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The problem of particle oscillation is considered in a pedagogical and
comprehensive way. Examples from K, B and neutrino physics are given.
Conceptual difficulties of the traditional approach to particle oscillation are
discussed. It is shown how the probability current density and the wave
packet treatments of particle oscillations resolve some problems. It is also
shown that only full field theoretical approach is free from conceptual dif-
ficulties. The possibility of oscillation of particles produced together with
kaons or neutrinos is considered in full wave packet quantum mechanics lan-
guage. Precise definition of the oscillation of particles which recoil against
mixed states is given. The general amplitude which describes the oscillation
of two particles in the final states is found. Using this EPR-type amplitude
the problem of oscillation of particles recoiling against kaons or neutrinos
is resolved. The relativistic EPR correlations on distances of the order of
coherence lengths are considered.

PACS numbers: 03.65.–w, 14.60.Pq, 14.60.St

1. Introduction

The subject is not new. The problem is known since 1955 when Gell-
Mann and Pais [1] predicted the existence of two neutral kaons. Earlier,
in 1953 in a scheme for classifying the various newly-found particles, Gell-
Mann represented the neutral kaon K0 and its antiparticle K0as two distinct
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particles. The decay of both particles into π+π− was observed. If so, how do
we know which particle has originated it: the K0 or the K0? The problem
has been solved by realizing that what we observe is the mixture of two
states, K0 and K0 :

|KS〉 =
1

[
2
(
1 + |ε|2

)]1/2

[
(1 + ε)

∣∣K0
〉

+ (1 − ε)
∣∣K0

〉]
, (1)

|KL〉 =
1

[
2
(
1 + |ε|2

)]1/2

[
(1 + ε)

∣∣K0
〉
− (1 − ε)

∣∣K0
〉]

, (2)

where ε is a small, complex, later measured parameter responsible for CP
symmetry breaking [2]. In this way first time the interference between states
of slightly different masses has appeared in quantum mechanics. Inspired
by the work of Gell-Mann and Pais, Bruno Pontecorvo turned to consider
the possibility of quantum mechanical mixing in another neutral particle —
the neutrino. In 1957 he first suggested that a neutrino may oscillate into
its antipartner [3]. Oscillation among the different kinds of neutrinos was
then proposed by Maki, Nakagawa and Sakata in 1962 [4] and later by many
others [5].

The neutral K0–K0 boson system is not the only one where the quantum
mechanical mass mixing can be considered. We can expect to observe the
same phenomena in other neutral boson systems: D0–D0 and B0–B0. Gen-
erally, flavour oscillations of particles can occur when states produced and
detected in a given experiment, are superpositions of two or more eigenstates
with different masses. The oscillation of K and B meson has been observed
experimentally in 1961 [6] and later [7] and has been used to place stringent
constraints on physics beyond the Standard Model. If neutrinos are massive
and oscillate it is possible to resolve the well-known solar neutrino problem
[8]. There are also first experiments in which the neutrino oscillations are
observed [9].

The flavour oscillation of particles is a very fascinating demonstration
of quantum mechanics in the macroscopic world. It has served as a model
for many interesting systems and problems. Various aspects of quantum
mechanics, as for example coherence, decoherence, wave packets, measure-
ments, similarity and differences between pure and mixed states, wave func-
tion collapse, EPR “paradox” are in action. On the other hand particle
mixing is the place where fundamental symmetries and properties of funda-
mental interactions are studied. Discovering of the CP symmetry violation
and the measurement of differences between neutral mesons masses are con-
nected with K, B bosons mixing. Neutrino oscillations have a chance to be
the first place where problem of neutrino masses can be resolved.
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In this review we will concentrate only on the quantum mechanical de-
scription of particle oscillations. Problems connected with testing of the
fundamental interactions will not be discussed.

First of all we should mention that interference between states with dif-
ferent masses is not allowed in non-relativistic quantum mechanics. The
Galilean invariance forbids a coherent superposition of such states (the so
called Bargman superselection rule [10]). Beyond the non-relativistic limit
such restrictions do not hold (which clearly follows from experiment). It
means that all of our considerations should be done in relativistic quantum
mechanics (nevertheless non-relativistic approximations are possible).

First, we would like to describe briefly the traditional approach to the
particle oscillation problem. This treatment is simple and elegant but im-
mediately raises a number of conceptual questions. We specify more of them
(Chapter 2). Next we show the wave packet treatment, where some of the
problems disappear (Chapter 3). The current density approach which is
closely connected with the experimental setting, is described in Chapter 4.
The problem of constructing the probability current density for a particle
with undetermined mass is also considered there.

Next, in Chapter 5, we give some remarks on the field theoretical ap-
proach to particle oscillations. Usually (as in the case of neutrino oscilla-
tions) the oscillating particle is not directly observed. Only particles ac-
companying neutrinos, hadrons and charged leptons created in the decay
are observed. The proper approach should take all these circumstances into
account. The creation of the neutrino in the source, its propagation to the
detector and the detection process are treated in the framework of quantum
field theory as one large Feynman diagram.

In Chapter 6 we discuss the controversial problem of the oscillation
of particles recoiling against kaons or neutrinos from the production pro-
cess. A detailed approach using wave packets explains the problem of four-
momentum nonconservation raised in the literature.

In Chapter 7 we discuss the modern example of an Einstein–Podolsky–
Rosen correlation in K0−K0 and B0–B0 systems. The amplitude approach
does not entail the somewhat mysterious “collapse of the wave function”
which is usually invoked to describe the EPR effects.

Finally in Chapter 8 we summarize our main conclusions.

2. Problems connected with the traditional approach

to the particle oscillation

The usual description of kaon mixing phenomena can be found in many
textbooks [11]. Suppose, that we produce K0 at t = 0 by the reaction

π−p → K0Λ0 . (3)
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From (1) and (2) the K0 state at t = 0 is

∣∣K0
〉

=

√
1 + |ε|2

2 (1 + ε)2
(|KS〉 + |KL〉) . (4)

After time t, as |KS〉and |KL〉 states are definite mass eigenstates, we have

∣∣K0 (t)
〉

=

√
1 + |ε|2

2 (1 + ε)2

(
e
−i

“

mS−i
ΓS

2

”

t |KS〉 + e
−i

“

mL−i
ΓL

2

”

t |KL〉
)

, (5)

where mL(S) and ΓL(S) are masses and inverse mean lifetimes respectively of
the long (short)-lived component of K.

The K0(K0) fraction of the beam after time t is just

PK0→K0(K0) (t) =
∣∣〈K0(K0)

∣∣K0(t)
〉∣∣2

=
1

4

[
e−ΓSt + e−ΓLt ± 2e−

1

2
(ΓL+ΓS)t cos (∆mt)

]
, (6)

where ∆m = mL−mS. From Eq. (6) we can see that the fraction of K0(K0)
becomes smaller (because of decay) and changes with time with frequency
ω = ∆m/2π.

Neutrino oscillations are described in a very similar way [12]. Let us
assume that at t = 0 neutrino with flavour α was born with momentum p
perfectly defined (as for example neutrino νµ in the pion decay π+ → µ+νµ).
At this time the neutrino state is described by

|Ψα(0)〉 =
∑

a

Uαa |a〉 , (7)

where states |a〉 are energy-momentum eigenstates for neutrinos with mass
ma and Uαa are elements of a flavour-mass mixing matrix.

