments will denote
only ∆µ(T, ρ) or δµ(T, ρ). Under formulated restrictions, we get at L.T.:
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δµ = −∆2

×
{

1 − 2εF

εF (1 − εF )
− a

1 − εF
+ a ln

4εF (1 − εF )

∆2
+ 8a(T/∆)K1(∆/T )

}

× 4

1 + aεF
+ O[exp(−2∆/T )] (10i)

∆µ = ∆µ(0) − 2aT∆K1(∆/T ) + O[exp(−2∆/T )] (10ii)

where ∆µ(0) = −∆2a
[

ln(2ωD/∆) − 1/2 + O(∆2)
]

. Here, K1 is the usual
Mc Donald function. In the calculations leading to Eqs (10) usual procedures
of the asymptotic expansions of the exponential integrals have been used,
cf. e.g. [33].

Our gap equations can be rewritten in the following form:

(1 + aµ)
1−µ
∫

−µ
dξ tanh

Eξ/2T
Eξ

= 2/κ + a(Eµ − E1−µ), (i),

(1 + a∆µ)
ωD−∆µ

∫

−ωD−∆µ

dξ tanh
Eξ/2T

Eξ
= 2/κ + a(EωD+∆µ − EωD−∆µ), (ii),

(11)
Note that the terms O[exp(−εF /T )], (i), and O[exp(−ωD/T )], (ii), have
been neglected. Let us solve Eqs (10), (11i) at L.T. For T = 0, restricting
ourselves to the main exponent, we get

2/κ = (1 + aµ) ln[4µ(1 − µ)/∆2] + a(E1−µ − Eµ),

and hence, taking into account that
µ = εF + O(∆2), we find:

∆(0) = 2
√

εF (1 − εF ) exp
{

−
[

1
κ − a

(

1
2 − εF

)]

(1 + aεF )−1
}

. (12i)

Substituting Eq. (11i) into (9i) one finds δµ(0) expressed with the parame-
ters of the problem. We have

δµ(0) = − ∆2(0)
4(1+aεF )

{

1−2εF

εF (1−εF ) − a
1−εF

+ a[1/κ−a(1−2εF )]
1+aεF

}

. (13i)

From Eqs (11i) and (13i) we get

δµ = 2δµ(0)
d∆

∆(0)
− 2aT∆(0)K1

(

∆(0)

T

)

, (14i)
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where d∆ ≡ ∆(T ) − ∆(0), etc. In order to find d∆ let us subtract from
the formula (11i) the same formula for ∆ = ∆(T ) but with T put equal to
zero in the argument of the hyperbolic tangent. Restricting ourselves to the
linear approximation with respect to d∆ and dµ, using (12i) we find:

d

{

(1 + aµ) ln
4µ(1 − µ)

∆2
+ a(E1−µ − Eµ)

}

= −2
d∆

∆(0)
+ adµ

2/κ − a(1 − 2εF )

1 + aεF

= 4(1 + aεF )K0

(

∆(0)

T

)

+ O[exp(−2∆/T )] . (15i)

Substituting (14i) into (15i) and omitting small terms in the coefficients at
the exponentially small terms one finds:

d∆

∆(0)
= −2K0

(

∆(0)

T

)

− a2T∆(0)K1

(

∆(0)

T

)

2/κ − a(1 − 2εF )

1 + aεF

+O[exp(−2∆/T )] . (16i)

Performing analogous, even simpler, calculations for the case (ii) one finds:

∆µ(0) = δµ(0) = −∆2(0)a

(

1

κ
− 1

2
+ O(∆2)

)

, (13ii)

d∆

∆(0)
= −2K0

(

∆(0)

T

)

− a2T∆(0)

(

2

κ
− 1

)

K1

(

∆(0)

T

)

. (16ii)

The term with the Mc Donald function K0 reproduces the BCS result.
The function f(T,∆), for the simple models of DOS, (4), coincides with

the BCS result [1, 6]. Hence, at constant µ, the difference of the entropy is
given by:

−
(

∂δΩ

∂T

)

V

=

(

∂N

∂µ

)

n

d

dT
f(T,∆).

