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1. Introduction

In spite of active experimental and theoretical investigations the origin
of pairing correlations responsible for high-temperature superconductivity is
still the matter at issue. On one hand, the proximity of the superconducting
and antiferromagnetic phase suggests that Coulomb correlations may give
rise to the formation of superconducting phase at low doping. Here, the
antiferromagnetic spin fluctuations [1-8] can be considered as a phonon-free
mechanism of d-wave superconductivity. This scenario is supported by in-
creasing experimental evidence for dx2−y2 symmetry of the superconducting
order parameter [9–13] but one can not exclude admixture of components
with s-like symmetry. In particular, the Monte Carlo calculations [4–6] sug-
gest the dominating role of d-wave pairing. The Monte Carlo scheme works
for temperatures which are by far too high to be identified with supercon-
ducting transition temperature Tc. However, the dominating role of d-wave
symmetry in the two-dimensional Hubbard model has been proved within
the second order self-consistent perturbation theory [14]. One should bear
in mind that in strictly two dimensions (2d), d-wave superconductivity is
absent, even at zero temperature [15]. Therefore, model calculations for the
2d-Hubbard model always assume that there is some effective coupling to
the third dimension.

On the other hand, modification of phononic properties below Tc [16–
18] remains in agreement with the expectation of strong electron-phonon
coupling [19, 20]. Generally, there are arguments that phonon-induced su-
perconductivity can survive in the presence of strong Coulomb correlations
[21–27] which may even lead to an enhancement of the electron–phonon
coupling [28, 29]. In particular, the inclusion of vertex corrections to the
electron–phonon interaction gives rise to the pronounced reduction of the
isotope shift exponent α at optimal doping [30]. There are experimental
indications that in the copper oxides α is inversely correlated with Tc [31–
33]. Therefore, this result supports the view that small values of α do
not eliminate electron–phonon interaction as a possible pairing mechanism
in high-temperature superconductors. In order to explain small values of
α one has not to assume that the non-phononic mechanism is plugged in
(and starts to play the dominating role in superconducting pairing) when
approaching optimal doping. This picture may emerge within the electron–
phonon mechanism due to multiphonon processes contained in corrections
to the bare electron–phonon vertex. Phonons can also contribute to the in-
terlayer coupling. It has been argued that momentum conserving interlayer
tunnelling can play a substantial role in the formation of the superconduct-
ing state [34, 35]. Phonon assisted transitions between intra- and interlayer
states result in the c-axis two-phonon-mediated interlayer coupling which
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gives an important contribution to the transportation of Cooper pairs be-
tween adjacent copper–oxygen sheets [36, 37].

Often, when considering phonon-mediated superconductivity [21–25, 27,
30], the Coulomb correlations have been taken into account by using auxil-
iary boson fields in the U → ∞ limit [38]. In Refs [24, 27, 39] fluctuations
of auxiliary boson fields over the mean-field value have been considered to
allow for the phonon-free pairing mechanism. It has been found that the
phonon-mediated and correlation-mediated pairing mechanism cooperate in
the stabilization of d-wave superconductivity for physically interesting con-
centrations of holes. This approach partially accounts for the many body
effects responsible for the exchange-like origin of superconductivity similarly
to superconductivity based on the electron-phonon interaction. However, the
relative significance of correlation-mediated and phonon-mediated contribu-
tions to the formation of superconducting state is still an open problem. In
order to see the actual role of Coulomb correlations, one has to consider
the electron–electron and electron–phonon channel on an equal footing. We
will outline a generalization of Eliashberg equations [40] which accounts for
both channels and allows to consider pairing and depairing effects origi-
nating from the U -term in the Hubbard model. The impact of Coulomb
correlations upon the magnitude of the isotope shift exponent α will also be
discussed.

In high-temperature superconductors superconductivity occurs in the
vicinity of the metal-insulator transition. Neither the slave boson technique
nor perturbation theory can reproduce the formation of the insulating gap
in the density of states at half filling. The fundamental problem is, how to
consider the metal-insulator transition within the strong-coupling theory of
superconductivity. We will mimic the metal–insulator transition by making
use of the Hubbard I approximation [40] and renormalize propagators in
the matrix Dyson equation. This approach allows to discuss pairing in the
vicinity of the metal–insulator transition.