Then
H |a〉 = Ea |a〉 , (8)

where Ea =
√

p2 + m2
a with the same momentum p for each neutrino. After

time t the state will evolve into

|Ψα(0)〉 → |Ψα(t)〉 = e−iHt |Ψα(0)〉 =
∑

a

Uαae
−iEat |a〉 . (9)

Then the probability that a neutrino born at t = 0 with flavour α at time t
has flavour β is given by

Pα→β(t) = |〈Ψβ(0)|Ψα(t)〉|2 =

∣∣∣∣∣

n∑

a=1

U∗
βae

−iEatUαa

∣∣∣∣∣

2

, (10)
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where n is the number of interfering light neutrinos1.
Now usually relativistic approximations are made. As for real, light

neutrinos p ≫ ma, we have

(i) Ea
∼= p + m2

a

2p ,

and

(ii) a neutrino born in x = 0, at time t will be approximately at position
x ≈ t.

Then from (10) we can find that the probability for our neutrino, born
with flavour α, to have new flavour β after travelling a distance x, is

Pα→β(x) =

n∑

a=1

|Uβa|2|Uαa|2 + 2
∑

a>b

∣∣U∗
βaUαaUβbU

∗
αb

∣∣ cos
(

2π
x

Lab
− ϕab;αβ

)
,

(11)
where Lab, known as oscillation length between νa and νbis defined by

Lab =
4πp

m2
a − m2

b

, (12)

and

ϕab;αβ = arg
(
U∗

βaUαaUβbU
∗
αb

)
, (13)

are phases responsible for CP violation.
From (11) it follows that the oscillation will disappear (the Pα→β(x) does

not depend on x) if (i) all neutrino masses are equal ma = mb and/or (ii)
only diagonal elements of the mixing matrix Uαb do not vanish.

The presented arguments seem to be clear and elegant but they are
wrong. Many conceptual questions arise when we look at the presentation
shown above. A complete treatment of particle oscillation must address the
following additional issues.

(1) A necessary condition for particle oscillation to occur is that particle
source and detector are localized within the region ∆x much smaller
than the oscillation length |Lab|.

|Lab| ≫ ∆x . (14)

1 To prove Eq. (10) we have to assume that the scalar product of two eigenmomentum
states 〈b | a〉 = δab. This means that we must introduce some normalization volume
and momentum and energy are quantized.



3930 M. Zrałek

(2) From Eqs (4) and (7) we see that different mass eigenstates are pro-
duced and detected coherently. This is possible only if the momentum
(p) and energy (E) of the oscillating particle are spread in such a way
that the error in m2 measurements given by

∆m2 =
[
(2E)2 (∆E)2 + (2p)2 (∆p)2

]1/2
(15)

is larger than
∣∣m2

a − m2
b

∣∣ ≡ |∆m2
ab|,

∆m2 ≥ |∆m2
ab|. (16)

If this condition is not satisfied and
∣∣m2

a − m2
b

∣∣ ≥ ∆m2, then also
∣∣∆m2

ab

∣∣ ≥ 2p∆p. (17)

But from the uncertainty relation ∆x ≥ 1
∆p , and Eq. (17) gives ∆x ≥

2p

|∆m2

ab| = |Lab|
2π , which is in contradiction with Eq. (14).

From both conditions described above we see that the oscillating particle
state cannot be described by a plane wave with definite momentum [13] and
the wave packet approach must be constructed.

(3) The energy and momentum conservation in processes in which oscil-
lating particles are created (e.g. π−p → ΛK0 or π+ → µ+νµ) implies
that different mass eigenstate components have different energy and
momentum [14]. Approaches where all oscillating particles have the
same momentum and different energies [11,12], or the same energies
and different momenta [15–17] are conceptually not correct.

(4) In the traditional approach to find the oscillation probability we cal-

culate the wave functions
′

overlap (compare Eqs (6) and (10)). This
procedure gives the probability which depends on time. In the real
experiment the distance between the source and the detector is known
(not the moment in which the measurement is done). To transform
P (t) into P (x) the classical formula x = vt is invoked. However to

find the probability that the beam of particles produced at
→
x= 0 will

reach a physical detector at a distance
∣∣∣
→
x
∣∣∣ the current density

→
j (

→
x, t)

should be integrated over the surface of the detector and over the time
of observation [18]

P
(∣∣∣

→
x
∣∣∣ , t1 < t < t2

)
=

t2∫

t1

dt

∫

∂A

→
dS ·

→
j (

→
x, t). (18)

In such an approach there is no problem of how to change t into x.
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(5) In case of neutrinos additional conceptual problems arise because neu-
trinos are not “seen” directly. The only things which can be “seen”
are hadrons or/and charged leptons in points where neutrinos are pro-
duced and detected. So in a realistic description, the external (initial
and final) particles should be described by wave packets, and the mass-
eigenstate neutrinos should propagate from the production region to
a detector [19, 20].

All points which have been mentioned above are not only purely aca-
demic. We do not try to derive in a more precise way something which is
known from the beginning. We will see that the more precise approach to
the particles’ oscillation phenomenon gives us new predictions and elucidates
mysteries in many points. On the other hand we will see quantum mechanics
in action on macroscopic distances.

3. The wave packet treatment of particle oscillation

The wave packet approach to neutrino oscillation was first proposed by
Kayser [13] and later considered in more detail in [21, 22]. Nowadays the
neutral boson oscillation is also treated in the same way. We will present
the formalism for neutrinos, but everything can be repeated also for bosons.

In Eq. (7) states |a〉 have definite energy and momentum (also the spin
direction of neutrinos is defined) so for the sake of precision we should write

|a〉 ≡ |a; p〉 =
∣∣∣a;

→
p ,E, σ

〉
. (19)

We can easily construct a state with momentum distributed around a mean

value
→
pa. Let us assume that, instead of a plane wave, our new state |a〉

(Eq. (20)) has a Gaussian form, which in the momentum representation, is
given by

〈
a;

→
p
∣∣∣ a
〉
≡ Ψa

(→
p ,

→
p a, σpP

)
=

1
[√

2πσpP

]3/2
exp



−

(→
p −

→
p a

)2

4σ2
pP



 , (20)

where the width σpP is the same for each massive neutrino in the production
(P ) process and the same along all three directions. The average momenta
→
pa of the different mass eigenstates are determined by the kinematics of the
production process.

In the wave packet approach, the flavour states |Ψα(t)〉 after time t (given
by Eq. (9) in the plane wave formalism) are now

|Ψα(t)〉 =
∑

a

Uαae
−iHt

∫
d3p

∣∣∣ a;
→
p
〉〈

a;
→
p
∣∣∣ a
〉
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=
∑

a

Uαa

∫
d3p Ψa

(→
p ,

→
p a, σpP

)
e−iEa(p)

∣∣∣ a;
→
p
〉
, (21)

where Ea (~p) =
√

p2 + m2
a.