On the other hand, δµ = O(∆2) as well as dµ unless we deal with PHS.
For PHA −(∂δΩ/∂T )V does not coincides with difference of entropies at
constant V or p. The l.h.s. of Ineqs (2) and (3) are the differences of ther-
modynamic potentials, per particle, proper at constant V and p, respectively.
Hence, the difference of the entropies per particle at constant V and p are
given by, [4]:

δSV = −(∂δµ/∂T ) + δSBCS ,

δSp = −(∂δµ/∂T ) + (d ln p/d ln ρ)nδSBCS . (17)
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It was taken into account that the BCS δΩ under the T– differentiation must
yield −δSBCS. It is clear that Eqs (17) are fulfilled also for quantities dS,
dµ and dSBCS. The common term in both Eqs (17) in the d–version leads
to the common result in the models (i) and (ii) because of the expression
for dµ. Applying the asymptotics of Mc Donald functions, [33], one finds in
L.T.

−T

(

∂2dµ

∂T 2

)

ρ

=
√

2πa∆5/2(0)T−3/2 exp(−∆(0)/T )[1 + O(T )]. (18)

This is the L.T. specific heat caused by PHA. The analogous BCS result for
the model (i) is

CBCS = 2
√

2π∆5/2(0)T−3/2 exp(−∆(0)/T )
1 + x

εF (2 + x)
, (19i)

where x ≡ aεF . As we see from (18), its order of magnitude coincides with
the order of (19). To write the expression for the model (ii) one should
divide the conventional value, per unit volume, by the particle density. The
double logarithmic derivative in the second of Eqs (17) can be determined
only in the model (i) because DOS in the model (ii) is still arbitrary at
|ε − εF | > ωD. We have:

d ln p

dεF
=

3(2 + x)

εF (3 + x)
,

d ln ρ

dεF
=

2(1 + x)

εF (2 + x)
, x ≡ aεF . (20i)

It is easy to see that (d ln p/d ln ρ) is always bigger than unity in this model.
Hence, at constant p, it is easier to be a superconductor than at constant V .

Let us discuss L.T. stability conditions for the superconductivity. Let
us start from the model (i). Because f(0,∆) = ∆2/4, [1, 6], using Ineqs
(2,3) and Eqs (10), (20i) we find that the stability conditions at constant p
and V are the third order inequalities with respect to x = aεF . Restricting
ourselves to small κ and x = O(1), we find that the superconductivity is
stable if

aεF (1 − εF ) > κ(3εF − 2),
aεF (1 − εF ) > κ(4εF − 3),

(21i)

at constant V and p, respectively. Hence, if r.h.s. of inequalities (21i) are
positive, the superconductivity is stable at suitably big positive a. Note that
the conditions (21i) are valid unless εF or 1 − εF are much less than unity.
For the model (i), at L.T., the stability condition of the superconductivity
is, by virtue of the formulae (2), (3) and (12i):

−2a

(

2

κ
− 1

)

<

(

d ln ρ

dεF

)

n

or

(

d ln p

dεF

)

n

, (21ii)

at constant V and p, respectively.



Particle-Hole Asymmetry in the BCS Thermodynamics 3899

The appearance of the term O(1/κ) in the formulae of this section is
a testimony of the nonanalytical character of the formulae for δµ. Let us
remark also another nonanalyticity in the model (i). Namely:

lim
εF→0

δµ(0) = − exp(−2/κ + a),

by virtue of the formulae (12), (13i). Hence, the chemical potentials in the
phases “s” and “n” differ even if the particles are absent. It is easy to see
that it does not lead to any troubles with the thermodynamic functions.
Unfortunately, it is impossible to calculate lim

εF→0
δµ(T ) at L.T. because our

expansion formulae are valid at T ≪ ∆.

3. The subcritical properties

Let us discuss the subcritical (S.C.) thermodynamic functions, starting
from δµ. In this case, the crucial role plays the series expansion with respect
to ∆2 of the integral appearing in Eqs (6i), (9ii). We have:

b
∫

0

dξ
ξ2

Eξ
tanh(Eξ/2T ) =

∑

n=0

∆2n

(2n)!!(2T )2n−2

b/2T
∫

0

duu2

(

1

u

d

du

)n (

tanh u

u

)

.

By means of elementary integrations and the weak-coupling BCS integrals
one finds:

b
∫

0

dξξ2 tanh(Eξ/2T )/Eξ =
1

2
b2 − 1

6
π2T 2 +

∆2

2

[

1 − ln

(

2γb

πT

)]

+
7ζ(3)∆4

32π2T 2
c

+ O(∆6) , (22)

where γ = eC and C is the Euler constant. The logarithmic term in Eq. (22)
can be replaced by ln(2γb/πTc) + τ + O(τ2), where τ ≡ 1 − T/Tc.