2. Phonon-induced and phonon-free superconductivity

in the two-dimensional Hubbard model

Our starting point is the two-dimensional Hubbard model with electron–
phonon interaction. In Nambu notation [40] the Hamiltonian is of the form

H = H0 + HU + HE−PH , (1)

where

H0 =
∑

k

(εk − µ)Ψ+
k τ3Ψk +

∑

q

ωqB+
q Bq , (2)
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HU =
U

N

∑

k,k′,q

Ψ+
k

τ+Ψ
−k′Ψ+

−k′−q
τ−Ψk−q , (3)

HE−PH =
∑

k,q

gkk+qΨ+
k+q

τ3Ψk

(

B+
−q + Bq

)

. (4)

Here, Ψ+
k =

(

c+
k↑ c−k↓

)

, where ckσ

(

c+
kσ

)

denotes the annihilation (creation)

operator for an electron in a Bloch state with momentum k and spin σ;
τ0, . . . , τ3 denote the Pauli matrices and τ± = 1

2 (τ1 ± iτ2). The band energy
is εk = −tγ (k) where γ (k) = 2 (cos kx + cos ky) for the nearest-neighbor
hopping t which will be taken as energy unit throughout the paper. The
energy U is the on-site Coulomb repulsion and µ stands for the chemical po-
tential. gkk+q is the electron–phonon interaction. For the sake of simplicity
phonons will be modelled by an Einstein oscillator with frequency ω0.

The self-energy can be derived from the matrix Dyson equation

Σk (iωl) = G−1
0k

(iωl) − G−1
k

(iωl) , (5)

where Gk (iωl) =
〈〈

Ψk | Ψ+
k

〉〉

stands for the Matsubara Green’s function
and G0k (iωl) denotes the unperturbed propagator (U = 0 and gkk+q = 0);

ωl is the Matsubara frequency ωl = (2l + 1) π/β, β = (kT )−1. Within
second-order perturbation theory there is no direct mixing between electron–
phonon and electron–electron contributions to Σk (iωl):

Σk (iωl) = ΣPH
k (iωl) + ΣU

k (iωl) , (6)

where ΣPH
k (iωl) originates from the electron–phonon interaction and

ΣU
k (iωl) comes from the Coulomb term. Figure 1 shows the diagrammatic

representation of both these contributions to the self-energy. The usual
ansatz for Σk (iωl) is of the form [39]

Σk (iωl) = [1 − Zk (iωl)] iωlτ0 + φk (iωl) τ1 + χk (iωl) τ3. (7)

Zk (iωl) denotes the wave function renormalization factor which will be con-
sidered within the local approximation [39,41] (Zk (iωl) → Z (iωl)). We will
neglect the energy shift χk (iωl) which is usually considered to be a small
quantity in the electron–phonon problem and can be incorporated in the
chemical potential. For the case of local and nearest-neighbor Cooper pairs
we can express the momentum dependence of the superconducting order
parameter

φk (iωl) = φ0 (iωl) + γ (k)φγ (iωl) + η (k) φη (iωl) , (8)
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with the help of form-factors like γ (k) = 2 (cos kx + cos ky) and η (k) =
2 (cos kx − cos ky). In our notation, φ0 (iωl), φγ (iωl), φη (iωl) corresponds to
the s-wave, extended s-wave, and d-wave component of the superconducting
state, respectively.

G
=

G0

+
G0 Σ

U1 G
+

G0 ΣU2  G

+
G0 ΣU3 G

+
G0 ΣU4  G

+
G0 ΣPH  G

Fig. 1. Diagrammatic representation of contributions to the self-energy. ΣPH orig-

inates from the electron–phonon coupling, whereas ΣU1, ΣU2, ΣU3, and ΣU4 cor-

respond to contributions from the electron–electron interaction.