The same states in the position representation
∣∣∣b;

→
x
〉

are given by

|Ψα(t)〉 =
∑

b

∫
d3x

∣∣∣ b;
→
x
〉〈

b;
→
x
∣∣∣Ψa(t)

〉

=
∑

a

Uαa

∫
d3x Ψa

(
→
x, t;

→
va, σxP

) ∣∣∣a;
→
x
〉

, (22)

where now the function Ψa

(
→
x, t;

→
va, σxP

)
is defined by

Ψa

(
→
x, t;

→
va, σxP

)
=

∫
d3p Ψa

(→
p ,

→
p a, σpP

)
e−iEa(p)t

〈
a;

→
x
∣∣∣ a;

→
p
〉

=
1

(2π)3/2

∫
d3p Ψa

(→
p ,

→
p a, σpP

)
e
i
“

→

p
→

x−Ea(p)t
”

.(23)

Since the Gaussian wave packet in momentum space is picked around the

average momentum
→
pa we can neglect the spreading of the wave packet and

approximate

Ea(p) = Ea+
→
va

(→
p −

→
p a

)
,

where

Ea =
√

p2
a + m2

a and
→
va=

∂Ea

∂
→
p

∣∣∣∣∣→
p =

→

pa

=

→
pa

Ea
. (24)

Then

Ψa

(
→
x, t;

→
va, σxP

)
=

1
[√

2πσxP

]3/2
exp



i
(
→
pa

→
x −Eat

)
−

(
→
x − →

va t
)2

4σ2
xP



 ,

(25)
with the width σxP in coordinate space given by

σxP =
1

2σpP
. (26)

As earlier in Eq. (10), to find the amplitude of the flavour changing process,
we project the states |Ψα(t)〉 on the flavour states |Ψβ(0)〉

Aα→β(t) = 〈Ψβ(0) |Ψα(t)〉 . (27)
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If |Ψβ(0)〉 is the same as before (Eq. (7)) this means that the momentum
of each neutrino va is measured precisely. But this is not realistic, so let
us assume that also detection process is characterized by the spatial coher-
ence width σpD connected with the uncertainties in momentum and energy
measurements

|Ψβ(0)〉 =
∑

b

Uβb

∫
d3p Ψb

(→
p ,

→
p b, σpD

) ∣∣∣b;
→
p
〉

. (28)

The average values of the momentum
→
pb are the same as in the incoming wave

packets Eq. (22). To calculate the spatial decomposition of the detecting
flavour state we have to take into account that the detector is placed at a
distance L from the origin of the coordinates, so we have

∣∣∣Ψβ(
→
L)
〉

=
∑

b

∫
d3xD

∣∣∣ b, →
xD

〉〈
b,

→
xD

∣∣∣Ψβ(0)
〉
, (29)

and after the same approximation as before (Eq. (24)) we obtain

∣∣∣Ψβ(
→
L)
〉

=
∑

b

Uβb

∫
d3xD Ψb

(
→
xD, 0;

→
vb, σxD

) ∣∣∣b, →
xD

〉
. (30)

Ψb

(
→
xD, 0;

→
vb, σxD

)
is given exactly by Eq. (25) after replacements

a → b,
→
x→ →

xD, t → 0, σxP → σxD. (31)

The amplitude of the flavour changing process is given by the overlap

Aα→β(
→
L, t) =

〈
Ψβ(

→
L)
∣∣∣Ψα(t)

〉
. (32)

We have to remember that the origin of coordinates
→
xD and

→
x are not the

same, so 〈
b,

→
xD

∣∣∣ a,
→
x
〉

= δabδ
(3)
(

→
xD +

→
L − →

x
)

, (33)

and we have

Aα→β(
→
L, t) =

∑

a

U∗
βaUαa

∫
d3x Ψ∗

a

(
→
x −

→
L, 0;

→
va, σxD

)
Ψa

(
→
x, t;

→
va, σxP

)

=

√
2σxP σxD

σ2
x

∑

a

U∗
βaUαa exp



−i
(
Eat−

→
pa

→
L
)
−

(→
L − →

va t
)2

4σ2
x



 , (34)
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where the total production and detection width is now

σx =
√

σ2
xP + σ2

xD . (35)

Everything we have done up to now can be applied either to neutrino or
neutral boson oscillations. The only assumption about the narrow wave
packets in the momentum representation (Eq. (24)) can be used in both
cases.

Next we calculate the oscillation probability for neutrinos which are rel-
ativistic (p ≫ m) and following Ref. [22] we approximate

Ea
∼= E + ξ

m2
a

2E
, pa

∼= E − (1 − ξ)
m2

a

2E
, (36)

and

va
∼= 1 − m2

a

2E2
.

E is the energy determined by kinematics of the production process for
a massless neutrino and ξ is a dimensionless quantity of order unity. We
will see (next Chapter) how the relativistic approximation for neutrinos
causes that the production and detection processes can be factorized out
and the standard quantum mechanical approach describes the oscillation
phenomenon properly.

In all realistic experiments the distance L is a fixed and known quantity,
whereas time t is not measured. The quantity which we measure is the
time integral of the probability. Now the time integral can be done, and
it is possible to avoid the not properly legitimated (in quantum mechanics)
replacement x = vt.

The time integral for
∣∣∣Aα→β(

→
L, t)

∣∣∣
2

(Eq. (34)) can be done [22] and after

normalization
(∑

β Pα→β(x) = 1
)
, instead of Eq. (11) we have

Pα→β(x) =

∞∫

0

∣∣∣A(
→
L, t)

∣∣∣
2
dt

=
∑

a

|Uβb|2 |Uαa|2 + 2
∑

a>b

∣∣U∗
βbUαaUβbU

∗
αb

∣∣ cos
(

2π
x

Losc
ab

− ϕab;αβ

)

× exp−
(

x

Lcoh
ab

)2

exp−
(

x

Lcoh

ab

)2

exp−2π2ξ2

(
σx

Losc

ab

)2

. (37)

The oscillation lengths are the same as before (Eq. (12)), namely

Losc
ab =

4πE

∆m2
ab

, ∆m2
ab = m2

a − m2
b , (38)
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and Lcoh
ab known as coherence lengths [23] are given by

Lcoh
ab =

4
√

2σxE2

|∆m2
ab|

. (39)

Comparing Eq. (37) to the usual expression for the neutrino oscillation prob-
ability we can see that two additional terms appear.

The second factor

exp−2π2ξ2

(
σx

Losc
ab

)2

(40)

is equal to unity if σx ≪ |Losc
ab | . This inequality must be satisfied to ob-

serve any oscillation. The presence of the term (40) which goes to zero for
σx > |Losc

ab | , reflects the requirement which we qualitatively discussed in the
previous Chapter: to see the oscillations, the localization of the source and
the detector must be much better determined than the oscillation length.

The first factor

exp−
(

x

Lcoh
ab

)2

(41)

was predicted long ago [23]. It is connected with the fact that two wave
packets each with different momentum and energy, have slightly different
group velocities. It means that after some time the mass eigenstate wave
packets no longer overlap and cannot interfere to produce oscillations. It
is very easy to predict the value of coherence length. If both wave packets
have width σxP along the direction of propagation and the difference between
group velocities is |va − vb| = ∆v then we can expect that after travelling a
distance L

L =
2σxP

∆v

va + vb

2
(42)

both wave packets cease to overlap each other. This L is just the coherence
length.

For relativistic neutrinos, using approximations given by Eq. (36), we
reproduce Lcoh

ab from Eq. (39), to a factor of
√

2. We can expect that the
coherence length becomes longer if the spreading of the wave packets is
taken into account. It is indeed the case as it was proved in Ref. [21].