As it was remarked, the S.C. solution for ∆, expressed by Tc, preserves
its form characteristic for a = 0, with the accuracy up to the small terms in
the coefficients. Hence, from the expansion in Ref. [22]:

∆2 =
8π2T 2

c

7ζ(3)
τ(1 − qτ) + O(τ3) ,

q =
3

2
− 93ζ(5)

98ζ2(3)
≈ 0.8190 . (23)
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Substituting the formula (22) into Eqs (6i) and (9ii), exploiting next Eq. (12i)
together with the relation between Tc and ∆(0), as well as analogous formu-
lae for the model (ii) one finds:

δµ = −r∆2 − 2π2T 2
c aτ2

7(1 + aεF )ζ(3)
+ O(τ3) , (24)

where

r =
1 − 2εF

4εF (1 − εF )
+

a

2(1 + aεF )2

[

1

κ
− 1 − a

(

1

2
− εF

)]

, (i) ,

r =
a

2

(

1

κ
− 1

)

, (ii) . (25)

Note that εF should be put equal to zero in the denominator of Eq. (24), for
the model (ii). Moreover, the small terms O[(aTc/κ)2] have been omitted in
Eqs (24), (25). On the other hand, the second term in the r.h.s. of Eq. (24)
is the result of the main term of Eq. (23).

In order to complete the thermodynamical potentials per particle (2)
and (3) let us write the subcritical f–function. Exploiting Eq. (23) and the
results of Refs [1, 6] one finds: f(T,∆) = 2(πTcτ)2/7ζ(3). Differentiating
Eqs (2) and (3) with respect to T at T = Tc we find the latent heat. It is
equal to:

δQ ≡ Qs − Qn = −Tc

(

∂δµ

∂T

)

T=Tc

=−8π2T 2
c r

7ζ(3)
, (26)

where r is expressed by Eqs (25). The latent heats at constant V and p
coincide. They are negative, by virtue of the subcritical stability condition
for the superconductivity. From thermodynamic formulae [4] the jump of
the specific heat per particle is given by the second T -derivative of Eqs (2)
and (3) multiplied by −Tc, without the δ-function component determining
the latent heat. Hence, if we normalize the result to the BCS jump we find

∆C

∆CBCS
= −

(

∂ ln ρ

∂µ

)−1

n

[

4qr − a

1 + aεF

]

+

{

1
(

∂ ln p
∂ ln ρ

)

n

}

, (27)

where the upper line in the curly bracket corresponds to constant V whereas
the lower one – to constant p. For the model (ii) one should put εF = 0 in the
denominator in the square bracket. To obtain Eq. (27) out of Eqs (2), (3),
(23), (24) one should take into account the form of ∆CBCS per particle which

is 4π2

7ζ(3)

(

∂ lnρ
∂µ

)

n
, [1,6]. In the case (i) the derivative

(

∂ ln p
∂ lnρ

)

n
= 3(2+x)2

2(3+x) . For

x = 0, corresponding to the parabolic band for d = 2, this double logarithmic
derivative is equal to 2, whereas such band at d = 3 gives 5

3 .
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The first term in the r.h.s. of Eq. (27) is negative, by virtue of the
subcritical stability condition, δµ < 0, and the solution of the gap (23)
where q > 0. Because a is O(1/ωD) or O(1/εF ) if DOS is influenced by
the electron-phonon interaction or is not, respectively, at the weak coupling,
when r ≪ 1, the first negative term can easily overpass the second one

making ∆C/∆CBCS negative. Here the estimation
(

d ln ρ
dµ

)

n
= O(1/εF ) has

been used. Moreover, because ∆CBCS/Cn = O(1) the total specific heat
may very easy to attain the negative value.