In order to derive the system of Eliashberg equations which determine the
wave function renormalization factor Zk (iωl) and components of the order
parameter one has to combine Eqs (5)–(7) with ΣPH

k (iωl) and ΣU
k (iωl)

which are both represented diagrammatically in figure 1. Then electron–
phonon and electron–electron interactions are considered on an equal footing
within the self-consistent second-order perturbation theory. The details of
the two-dimensional band structure will be explicitly taken into account.
For T → Tc the Eliashberg equations take on the form

Z (iωl) = 1 +
1

βωl

∑

n

[

U2KI
U (iωl + iωn) + λKPH (l − n)

]

×
1

N

∑

k

Z (iωn) ωnD−1
k (iωn) , (9)

φ0 (iωl) =
1

β

∑

n

[

−U + U2KI
U (iωl + iωn) + λKPH (l − n)

]

×
1

N

∑

k

(

φ0 (iωn) + γ (k) φγ (iωn)
)

D−1
k (iωn) , (10)
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φγ (iωl) =
1

4 β

∑

n

[

U2KA
U (iωl + iωn) + λγKPH (l − n)

]

×
1

N

∑

k

(

γ (k)φ0 (iωn) + γ2 (k)φγ (iωn)
)

D−1
k (iωn) , (11)

φη (iωl) =
1

4 β

∑

n

[

U2KA
U (iωl + iωn) + λγKPH (l − n)

]

×
1

N

∑

k

η2 (k) φη (iωn) D−1
k (iωn) , (12)

where

KPH (l − n) =
ν2

(l − n)2 + ν2
, (13)

K
I(A)
U (iωl + iωn) =

1

β

∑

m

[

dZ(Zγ) (iωl + iωn − iωm) dZ(Zγ) (iωm)

+ dε(εγ) (iωl + iωn − iωm) dε(εγ) (iωm)
]

, (14)

and








dZ (iωn)
dZγ (iωn)

dε (iωn)
dεγ (iωn)









=
1

N

∑

k

D−1
k (iωn)









Z (iωn)ωn
1
4Z (iωn) ωnγ (k)

ε̄k
1
4 ε̄kγ (k)









, (15)

Dk (iωn) = [Z (iωn) ωn]2 + (ε̄k)2 . (16)

The band energy ε̄k = −tγ (k)− µ + nU/2 is renormalized by the Hartree–
Fock contribution; n stands for the average number of electrons per site. In
addition one has the equation for the chemical potential

n = 1 −
4

β

∑

n≥0

1

N

∑

k

−tγ (k) − µ + Un/2

[Z (iωn)ωn]2 + [−tγ (k) − µ + Un/2]2
. (17)

Here we distinguish between two types of kernels: KPH corresponds to

the electron–phonon interaction, whereas K
I(A)
U represents the result of the

second-order perturbative treatment of the local Coulomb repulsion U . KI
U

determines the magnitude of the wave function renormalization factor Z
and contains correlations leading to the formation of local Cooper pairs
(s-wave). KA

U is responsible for anisotropic superconductivity (extended
s-wave and d-wave). Note that when accounting for nearest-neighbor Cooper
pairs, one obtains two different electron–phonon coupling functions λ and
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λγ [24, 25, 27]. λ(γ) is derived with the help of Fermi-surface averaged

Eliashberg function

λ = 2

∞
∫

0

dΩ

Ω

〈

−
1

π
gpk gkp Im Dk−p (Ω + iδ)

〉

k,p

, (18)

λγ = 2

∞
∫

0

dΩ

Ω

1

N

∑

q

1

4
γ (q)

〈

−
1

π
gkk−q gk−qk Im Dq (Ω + iδ)

〉

k

, (19)

with Dq (Ω) being the phonon propagator. The quantity λγ determines
the amplitudes of extended s-wave and d-wave components of the super-
conducting order parameter, whereas λ determines the magnitude of s-wave
component and wave function renormalization factor. Generally, λ and λγ

depend on the occupation number [27], however, in order to simplify our
model calculations, we consider them as parameters [24, 25]. Equations (9)–
(13) and (17) represent a self-consistent system which allows for a thorough
comparison between electron–electron and electron–phonon contributions to
the superconducting state in the two-dimensional Hubbard model. For nu-
merical purposes we have used Kresin’s method of introducing an average
phonon frequency 〈Ω〉 [43]