From Eq. (39) we see that the coherence length Lcoh
ab is proportional to

σx =
√

σ2
xP + σ2

xD and not only to σxP as in Eq. (42). It means that precise

measurements of momenta of all particles appearing in the detection pro-
cess (which implies small σpD, thus large σxD) can increase the coherence
length [22, 24]. This is a wonderful example of quantum mechanics in ac-
tion. A measurement can restore the coherence. Two wave packets having
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negligible overlap in the detector (thus without detector influence they can-
not interfere, and the oscillation disappears, σx = σxP ), because of precise
measurements (σxD ≫ σxP ) , may still interfere to give rise to oscillations
(σx ≫ σxP ). This feature of quantum mechanics disagrees with causality.
However, it is not the first time when quantum mechanics is at variance with
common sense.

But Eq. (37) also restores some common sense. Measurements of mo-
menta and energies of detected particles cannot be too precise if we want
to maintain the particle oscillation. As a matter of fact, we have a longer
and longer coherence length, but on the other hand increasing σx makes
the position of the detector to be more and more undefined. If σx > |Losc

ab |
the wave packets of neutrinos νa and νb lose coherence (Eq. (40)), the os-
cillation between them is wash away. We see, particularly, that the plane
wave approach and oscillations are incompatible. For a plane wave σx → ∞
(σp = 0) and the factor (40) teaches us that oscillations disappear.

There are also approaches where the neutrino oscillation is treated in
a manifestly Lorentz invariant way [25] . The final answer is exactly the
same as was presented up to now, but for one difference. In the fully covari-
ant treatment, besides the spatial width σx, also temporal width σt should
appear. It causes only one change in the oscillation probability formula
Eq. (37). Instead of the spatial width σx, a new effective one, σab appears
in the coherence length (39) and in the factor (40)

σx → σab = σx +
v2
a + v2

b

va + vb
σt , (43)

where va and vb are group velocities of wave packets.
If σt is given by the lifetime of particles which produce neutrino,

σt = τ [25] (e.g. pions, kaons or muons) then the second term in (43) is
usually much bigger than the first one and the role of factor (40) becomes
more important. We should stress however that the independent widths of
spatial and temporal characteristics of wave packets cause that freely prop-
agating particles are not necessary on mass-shell. If we insist to have our
particle on mass shell (all the time, not for mean values exclusively, which is
equivalent with the requirement that our particle’s state satisfies the equa-
tion of motion) only the momentum (or only the energy) distribution should
be applied. Then energy (or momentum) is distributed also but in agree-

ment with the on-shell relation E =
√

p2 + m2. Such an approach, which
we also used in our presentation above is the standard one.
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4. Current density approach to particle oscillations

and the problems of states with undefined masses

A typical experiment which tries to observe particle oscillations measures
the flux of flavour β type particles in the detector localized at some distance
L from the source which produces particles with flavour α. The time of mea-
surements is not known. Usually typical measurements last hours, days or
even years (like the observation of solar neutrinos). So the most appropriate
way to find the probability (or number of particles) to cross the surface ∂A
of the detector (see Fig. 1) is to integrate the probability current density
over the surface and integrate the result once more over the duration of
measurements

Pα→β(L) =

t2∫

t1

dt

∫

∂A

→
dS ·

→
jβ (

→
x, t). (44)Source � L �A !j� Detector

1

Fig. 1. Particles with the flavour α are produced in the “Source”. After travelling

the distance L they are detected as particles with flavour β. The probability of

such detection is given by the probability current integral over the detector active

surface (δA) and over the time of measurements.

This procedure seems to be so easy and natural, that we can ask why peo-
ple try to use other, more complicated methods. The answer is very simple,
there is a problem with the correct definition of the current

jβ(
→
x, t). This current should be defined for particles which we measure, that

is K0,K0, νe or νµ. But these particles have undefined masses, and we do not
know how to define the probability current for such particles. The problem
is more general: how to define properly the creation and annihilation opera-
tors for undefined mass states [26,27]? Here we will not discuss all trials [26]
to resolve this problem in quantum field theory. We will concentrate only on
a simple example of definition of the current jβ for particles with flavour β.
For relativistic currents the problem has not been solved. For kaons it was
done in Ref. [18]. In the non-relativistic case the free Schrödinger equation
for particles with mass ma can be written in the form

i
∂Ψa

∂t
=

(
− ∆

2ma
+ ma

)
Ψa, (45)

which is the appropriate non-relativistic limit of either Klein–Gordon or

Dirac equations (E ≈ p2

2m + m). For the Schrödinger equation (Eq. (45)) we
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know how to define the probability current:

→
ja (

→
x, t) =

1

ma
Im(Ψ∗

a (
→
x, t)

→
∇ Ψa(

→
x, t)) (46)

for which the usual continuity equation is satisfied

∂

∂t
(Ψ∗

aΨa) + div
→
ja= 0 . (47)

The problem arises while we try to define the current for the states

Ψα = cΨa + dΨb and Ψβ = −d∗Ψa + cΨb , |c|2 + |d|2 = 1 (48)

which are an orthogonal mixture of two states with different masses ma and
mb. We expect that, because of mass mixing, the currents for Ψα,β will not
be conserved [18], so let us propose a modified “continuity equation” for Ψα,β

states in the form
∂

∂t
|Ψα,β|2 + div

→
jα,β= dα,β . (49)

With the following requirements, concerning the new current
→

jα,β [18], that:

(1) only “velocity” terms with one gradient are included,

(2) for ma → mb the “diffusion” terms dα,β should vanish dα,β → 0 , and

(3) the sum of both flavour currents
→
jα +

→
jβ is conserved

∂

∂t
(|Ψα|2 + |Ψβ|2) + div(

→
jα +

→
jβ) = 0 , (50)

the currents
→

jα,β and the diffusion terms dα,β can be found.

→
jα= |c|2

→
ja + |d|2

→
jb +Im

[
cd∗
(

1

ma
Ψ∗

b gradΨa −
1

mb
Ψ∗

agradΨ∗
b

)]
, (51)

and

dα = (ma − mb) Im

[
cd∗
(

2ΨaΨb −
1

mamb
(gradΨa)(gradΨ∗

b )

)]
. (52)

For
→
jβ and dβ we have

→
jβ =

→
jα (c → −d∗, d → c∗) ,

and

dβ = dα (c → −d∗, d → c∗) . (53)
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Calculations for K0 − K0mixing probability, using the definition (Eq. (44))
have been done in Ref. [18]. The standard formula (Eq. (6)), with the
same oscillation frequency ω = ∆m/2π was recovered, supporting previous
results.

There is, however, one objection concerning this approach. The flavour
currents which we use are not conserved. This nonconservation is given by
the diffusion term (Eq. (52)) which is proportional to ∆mab = ma − mb.
So, we can expect that all our calculations have been done with the some
precision. Then, if the result is proportional to ∆mab, our probability flux
calculations give the correct answer. The diffusion terms will change the
result in higher powers of ∆mab.

5. Treatment of particle oscillation in the framework

of quantum field theory

There are several papers where authors investigate the neutrino oscil-
lation problem in the framework of quantum field theory [19,20,24,28–30].
What are the main reasons for those studies?

First until now, to describe particle oscillations, we have used states with
undefined masses (Eq. (4) for kaons and Eq. (7) for neutrinos). But, as we
have seen in the previous Chapter, there is a problem of proper definition of
such states [26]. Only in the extremely relativistic limit the flavour states are
defined correctly [27]. As we will see, in quantum field theory the particle
oscillation can be treated without resort to weak eigenstates.