For the system (ii) the subcritical stability of the superconducting state
is expressed in the extremely simple form: a > 0. For the system (i) it leads
to quadratic inequality with respect to the variable x. Restricting ourselves
to small κ and x = O(1) one finds from (25i):

(2εF − 1)κ < aεF (1 − εF ). (28i)

On the other hand, a should be smaller than some positive quantity O(1/κ),
which is irrelevant at x = O(1). It is easy to see that such a region of the
parameter a always appears that the superconductivity is stable at L.T. but
is ceasing to be stable below Tc. For example, in the system (i), if a < 0 but
|a| ≪ 1/Tc then the temperature of the jump of the order parameter can be
expressed as follows:

Tj = Tc + 2aTc
1/κ − 1

q
,

where q is equal to d ln p
dεF

or d ln ρ
dεF

at constant p and V , respectively. Analo-

gously, we can determine Tj for the model (i) but the formula is much more
complicated and we omit it here.

The inequalities (21), (28i) and analogous inequalities for the model
(ii) determining the stability of the superconducting state are very easy to
interpret. Namely, the distribution function of particles (1) consists of the
body for ε < µ and the tail. The body continuously passes into the tail at
ε ∼ µ and the tail is thick only if |ε− µ| = O(∆). If, in the model (i), εF is
too close to 1 then it is difficult to find the place for particles and, hence, the
possible tactics of the electrons consists in the growth of µ. Similar problem
does not appear for the normal system, where the tail is of the thermal
character and can be neglected for T ≪ εF . Similar arguments can be also
used at a < 0. Note that the validity of this argument is not restricted to the
BCS system. In usual models, out of the model of the Luttinger liquid [34],
cf. for d ≥ 2 [35], the occupation numbers are θ(εp − εF ), with θ being the
Heaviside step function. In the superconducting state this sharp step should
be smeared out, i.e. the tail of the particle distribution function should
appear. Hence, the vulnerability of the superconducting state by εF too
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close to the top of the band or diminishing derivative of DOS in the region
of the thick tail of the particle distribution function.

3. The compressibility of superconducting systems

Here we are going to determine
(

dρ
dµ

)

V,T
in both variants (i) and (ii).

This quantity is connected with the isothermal compressibility, α, as follows:

α = 1
ρ2

(

dρ
dµ

)

V,T
, [4]. For normal systems at our DOS we have:

(

∂ρ

∂µ

)

V,T

=







2N(0)
[

1 + aεF − a2π2T 2

6(1+aεF )

]

, (i)

2N(εF )
[

1 − a2π2T 2

6

]

, (ii).
(29)

cf. [4]. The derivative
(

∂ρ
∂µ

)

V,T
in the superconducting system is

(

∂ρ

∂µ

)

T

=

(

∂ρ

∂µ

)

T,∆

+

(

∂ρ

∂∆2

)

µ,T

(

∂∆2

∂µ

)

T

, (30)

where the last derivative is calculated from the gap equation,
f(∆,µ, T ) = 0 by means of the relation df = 0 at dT = 0. From Eqs (11)
we find:

(

∂∆2

∂µ

)

T

= −2

{

1

Eµ
− 1 + a

E1−µ
+

a

1 + aµ

[

2

κ
+ a(E1−µ − Eµ)

]}

×







1−µ
∫

−µ

dξ

Eξ
(1 + aµ + aξ)

d

dEξ

[

tanh(Eξ/2T )

Eξ

]







−1

, (31i)

(

∂∆2

∂µ

)

T

= −2

{

1 − aωD

EωD+∆µ
− 1 + aωD

EωD−∆µ
+

a

1 + aµ

[

2

κ
+ a(EωD−∆µ − EωD+∆µ)

]}

×











ωD−∆µ
∫

−ωD−∆µ

dξ

Eξ
(1 + a∆µ + aξ)

d

dEξ

[

tanh(Eξ/2T )

Eξ

]











−1

. (31ii)

In these calculations the single non-elementary integral in the numerator
coincides with that in Eqs (11) and can be eliminated from (31) by means
of (11). The numerator in Eqs (31) we will denote in the future as −2M .
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The quantity
(

∂ρ
∂∆2

)

can be found by taking into account ∂
∂∆2 = 1

2ξ
∂
∂ξ

in the action on f(Eξ), integrating by parts and eliminating, once more, the
same non-elementary integral via Eqs (11). Hence we get

(

∂ρ

∂∆2

)

T,µ

= N(0)
M

2
, (32i)

and for the model (ii) N(0) is replaced by N(εF ). This coincidence is the
result of the variational principle for BCS systems [1, 6] and the commu-
tativity of partial derivatives. Accuracy O(1) in the term M leads to the
replacement µ = εF and Eξ = |ξ| in both models (i), (ii).