ν =
〈Ω〉

2πkTc

, (20)

which corresponds to the frequency ω0 of an Einstein oscillator (ω0 = 0.1t
has been used throughout this paper). In the electron–phonon problem the
phonon-frequency is related to a cut-off energy. Note, that there is no cut-
off energy in the Coulomb channel. This implies that in order to solve the
system of Eliashberg equations one has to carry out the summation over a
much larger number of Matsubara frequencies than in the usual electron–
phonon problem. We have carried out a summation over 400 Matsubara
frequencies.

Figure 2 shows the modification of the wave function renormalization
factor due to the on-site repulsion. We have plotted Z (iωm) for the lowest
Matsubara frequency (Zm=0 = Z (iπkT )) as a function of the occupation
number. For relatively large concentration of holes δ = 1 − n ≃ 0.3 the
difference Z(U) − Z(U = 0) (calculated with and without Coulomb repul-
sion) hardly depends on the magnitude of the electron–phonon coupling.
Therefore, electron–phonon and electron–electron contributions to Z (iωl)
can be considered as almost independent quantities in the overdoped region.
The difference between Z (U) and Z (0) becomes more pronounced in the
underdoped region, close to half filling. One may say that spin fluctuations,
which are to some extent contained in the U2-contribution, lead to a more
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Z(0)
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=1

Fig. 2. Modification of the wave function renormalization factor due to Coulomb

correlations plotted as a function of the occupation number; Zm=0 = Z (iπkT )

corresponds to the lowest Matsubara frequency; Zm=0
(U) (Zm=0

(0)) denotes

Z (iπkT ) calculated with (without) the Coulomb correlations. The inset shows

the occupation number dependence of Z (iπkT ) for U = 0 and U = 5t.

effective modification of normal state properties close to the metal-insulator
transition in the vicinity of the onset of an antiferromagnetic order. The
inset illustrates the magnitude of Z (iπkT ) calculated with and without the
on-site repulsion. For U < t the wave function renormalization factor hardly
depends on the magnitude of the on-site repulsion. This feature is related
to the fact that only second- and higher-order contributions can lead to a
modification of the band structure. With respect to the significance of the U -
term for normal state properties one can infer from figure 3 that Coulomb
correlations are much more important for larger values of the Matsubara
frequencies. In the case of weak Coulomb correlations Z (iωn) differs sig-
nificantly from unity only in the narrow region of ωn around 0. Note that
Z (iωn) = 1 corresponds to the unperturbed propagator. However, already
moderate values of the on-site repulsion U cause pronounced modification of
the wave function renormalization factor for large values of ωn. This feature
originates from different structure of kernels corresponding to the electron–

electron (K
I(A)
U ) and electron–phonon (KPH) interaction. On one hand,

the Debye energy ω0 which enters KPH can be considered as an effective
cut-off in summation over the Matsubara frequencies. On the other hand,
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Fig. 3. The wave function renormalization factor Z (iωn) as a function of Matsubara

frequencies. Note the pronounced modification of Z (iωn) due to the Coulomb

correlations for large values of ωn.

the band-width is the only quantity which can play the role of the cut-off

when considering K
I(A)
U . Therefore, in order to proceed with the quantita-

tive analysis of the electron–electron channel a few hundred of Matsubara
frequencies have to be taken into account.

For T → Tc the s- and extended s-wave components separate from the
d-wave component of the superconducting order parameter. Figure 4 shows
the superconducting transition temperatures for both cases as a function
of the on-site repulsion. One can see that even weak Coulomb correla-
tions strongly reduce the role of the s− and extended s-wave contributions.
Keeping in mind that the wave function renormalization factor remains al-
most unchanged for small values of U one can attribute this behavior to the
Hartree–Fock term which enters Eq. (10). This term is absent in Eq. (12)
which causes that d-wave superconductivity can survive despite the presence
of relatively strong on-site repulsion.