Secondly, we have completely neglected the effect of the production and
detection processes. It has been shown [27], that the neutrino oscillation
probability is independent from the details of the production and detection
processes only in the case of extremely relativistic neutrinos.

And finally, in real neutrino oscillation experiments only associated par-
ticles, hadrons and charged leptons are observed. Neutrinos are not prepared
and not observed directly. One can measure the energy and momentum dis-
tributions of other particles which appear in the production and detection
processes. As we will see, only the quantum field theoretical approach gives
the opportunity to express the neutrino oscillation probability in terms of
measured quantities.

Let us now describe briefly how the particle oscillation is treated in
field theory. As in Ref. [20,30] we will describe the process of neutrino
production (P ) and neutrino detection (D) as one Feynman diagram with
a virtual neutrino propagating itself on macroscopic distances between the
source and the detector. Let us consider the process [20,30]

PI → PF + l+α + να
(να→νβ)−→ νβ + DI → DF + l−β , (54)
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where PI and PF (DI and DF ) are the particles in the production (detection)
processes. �+PF PI ��x2 !xP ; tP (�� ! ��) x1DFDI e�!xD; tD��
Fig. 2. In the field theory approach to the neutrino oscillation only the source

(PI , PF , µ+) and detector (DI , DF , e−) particles are measured. Between the pro-

duction (~xP , tP ) and detection (~xD, tD) points neutrino propagates as virtual par-

ticle.

The production and detection processes are localized in coordinates
→
xP

(
→
xD) and times tP (tD) (see Fig. 2). All initial (PI , PF , l+α ) and final t(DI ,DF ,

l−β ) particles are described by wave packets. Their shapes depend on the
measurement precision in the production and detection processes. The am-
plitudes for the full process can be written in the form

AP→D =
〈
PF , l+α ;DF , l−β

∣∣∣S
∣∣∣PIDI

〉
. (55)

We can see that there are no neutrinos in the initial and final states. Only
particles which really appear in the production and detection “equipments”
are observed. Neutrinos with mass ma propagate virtually between the
source and the detector and are described by the Feynman propagators

〈0|T (νa (x1) νb (x2)) |0〉 = δab

∫
d4k

(2π)3
k̂ + ma

k2 − m2
a + iε

e−ik(x1−x2). (56)

We will not present the details of all calculations, which are straightforward
but tedious. A clear presentation can be found in Refs [20, 28, 30]. We will
concentrate only on the discussion of the final results.

First of all, neutrinos are not directly present in Eq. (55), but this is not

necessary. The amplitude AP→D depends on points
(

→
xP , tP

)
and

(
→
xD, tD

)

where neutrinos were born and detected, and this is enough to study oscil-
lations.
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Next, the amplitude AP→D depends also on amplitudes of the production
and detection processes and the full structure of AP→D is the following

AP→D =
∑

a

U∗
βaUαaAafa

(
→
xD − →

xP , tD − tP

)
, (57)

where Aa describes the process of neutrino creation and annihilation. The
standard oscillation formula is recovered only if Aa can be factorized. This
happens, when amplitudes Aa become independent of neutrino masses,
Aa = A . If all neutrinos are relativistic then Aa = A (ma

∼= 0) and the
oscillation probability can be defined.

In case of relativistic neutrinos the time integrated neutrino flavour
changing probability is given by the similar formula to Eq. (37) with two
changes. First, the dumping factor (Eq. (40)) is slightly modified and now
equals

exp−2π2ωξ

(
σx

Losc
ab

)2

, (58)

where ξ is the same quantity as before (Eq. (36)), but ω is the new factor
which depends on the production and detection dynamics and can be large
(e.g. ω ∼= 10 is possible [30]). The second modification is a little different
definition of the coherence length. Instead of (Eq. (39)) we now have

Losc
ab =

√
2ω

4E2σx∣∣∆m2
ab

∣∣ , (59)

with the same factor ω as in Eq. (58).
The oscillation length Losc

ab and the spatial width σx are given by the
same formulae as before (Eqs (38) and (35)).

There is also an additional very important difference between the present
and the former wave packet approaches. Before, σxP and σxD (Eq. (35) were
two spatial widths of neutrinos specified in some way by the production and
detection processes respectively. Now, these quantities are defined by spatial
widths of hadrons and leptons which are measured. It turns out (for detail
see Ref. [30])

1

σ2
xP

=
1

σ2
xPI

+
1

σ2
xPF

+
1

σ2
xα

,

and
1

σ2
xD

=
1

σ2
xDI

+
1

σ2
xPF

+
1

σ2
xβ

. (60)

The widths of observed particles in the production and detection processes
define the width of “the neutrino”, even if there is no place in this approach
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for physical neutrinos (only virtual ones appear). In the configuration space
(Eq. (60)) the sum of the inverse squares of widths for the observed particles
gives the inverse square of the resultant width. Then the smallest ingredient
width dominates the values of σxP or σxD. It is the opposite for the resultant
width σx, where σ2

x = σ2
xP +σ2

xD. From the definition of the momentum width
σp = 1/2σx , it follows that it is just opposite in momentum space, so then

1

σ2
p

=
1

σ2
pP

+
1

σ2
pD

, (61)

but
σ2

pP = σ2
pPI

+ σ2
pPF

+ σ2
pα, (62)

and the same for particles in the detection process. We can see explicitly,
that precise measurements of momenta of all particles involved in the neu-
trino detection process (small σpDI

, σpDF
and σpα) give a small resultant

width σpD, thus large σxD and large σx. The same subtle thing, which
we have discussed before in Chapter 3, that the final measurement is able
to recover the interference, in the present interpretation has found a much
stronger background.

6. Do particles recoiling against mixed states oscillate?

For many years oscillations of particles like kaons or neutrinos were
treated in isolation. The circumstances in which oscillating particles were
produced have not been considered. Recently a series of papers has appeared
[31,32], in which the kinematics of the production process have been taken
into account in detail. Authors claim that, because the produced oscillating
particles have neither momentum nor energy defined in explicit way, this
fact should have consequences not only for them but also for the recoiling
particles.

Let us consider the K0 production in the reaction

π−p → ΛK0, (63)

or the neutrino production in the π+ decay

π+ → µ+νµ. (64)

If the invariant mass of the initial system is denoted by M (M2 = (Pπ−+Pp)
2

or M2 = m2
π) then energies (Ei) and momenta (pi) of outgoing particles

depend on masses (mi) of K0 or νµ. In the CM system there is

pi =

[(
M2 − m2

i − m2
)2 − 4m2

i m
2
]1/2

2M
,
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and

Ei =
M2 + m2

i − m2

2M
, (65)

where m is the mass of the recoiling particle Λ or µ+.
From the four-momentum conservation in the production processes (63)

or (64), the energy and momentum of Λ or µ+ are also defined by (65).
Authors of Ref. [31] claim that if K0 or νµ oscillate, also the recoiling par-
ticles Λ or µ+ do the same. If it is true, the existence of such phenomena
could give a chance for indirect observation of neutrino oscillations which
are very difficult to observe in a direct way. However other papers have
immediately appeared [33–35] where authors have been strongly against the
oscillation of particles produced in association with kaons or neutrinos. We
will present here our approach to the problem [36] which also supports the
opinion against a visible oscillation of the associated particles. To fix nota-
tions, everything will be described for the process (63), but equally well we
can show the lack of visible muon oscillations in the pion decay (64).