The terms
(

∂ρ
∂µ

)

∆,T
can be found in an elementary way. Omitting, as

previously, the exponentially small terms we get

1

N(0)

(

∂ρ

∂µ

)

∆,T

=
µ

Eµ
+

(1 + a)(1 − µ)

E1−µ
+ a(Eµ − E1−µ)

= 2(1 + aµ) − ∆2

2

[

1 − (2 + a)εF + (1 + 4a)ε2
F − 2aε3

F

]

× 1

ε2
F (1 − εF )2

+ O(∆4) , (33i)

1

N(εF )

(

∂ρ

∂µ

)

∆,T

=
(1 − aωD)(ωD + ∆µ)

EωD+∆µ
+

(1 + aωD)(ωD − ∆µ)

EωD−∆µ

+a(EωD+∆µ − EωD−∆µ) = 2(1 + a∆µ) −
(

∆

ωD

)2

+ O(∆4) . (33ii)

Unfortunately, the denominator in Eqs (31) cannot be calculated in an uni-
versal way valid for low and subcritical temperatures. For L.T. we have

b
∫

−c

dξ

Eξ
(1 + ay + aξ)

d

dEξ

[

tanh(Eξ/2T )

Eξ

]

= −2(1 + ay)

∆2
, (33)

provided that b, c ≫ 1. For the model (i) y = µ → εF whereas for (ii)
y = ∆µ → 0. Analogously, in the subcritical region the integral above is
equal to

1 + ay

2T 2
c

∞
∫

0

du

u

d

du

(

tanh u

u

)

+ O(1)

According to the well known formula [1, 6] this integral is equal to

−7ζ(3)(1 + ay)

2π2T 2
c

, (34)
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and the same prescriptions for the choice y hold. Collecting together Eqs
(30) and (31)–(33) we find the L.T. compressibility of the Fermi gas under
pairing. We have:

1

N(0)

(

∂ρ

∂µ

)

T

= 2(1 + aµ)

−∆2

2

[

1 − (2 + a)εF + (1 + 4a)ε2
F − 2ε3

F a
] 1

ε2
F (1 − εF )2

+
∆2

2(1 + aεF )

{

1

εF
− 1 + a

1 − εF
+

a

1 + aεF

[

2

κ
+ a(1 − 2εF )

]}2

, (35i)

1
N(εF )

(

∂ρ
∂µ

)

T
= 2(1 + a∆µ) − ∆2

ω2

D

+ 2a2∆2
(

1
κ − 1

)2
. (35ii)

Analogously, in the S.C. region we find:

1

N(0)

(

∂ρ

∂µ

)

T

= 2(1 + aµ)

−∆2

2

[

1 − (2 + a)εF + (1 + 4a)ε2
F − 2ε3

F a
] 1

ε2
F (1 − εF )2

+
2π2T 2

c

7ζ(3)(1 + aεF )

{

1

εF
− 1 + a

1 − εF
+

a

1 + aεF

[

2

κ
+ a(1 − 2εF )

]}2

, (36i)

1
N(εF )

(

∂ρ
∂µ

)

T
= 2(1 + a∆µ) − ∆2

ω2

D

+ 8a2π2T 2
c

7ζ(3)

(

1
κ − 1

)2
. (36ii)

Let us add that the terms omitted in Eqs (35) are O(∆4) whereas in Eqs (36)
— O(T 4

c ). Moreover, all partial derivatives are taken at constant V .
Because of the jump of the electron compressibility at Tc the Debye radius

and the effective ion-ion interaction is changing by a jump at Tc. Hence, the
instability of the superconductivity can be excluded in the metal as a whole,
because of lattice contribution to the proper thermodynamic potential.

The results presented in this paper, have been a subject of almost two
year work. During this time the results have been presented many times in
Poland and abroad. Particularly fruitfull discussions the author had with
professors J.Klamut and V.I. Nizhankovskii (Wrocław), D. Van der Marel
(Groningen) and J. Spałek and K. Zalewski (Cracow). Moreover the critical
remarks of an anonymous referee (Zeitschrieft für Physik) on the preliminary
version of this paper were extremely important for this version. The present
version of the paper was written during the private visit to my US relatives.
I am greatly indebted to them for their patience and, additionally, to Miss
Ashley Kindergan, who improved my English.
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