Figures 5 and 6 show interesting features connected with the presence
of the Coulomb channel. We plot the relative change of the superconduct-
ing transition temperature due the on-site repulsion as a function of the
occupation number. Here, Tc (U) (Tc (0)) denotes the critical temperature
calculated with (without) Coulomb correlations. Figures 5 and 6 explic-
itly show the possibility of a cooperation between the electron–phonon and
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0 1 2 3 4 5
U/t

0.0

0.002

0.004

0.006

kT
c/

t

n=0.8 =3.0 =1.5

s- and ext. s-wave
d-wave

Fig. 4. The superconducting transition temperature corresponding to d-, s- and

extended s-wave symmetry. At T → Tc a d-wave contribution separates from the

s- and extended s-wave component of the superconducting order parameter.

electron–electron interaction in the formation of the superconducting phase.
The on-site repulsion enters the Eliashberg equations in a highly non-trivial
way. On one hand, the increase of the wave function renormalization factor
with U leads to a reduction of the superconducting transition temperature.
This mechanism plays the most important role for small values of λ. On the
other hand, the electron–electron contribution to d-wave paring, as repre-
sented by the kernel KA

U , leads to a significant increase of Tc, in particular
when λγKPH is sufficiently small. The relative role of these two mechanisms
depends also on the concentration of holes, as can be inferred from the inset
in figure 5. Therefore, the significance of the U2-term for d-wave supercon-
ductivity is directly related to the occupation number and the ratio λγ/λ.
It is remarkable, that stabilization of the d-wave superconductivity due to
the on-site repulsion is mostly effective close to the experimental value of
optimal doping (δ ≃ 0.15).

There are experimental indications that for the copper oxides the isotope
shift exponent α is inversely correlated with Tc and can take on values much
smaller than the BCS value of 0.5 [30–32]. There are proposals to explain this
feature within a purely phononic mechanism of superconductivity [21, 29].
In particular, the inclusion of vertex corrections can lead to a pronounced
reduction of α at optimal doping [29]. Here, we demonstrate that such
a reduction can also originate from the presence of Coulomb correlations
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Fig. 5. The relative change of Tc (d-wave) due to the on-site repulsion plotted as a

function of the occupation number. T (U) (T (O)) denotes the critical temperature

calculated with (without) the Coulomb correlations. The inset shows the ratio

KI
U (iωl + iωn) /KA

U (iωl + iωn) calculated for iωl + iωn = 0 and λ = 0.
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Fig. 6. The same as in Fig. 4 but for different values of the electron–phonon coupling

functions.
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which contribute to superconducting pairing. In order to evaluate α we
assume that λ(γ)KPH depends on M only through ω0 ∼ M−1/2, then

α =
ω0

2 Tc

dTc

dω0

. (21)

Numerical values of α are shown in figure 7. In the underdoped region
U hardly affects α which can achieve values slightly higher than 0.5. For
n > 0.8 the local repulsion leads to a fairly pronounced decrease of the
isotope shift exponent. Close to the optimal doping this can be understood
as a result of non-phononic contribution to the superconducting correlations
(figures 6 and 7). However, the isotope shift exponent is inversely correlated
with U also in the underdoped system despite the reduction of Tc due to
Coulomb correlations (compare with results corresponding to λγ = 1.5 in
figure 6). One should bear in mind that our perturbative formulation neither
contains any direct pair-breaking mechanism for d-wave superconductivity
nor accounts for the metal-insulator transition when approaching half filling.
Therefore, one obtains a maximum Tc for n → 1, simply due to the van Hove
singularity. This drawback can be removed when accounting for the opening
of an insulating gap for n → 1. This simple approach to the problem will
be discussed in the next section.