First of all we would like to specify the kind of oscillation, we can consider
for Λ (or µ+). Two Λ’s with different masses do not exist. But even without
mass differences the Λ’s are produced in association with the long-live KL

and the short-live KS. As KL and KS have different masses Λ’s will be
produced in two orthogonal states with different energy and momentum.

|ΛL〉 =
∣∣∣− →

pL,M − EL

〉

and

|ΛS〉 =
∣∣∣− →

pS,M − ES

〉
, (66)

where −→p L(S) and EL(S) are the momentum and the energy of the KL(KS) in

total CM frame of the process (63). We do not know in which state |ΛL〉 or
|ΛS〉 the Λ particles are produced, so let us assume that at t = 0 they are
produced in some state which is a linear combination of both states (66)

|Λ (0)〉 = a |ΛL〉 + b |ΛS〉 , |a|2 + |b|2 = 1 . (67)

As both ingredient states have different energy they evolve with time in a
different way, so there is some chance that after some period of time the
state |Λ (0)〉 will oscillate to the orthogonal one

|Λ′

(0)〉 = −b∗ |ΛL〉 + a∗ |ΛS〉 . (68)

Do we have a chance to recognize both states |Λ (0)〉 and |Λ′

(0)〉? In the
neutral bosons system, because of the strangeness conservation, K0 and
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K0interact strongly in a completely different way and are easily distinguish-
able. Here we have the same particle Λ with only one decay width ΓΛ. In
spite of that, in principle we can distinguish |Λ (0)〉 from |Λ′

(0)〉 but in a
much more sophisticated way. Λ’s in both states will decay in the same
way (mostly to pπ−). But because two states |ΛL(S)〉 have slightly different
momenta (in CM frame) also the angular distribution (e.g. for protons) will

be slightly different. As two states |Λ (0)〉 and |Λ′

(0)〉 are various mixtures
of |ΛL(S)〉, the angular distribution of the protons in CM frame which come

from |Λ (0)〉 or from |Λ′

(0)〉 will be different.
We can see that in principle both states (67) and (68) could be distin-

guished. But do we have anything which may be distinguished? In other
words, if we have flux of Λ’s produced with kaons in the reaction (63), will

their number in the state |Λ (0)〉 or |Λ′

(0)〉 change with distance from the
reaction point? For simplicity we will present the answer to this question in
the plane wave language. We know that it is not precise, but the value of
oscillation length obtained in this way is correct. The full wave packet ap-
proach, together with particle correlations (the EPR effect) will be presented
in the next Section.

Let us assume that at t = 0, Λ’s are produced in the pure state |Λ (0)〉 (in
the reaction (63), the coefficients a = b = 1/

√
2 , but it is more transparent

to leave them undefined). We will consider the production of Λ’s and the
decay Λ → pπ− together. The amplitude for Λ production and decay after a
period of time t can be written in a form, where two indistinguishable ways
of reaching the final state are added coherently [37]

A
(
Λ → pπ−

)
= A (Λ → ΛL) e−i(mΛ−i Γ

2
)τLA

(
ΛL → pπ−

)

+A (A → ΛS) e−i(mΛ−i Γ
2
)τSA

(
ΛS → pπ−

)
, (69)

where A (Λ → ΛL,S) are amplitudes for Λ production in the states |ΛL(S)〉,
A (ΛL,S → pπ−) are decay amplitudes from both states, mΓ and Γ are mass
and decay width of the Λ. The different proper times which elapse in the Λ’s
rest frames during the propagation are the crucial points in our discussion.

If we denote

A (ΛS → pπ−)

A (ΛL → pπ−)
= ηSL

= |ηSL| eiρLS , a = |a| eiϕa , b = |b| eiϕb , (70)

the probability for Λ production and decay from the initial state |Λ (0)〉 can
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be written

P
(
Λ → pπ−

)
=
∣∣A
(
Λ → pπ−

)∣∣2 =
∣∣A
(
ΛL → pπ−

)∣∣2

×{|a|2 e−ΓτL + |b|2 |ηSL|2 e−ΓτS

+2 |abηLS| e−
1

2
(τL+τS)Γ cos [mΛ (τL − τS) + ϕb + ρLS − ϕa]}.

(71)

The oscillation can possibly arise from the term mΛ (τL − τS). If instead
of Λ we consider the production and decay of the initial kaon a similar
formula would be obtained but with one, as we will see, crucial difference.
As masses of KL −KS bosons are different, the oscillation factor is equal to
mLτL − mSτS.

How to calculate the proper times? They are measured in different
Lorentz frames, in the rest frames of ΛL and ΛS. The basic principle of
quantum mechanics — the superposition principle — tells that we can add
two states at the same time

|Ψ(t)〉 = |ϕ1(t)〉 + |ϕ2(t)〉 . (72)

In the position representation we add wave functions

〈
→
x
∣∣∣Ψ(t)

〉
=
〈

→
x
∣∣∣ϕ1(t)

〉
+
〈

→
x
∣∣∣ϕ2(t)

〉
(73)

in the same position
→
x and at the same time t. It means that the proper

times are not suitable variables. We have to add wave function at the same
point

(
→
x, t
)

of the same Lorentz system. It is necessary to transform τL and

τS to the same common frame. The CM frame for the whole π−p → Λ0K0

process is the most convenient in this place.
For convenience, we consider only “the one dimensional” problem

→
x= (x, 0, 0). Then Lorentz transformations between the rest frames for
ΛL(S) and the CM frame are given by

τL = γL (t − βLx) , ξL = γL (x − βLt) ,

and

τS = γS (t − βSx) , ξS = γS (x − βSt) ,

where

γL,S =
EL,S

mΛ
, βL,S =

pL,S

EL,S
. (74)

At the beginning t = 0, x = 0, and two “ingredients” of the Λ particle, ΛL

and ΛS are created at τL = τS = 0 and ξL = ξS = 0. But particles in two
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Fig. 3. Relation between CM frame for the production process π−p → K0Λ0 and

the two rest frames for the ΛL and ΛS which move with different speeds. In classical

mechanics for t > 0 the ΛL and ΛS are in different points.

states ΛL and ΛS have different speeds and after time t they are in different
points in the CM frame (see Fig. 3).

In classical mechanics, for point particles, it is impossible to have a
situation that two particles which were born in the same point and at the
same time but moving with different speeds would be still in the same,
common points at the same time later (Fig. 3). Accordingly to our previous
statement (Eq. (73)) such particles will not interfere for any time t > 0. But
in QM particles are described by wave packets (in the limiting case-plane
waves). We do not know at what place the particle was born inside the
wave packet and what was the speed of it (see Fig. 4). It is not strange
that different parts of two wave packets still interfere. Inside wave packets,
energy and momentum are distributed in agreement with QM prescriptions
and it is not a surprise that they can be not conserved [32].CM frame��S �Lx = 0 �L �S�L �S�L = 0 �S = 0�L + �S CM frame
Fig. 4. The same as in Fig. 3, but in quantum mechanics where the ΛL and ΛS

particles are described the wave packets. Even if the centres of the wave packets

at the same time are in different points (like for classical particle in Fig. 3) the two

states for ΛL and ΛS may interfere. The interference will be possible if the two

wave packets overlap.