0 1 2 3 4 5 6
U/t

0.3

0.4

0.5

0.6
=3 =1.5

n=0.75

n=0.8

n=0.88

n=0.9
n=0.95

n=1

Fig. 7. The isotope shift exponent α as a function of the on-site repulsion for

different concentrations of holes.
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3. Phonon-induced superconductivity in the two-dimensional

Hubbard model close to the metal-insulator transition

The simplest approach which can mimic the metal-insulator transition
is the Hubbard I approximation [41, 44]. This approximation neither repro-
duces the Hartree–Fock solution for small values of the Coulomb repulsion
U nor fulfils the Luttinger theorem. These deficiencies are important when
discussing phonon-free superconductivity within the bare Hubbard model.
In the case of phonon-induced superconductivity this approach can be useful
to discuss pairing in the vicinity of the metal-insulator transition, even if the
Hubbard I approximation overestimates the magnitude of the insulating gap
which occurs for any finite value of U .

In order to account for local Coulomb repulsion in the Hubbard I ap-
proximation one has to renormalize the electron propagator in the Dyson
equation [41, 44, 45]. This corresponds to the substitution

G−1
0k

(iωl) =

(

G−1
at (iωl) − εk 0

0 −G−1
at (−iωl) + εk

)

, (22)

with

G−1
at (iωl) =

(iωl + µ) (iωl + µ − U)
(

iωl + µ
)

− U (1 − n/2)
. (23)

At T = Tc s- and d- wave symmetries separate and the Eliashberg equations
take on the form [45]

Z (iωl) = 1 +
1

βωl

∑

ω
n

λ ν2

(l − n)2 + ν2
dZ (iωn) , (24)

φ0 (iωl) =
1

β

∑

ω
n

λ ν2

(l − n)2 + ν2

[

d0 (iωn) φ0 (iωn) + dγ (iωn) φγ (iωn)
]

,(25)

φγ (iωl) =
1

β

∑

ω
n

λγ ν2

(l − n)2 + ν2

[

dγ (iωn)
φ0 (iωn)

4
+ dγ2 (iωn)

φγ (iωn)

4

]

,

(26)

φη (iωl) =
1

β

∑

ω
n

λγ ν2

(l − n)2 + ν2
dη2 (iωn) φη (iωn) , (27)
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where we have used

dZ (iωn) =
1

N

∑

k

dk (iωn) ωn

{

2 U
(

1 −
n

2

)

(U − 2µ) + ω2
n + µ2

+ [Z (iωn) − 1]

[

ω2
n +

(

µ − U
(

1 −
n

2

))2
]}

, (28)









d0 (iωn)
dγ (iωn)
dγ2 (iωn)

dη2 (iωn)









=
1

N

∑

k

dk (iωn)

[

ω2
n +

(

µ − U
(

1 −
n

2

))2
]









1
γ (k)
γ2 (k)
η2 (k)









,

(29)
and

d−1
k

(iωl) =
(

ω2
l + µ2

)

{

ω2
l + (µ − U)2 + 2

[

ω2
l (Z (iωl) − 1) − (µ − U) εk

]

}

+ 2 U
(

1 −
n

2

)

{

ω2
l [(Z (iωl) − 1] (U − 2µ) + εk

(

µ2 − ω2
l − Uµ

)}

+

{

ω2
l +

[

µ − U
(

1 −
n

2

)]2
}

{

ω2
l + [Z (iωl) − 1]2 + ε2

k

}

. (30)

Figure 8 shows the dependence of the superconducting transition tempera-
ture on the occupation number for different types of symmetry of the order
parameter. It is remarkable that the renormalization introduced within the
Hubbard I approximation, leads to a variation of Tc which corresponds to
the experimentally observed behavior. One can also note that the super-
conducting transition temperature for s- and d-wave superconductivity is
of comparable magnitude in the physically interesting region of concentra-
tion of holes. Due to the fact that the extended s-wave contribution be-
comes small because of the nesting of the Fermi surface for n → 1, it is the
isotropic s-wave component that adds to the d-wave component. Both types
of pairing rapidly vanish when approaching the metal-insulator transition at
half filling. Therefore, this simple approach may partially account for the
d+s-wave scenario of high-temperature superconductivity [46,47]. However,
one must be aware that the Hubbard I approximation does not reproduce
the depairing role of the Hartree–Fock term in the purely electronic s-wave
(isotropic) channel. May be, its role is of minor importance when consider-
ing superconductivity originating from strong electron–phonon interaction
close to the metal-insulator transition.
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Fig. 8. The superconducting transition temperature as a function of the occupation

number. Here, s refers to Tc for s-wave + extended s-wave symmetry, whereas d

corresponds to d-wave symmetry. The dashed curves represent the uncorrelated

case (U = 0) and solid curves have been obtained within the Hubbard I approx-

imation (U = 2t). λ is the electron–phonon coupling function which determines

the magnitude of the renormalization factor Z and accounts for s-wave (isotropic)

superconductivity, whereas λγ is responsible for anisotropic superconductivity.

4. Concluding remarks

The two-dimensional Hubbard model coupled to phonons has been dis-
cussed in the context of isotropic and anisotropic superconductivity. Pairing
correlations originating from the electron–phonon interaction and the on-site
Coulomb repulsion have been considered on an equal footing within the self-
consistent second-order perturbation theory. This scheme allows to account
for both pairing and depairing features of the local Coulomb correlations.
Our formulation leads to the generalization of the Eliashberg equations and
is valid for moderate values of the on-site repulsion U . Numerical analysis
has shown that the Coulomb repulsion pronouncedly enhances the frequency
dependence of the wave function renormalization factor and leads to a seri-
ous increase in the magnitude of Z(iωn). When considering the symmetry
of the superconducting state we have found that s- and extended s-wave
components are eliminated already for small values of U . This is due to the
presence of the Hartree–Fock contribution to the s-wave kernel in the Eliash-
berg equations. However, d-wave superconductivity can exist even in the
presence of strong local repulsion. Our results demonstrate the possibility
of cooperation between electron–phonon and electron–electron interactions
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in the formation of d-wave superconducting state. It is remarkable that this
cooperation is mostly effective around the experimental value of the optimal
doping δ ≃ 0.15. We have observed that the on-site repulsion may lead to
a fairly pronounced reduction of the isotope shift exponent α. Therefore,
even small values of α do not eliminate the electron–phonon interaction as
a possible pairing mechanism in high-temperature superconductors. Small
values of α may merely mean that Coulomb correlations contribute to the
superconducting pairing in the d-wave channel.

The perturbative formulation is restricted to moderate values of U/t, in
the sense that U does not exceed the band-width 8t. On should bear in mind
that the second-order perturbation theory does not account for all possible
pairing correlations originating form the local Coulomb repulsion. Probably,
this is the reason for which the Coulomb interaction alone cannot produce
high superconducting transition temperature. Within the second-order per-
turbation theory the wave function renormalization factor remains finite
independently on the occupations of holes. This implies the non-vanishing
values of Tc when approaching the Mott-Hubbard transition for n → 1,
However, the simultaneous discussion of the interplay between superconduc-
tivity and antiferromagnetism including the metal-insulator transition is a
difficult problem which needs a separate study. We have attempted to mimic
the metal-insulator transition within the strong-coupling description making
use of the Hubbard I approximation for the Coulomb term. This approach
correctly describes the vanishing of superconductivity (predominantly of d-
wave symmetry) with the opening of the insulating gap. We show that s-
and d-wave component can mix considerably as seriously considered in the
literature [46,47]. The drawback is that within the Hubbard I approxima-
tion one neglects pairing as well as depairing correlations originating from
the Coulomb channel, the latter being related to the Hartree–Fock term in
the perturbative series. This may be of minor importance when consider-
ing superconductivity originating from strong electron–phonon interaction
in the vicinity of the metal-insulator transition. Therefore, the discussion
of the role of Coulomb correlations for the formation and destruction of
the superconducting state at low doping is still an open problem. Indepen-
dently on the type of approximation it is d-wave superconductivity which
plays a dominating role in the presence of local electron–electron interac-
tion. may be that the renormalization of electron–phonon vertex originating
from Coulomb correlations can complete the picture of superconductivity in
strongly correlated systems. This is a challenge for future studies.

J.Z. thanks the organizers of the XXXVIII Cracow School on Theoretical
Physics (Zakopane, 1-10 June 1998) for their kind invitation to deliver a
lecture which was based on the content of this paper.
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