As we remember, in the wave packet approach, to find the probability as
a function of position it is not necessary to assume any relation between t
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and x. We simply integrate over t [36]. It is possible, however, to find such
a relation between t and x that the oscillation length, which we obtain in
this frame, will be (to the first order) the same as in a proper wave packet
approach. Such a frame was found [35]. It is the CM frame for ΛL and ΛS,
where their momenta are opposite p∗L = − p∗S (see Fig. 4). The velocity β of
the origin of ΛL − ΛS center of mass frame in the laboratory system can be
easily found from the relation

γ (pL − βEL) = p∗L = −p∗S = −γ (pS − βES) , (75)

so

β =
pL + pS

EL + ES
=

EL − ES

pL − pS
. (76)

Then the movement of the origin of the ΛL−ΛS CM frame in our laboratory
system is described by the obvious relation

x = βt (77)

with β given by Eq. (76).
Using this classical relation Eq. (77), the proper times τLand τS (from

Eq. (74)) are given by

τL = γL

(
1

β
− βL

)
x,

τS = γS

(
1

β
− βS

)
x (78)

and taking Eqs (74) and (76) we have [35]

τL − τS = x

[
γL

(
1

β
− βL

)
− γS

(
1

β
− βL

)]
= 0 (79)

and the oscillation length (Eq. (71)) is infinitely large. If we calculate, in a
analogous frame, the oscillation factor for kaons we obtain [35]

mLτL − mSτS = mLγKL

(
1

βK
− βKL

)
− mSγKS

(
1

βS
− βKS

)

=
m2

L − m2
S

pKL
+ pKS

=
mL+mS

2 (mL − mS)

(pKL
+ pKS

)/2
=

m∆m

p
≡ ∆m2

2p
, (80)

which reproduces the well known result for the oscillation frequency (Eq. (6))

∆mt = ∆m
x

v
=

m∆m

mv
x =

∆m2

2p
x . (81)
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The relations (79) and (80) which characterize the oscillation length are
obtained in this special Lorentz frame. In other frames, these results are
correct only to first order in ∆m. Instead of checking the dependence of the
oscillation length on the Lorentz frame, in the next Section we will present
the more complete wave packet approach. Here we have found that the os-
cillation length of particles recoiling against mixed states is very large. It
means that even if we consider the oscillation of such particles (Λ or µ) sep-
arately, without connection to kaons or neutrinos it is impossible to observe
such oscillations on any acceptable terrestrial distance. Now we consider the
oscillation of both particles (Λ and K or µ and ν) together.

7. Correlations for two oscillating particles, EPR effect

Up to now we have considered the oscillation of one particle without
taking into account possible correlations which may appear for two or more
particles in the final states from which at least one oscillates in the tradi-
tional way. There are many such cases. Some of them, with one oscillating
particle, have been discussed above

(
π−p → Λ0K0 or π+ → µ+νµ

)
. There

are also interesting processes with two oscillating bosons e.g. Φ → K0K0,
Ψ (3770) → D0D0 or e+e− → Υ (4s) → B0B0.

Let us describe the last of them. At t = 0 the state of two bosons is a
combination of states with definite masses

∣∣B0B0
〉
t=0

=
∑

a,b

ηabRBaRBb |BaBb〉t=0 , (82)

where RBa and RBb are elements of unitary matrix which describes the
mixing. The momentum conservation in the production process gives alto-
gether n (n + 1)/2 independent momenta for all n2 pairs BaBb. Sometimes
there are additional correlations between various mass states Ba and Bb

in Eq. (82). If, for example, the B0B0pairs are produced by the Υ (4s)
decay then the state |B0B0〉 must be totally antisymmetric [38,39] (since
Υ (4s) has intrinsic spin s = 1 but B mesons are spinless, the B pair is in a
p-wave). The factors ηab in Eq. (71) are responsible for such correlations
(see for details Ref. [36]).

Each state |Ba(b)〉 is described by a wave packet which in the momentum
representation is given by

〈
a,

→
p
∣∣∣Ba

〉

t=0
=

∫
d3p Ψa

(→
p ,

→
p a, σp

) ∣∣∣a,
→
p
〉

, (83)
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where Ψa

(→
p ,

→
p a, σp

)
for simplicity is taken as the Gauss function

Ψa

(→
p ,

→
p a, σp

)
=

1
[√

2πσp

]3/2
exp−

(→
p −

→
p a

)2

4σ2
p

, (84)

with
→
pa — the average momentum and σp — the width of the distribution.

After time t (taking into account the particle decay) the state |Ba〉 will
evolve into

|Ba〉t=0 → |Ba (t)〉 = e−iHt |Ba〉t=0

= e−
t

2τa

∫
d3p Ψa

(→
p ,

→
p a, σp

)
e−iEa(

→

p )t
∣∣∣a,

→
p
〉

, (85)

where τa = 1
Γa

(
Ea

(→
p a

)
/ma

)
is the lifetime of the “a” particle in a chosen

Lorentz frame.
The states |Ba (t)〉 in the position representation will be given by

|Ba (t)〉 = e−
t

2τa

∫
d3x Ψa

(
→
x, t;

→
va, σBP

) ∣∣∣a,
→
x
〉

, (86)

where Ψa

(
→
x, t;

→
va, σBP

)
is the Fourier transform of the momentum distri-

bution (Eq. (84)) and is given by Eq. (25). Let us assume that two detectors

are placed at points
→
L1 and

→
L2. The detectors will measure the particles

with beauty “1” and “2” (1, 2 = B0, B0) respectively.
The states of the B mesons measured by the two detectors are defined

by

∣∣∣∣B1

(
→
L1

)〉
=
∑

c

R1c

∫
d3x1 Ψc

(
→
x1 −

→
L1, 0;

→
vc, σ1D

) ∣∣∣c, →
x1

〉
, (87)

and

∣∣∣∣B2

(
→
L2

)〉
=
∑

d

R2d

∫
d3x2 Ψd

(
→
x2 −

→
L2, 0;

→
vd, σ2D

) ∣∣∣d,
→
x2

〉
. (88)

Notations in Eqs (87) and (88) are similar to previously presented in Eq. (30).
We can find the amplitude for two oscillating particles in the same way as

before (Chapter 3). Then the amplitude of the process where two particles
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B0 and B0 produced at t = 0 at point
→
x= 0 are detected as particles with

beauty “1” (“2”) at point L1(L2) at t = tB
(
tB
)
, is the following

AB0→B1,B0→B2
(
→
L1, tB ;

→
L2, tB) =

〈
B1

( →
L1

)
, B2

( →
L2

)∣∣∣B0
(
tB

)
, B0

(
tB

)〉

= N
∑

a,b

R∗
1aRBaR

∗
2bRBbηab exp

{
−1

2

(
tB
τa

+
tB
τb

)}

× exp

{
−i

(
EatB−

→
pa

→
L1

)
− i

(
EbtB−

→
pb

→
L2

)}

× exp





−

(
→
L1 − →

va tB

)2

4σB
−

(
→
L2 − →

vb tB

)2

4σB





, (89)

with the normalization factor

N =

[
4σ1Dσ2DσBP σBP

σBσB

]1/2

, (90)

and the effective total widths

σB =
√

σ2
1D + σ2

BP , σB =
√

σ2
2D + σ2

BP
. (91)

The amplitude (89) can be used in various situations. If we apply the for-
mula (89) to the description of the EPR effect in the Υ (4s) → BB decay
(Refs [38,39]), the collapse of the BB wave function is included in a nat-
ural way. Our approach is an alternative to the amplitude description
(Refs [38,39]) and, in case of particle mixing, takes into account the EPR
correlations in a much more transparent way (see Ref. [36] for detail).

The formula (89) can also be used for the µνµ pair “oscillation” from the
π → µνµ decay. In this case only one particle, the neutrino, mixes. Then,
in the application of Eq. (89) to our present purpose, we have to take one
diagonal mixing matrix (e.g. R2b = δ2b, RBb = δBb) and ηab = δab. Usually
neutrinos are considered as stable or very long living particles. Let us also
assume that the “oscillation” of the muons is measured on a distance much
shorter than their decay length. Then both factors in Eq. (89), which are
responsible for particle decay, may be neglected. In such circumstances, the
probability that neutrinos produced as νµ = α type together with muons at
→
x= 0 are observed as a β-type neutrino at distance Lν and the muons at
distance Lµ, after integrating over times is given by (for details see Ref. [36]),
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Pβα (Lµ, Lν) =

[
∑

a

Uαa

vµavνa

]
−1∑

ab

√√√√
4(

v2
µa + v2

µb

)
(v2

νa + v2
νb)

×UβbU
∗

αbU
∗

βaUαa exp−2πi

(
Lµ

Lµ osc

ab

)
exp−

(
Lµ

Lµ coh

ab

)2

exp−
(

σµx

Lµ osc

ab

)2

Nµ
ab

× exp−2πi

(
Lν

Lν osc
ab

)
exp−

(
Lν

Lν coh
ab

)2

exp−
(

σνx

Lν osc
ab

)2

Nν
ab . (92)

The oscillation
(
Lµ osc

ab

)
and coherence (Lµ coh

ab )lengths, and the factor Nµ
ab

for muons are (for neutrinos the appropriate expressions are similar)

Lµ osc
ab = 2π

[

(Eµa − Eµb)
vµa + vµb

v2
µa + v2

µb

− (pµa − pµb)

]−1

, (93)

Lµ coh
ab = 2σµx

(
v2
µa + v2

µb

(vµa − vµb)
2

)1/2

, (94)

and

Nµ
ab = 4π2

(Eµa − Eµb)
2
(
v2
µa + v2

µb

)

[
(Eµa − Eµb) (vµa + vµb) − (pµa − pµb)

(
v2
µa + v2

µb

)]2 , (95)

where Eµa(b), pµa(b) and vµa(b) are energy, momentum and velocity of the
muon associated with the neutrino a(b).

First of all, we can see from Eq. (92) that the muon oscillation disappears
if we do not measure separately the neutrinos with flavour β. In such case
the probability given by amplitude (92) is constant in Lµ and Lν and can
be normalized ∑

β

Pβα (Lµ, Lν) = 1 . (96)

But even if we measure the β-type neutrino, the muon oscillation will not
be seen. We can prove this statement because we know precisely the muon
oscillation length (Eq. (93)).

If we denote the difference between the masses of two neutrinos a and b,
as

ma − mb = ∆mab, (97)

the inverse of the oscillation length may be decomposed in powers of ∆mab.
For muons, the term proportional to the first power of ∆mab vanishes, and

(2π)
(
Lµ osc

ab

)−1
= −2ζ2

(
1 − v2

a

)
p−1

a (∆mab)
2 + . . . , (98)
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where ζ is the factor in the decomposition

pb = pa

(
1 + ζ

(
∆mab

pa

)
+ ρ

(
∆mab

pa

)2

+ . . .

)
, (99)

while for neutrinos there is

(2π) (Lν osc
ab )−1 =

∆m2
ab

2pa
+ . . . . (100)

and we reconstruct the previous formula for mixing particle oscillation length
Eqs (12), (38).

From Eq. (98) it follows that Lµ osc
ab is very large and for the acceptable

neutrino mass difference the muon oscillation length is much bigger than its
decay length

Lµ osc
ab ≫ cτµ ≈ 660m . (101)

We can see that even if the neutrino and the muon are both measured,
the oscillation of muon will not be observed. Taking into account opinions
presented in the latest exchange of views [31–35] we agree with the statement
that, in practice, oscillations of µ or Λ0 particle are impossible to observe.

8. Summary

Let us briefly summarize the main results of this review paper

(i) Many conceptual difficulties arise in the plane wave approach to the
particle oscillation problem. This approach gives us the shortest way
to get the correct expression for the oscillation length, but it fails if
we try to describe other aspects of the particle oscillation.

(ii) In real oscillation experiments neither energy nor momentum are the
same for all eigenmass particles.

(iii) The wave packet approach

— gives the proper oscillation length Losc
ab ,

— introduces the concept of the coherence length Lcoh
ab , such that for

distances greater than Lcoh
ab the particle oscillation disappears,

— in the proper way, takes into account the fact that to observe oscil-
lation, the sizes of particles source and detector must be much smaller
than the oscillation length,

— gives a possibility to understand in a simple way the phenomenon,
that a precise measurement of the detected particles momenta may
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restore the coherence between various eigenmass states and, as a con-
sequence, the oscillation between particles,

— temporal and spatial distributions in the wave packet are correlated
by the requirement, that particles are on mass shell. Independent
distributions for time and space give a wave packet which does not
satisfy the free particle wave equation.

(iv) A problem arises with the proper definition of the Fock space for
flavour states. As a consequence, the defined probability currents for
such states are not conserved. Then the calculated flavour changing
probability is correct only to the first power of the mass difference ∆m.

(v) The most adequate approach to particle oscillation is given by quan-
tum field theory. It can be seen especially for neutrinos, which are
“neither prepared nor observed”, and only propagate between sources
and detectors. In this approach

— production and detection processes are fully taken into account as
in real experiments,

— physical quantities are expressed in terms of measured quantities,
like momenta and energies of hadrons or charged leptons in the neu-
trino creation and detection processes,

— flavour states, which are not well defined, are not necessary to
describe the oscillation process. Only the mass eigenstates and the
elements of the mixing matrices may be used,

— it is clear in which circumstances the production and detection am-
plitudes can be factorized out and the separate oscillation probability
be defined,

— the oscillation of non-relativistic particles can be described in the
proper way.

(vi) We have specified the meaning of oscillation of particles which recoil
against mixed states (as Λ in the process π−p → Λ0K0 or µ in the
decay π+ → µ+νµ). Even if we consider oscillations of such particles
separately, without connection to kaons or neutrinos, it is impossible
to observe these oscillations on acceptable terrestrial distances.

(vii) We have found the general amplitudes which describe the oscillation
of two particles in the final states. These amplitudes can be applied
to

— description of the EPR correlations in decays like Υ (4s) → BB or
Φ → KK, including the mysterious collapse of the wave function in a
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natural way and giving the possibility to discuss the relativistic EPR
correlations on distances longer than coherence lengths.

— description of two particles oscillation from which only one has
indeterminate mass like ΛK0 or µνµ . Oscillations of particles with
known mass (e.g. Λ or µ) can be defined only if, in the same time,
flavours of the unknown mass particles are measured (K0 or νµ). In
this case, however, the oscillation length of particles with determinate
mass is very large, much larger than the particle decay length, which
makes it impossible to observe their oscillation in practice.

I thank J. Sładkowski for valuable remarks and M. Czakon and J. Gluza
for reading the text.
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