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Phonon activated diffusion of an interstitial impurity in one dimensional
cosine potential is discussed with the use both of Langevin (continuous dif-
fusion model) and Fokker–Planck (jump-diffusion model) equations. Jump
rate, jump length and diffusion coefficient as a function of temperature at
various barrier heights are calculated. There is some difference between re-
sults provided by these two models. Therefore the question arises to what
extend these two models of diffusion are equivalent.

PACS numbers: 05.40. +j, 05.60. +w, 66.30. Jt

1. Introduction

Thermally activated transition between local minima of the potential
energy is a process of great importance in diffusion in solids. The problem
has been studied by many investigators to retrieve various features of the
diffusion process.

Among others a continuous diffusion model was proposed and inten-
sively studied [1]. The continuous diffusion approach rests on the general-
ized Langevin equation. From a microscopic point of view impurity diffusion
results from complex interplay between impurity atom and the surrounding
crystalline lattice. Therefore many attempts have been made to derive the
Langevin equation from first principles. The one we mention here is due to
Tsekov et al. [2].

An independent and widely employed microscopic study of diffusion in
solids rests on the Fokker-Planck equation in an external field (also called
Klein–Kramers equation). Under assumption of simple periodic potential
and uniform dumping Ferrando et al., Ref. [3], calculated the jump rate and
jump length distribution.
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The diffusion in crystal consists of jumps from well to well under influ-
ence of a phonon bath. The aim of the present paper is: First to rederive
generalized Langevin equation for interstitial atom in simple cubic lattice.
The method we use is very close to that of Tsekov et al. [2]. Then we
make some approximations concerning dumping as well as stochastic force
and solve resulting stochastic equation numerically obtaining jump rate and
jump length distribution. Secondly, we derive the Fokker–Planck equation
for probability density. We solve it numerically and generalizing results of
Ferrando et al. results to more realistic potential and damping, once more
calculate jump rate and jump length distribution. Results provided by both
methods are compared for various values of friction and temperature.

2. Generalized Langevin equation

Our system consists of a single interstitial impurity atom in a simple
cubic lattice of lattice constant a. The lattice dynamics is described in the
harmonic approximation. Its energy per one mode of vibrations in terms of
normal coordinates a~q is

Hl = 1
2

∑

~q

ȧ~q ȧ∗~q + 1
2

∑

~q

ω2(~q)a~q a∗~q . (1)

Impurity energy when expanded with respect to deviation of the lattice
atoms from their equilibrium positions ~rl, takes the form [4]

Hi = 1
2M~̇r

2
+ V (~r) +

∑

~q

f~q(~r)a~q, (2)

where potential energy of the impurity

V (~r) =
∑

l

v(~r − ~rl) ,

f~q(~r) = − 1√
Nm

∑

l

~e·∇v(~r − ~rl)e
i~q·~rl (3)

and ~e denotes polarization vector of the lattice wave, m(M) is the mass of the
lattice (impurity) atom. Radius vector of the interstitial atom ~r and normal
coordinates of lattice vibration a~q constitute set of dynamical variables of the
whole system. They satisfy the following equations of motion (e.g. Lagrange
equations)

ä~q + ω2(~q)a~q + f∗
~q (~r) = 0 , (4)

M~̈r + ∇V (~r) +
∑

~q
a~q∇f~q(~r) = 0 . (5)
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Under initial conditions a~q(0) = A(~q) cos(δ(~q)) and ȧ~q(0) = A(~q) sin(δ(~q))
the solution of the first one reads

a~q(t) = A(~q) cos[ω(~q)t − δ(~q)] − 1

ω(~q)

t
∫

0

f∗
~q (~r(s)) sin[ω(~q)(t − s)]ds .

After substitution into Eq. (5) we obtain the generalized Langevin equa-
tion

M~̈r = ~F0(~r) + ~Fd(t) + ~Fs(t) . (6)

On the right hand side of Eq. (6) there are three forces; ~F0(~r) = −∇V (~r)
comes from static periodic potential,

~Fd(t) =
∑

~q

1

ω(~q)
∇f~q(~r)

t
∫

0

f∗
~q (~r(s)) sin[ω(~q)(t − s)]ds (7)

represents dumping force, which after integrating by parts is rewritten as
follows

~Fd(t) = −
∑

~q

1

ω2(~q)
∇f~q(~r)

t
∫

0

∇f∗
~q (~r(s)) · ~̇r(s) cos[ω(~q)(t − s)]ds + ~F

(1)
d (t) .

(8)

In the following we neglect the term ~F
(1)
d , which stands for correction of

the second order in V (
→
r ) to the periodic force ~F0(~r). The last term on the

right hand side of Eq.(6)

~Fs(t) = −
∑

~q

A(~q)∇f~q(~r) cos[ω(~q)t − δ(~q)] (9)

is the stochastic force. That kind of generalized Langevin equation of motion
for impurity has already been derived in Refs [2] and [5]. At each ~q within
the first Brillouin zone both A(~q) and δ(~q) are random numbers, A(~q) having
the Maxwell–Boltzmann distribution function and δ(~q) uniform distribution
function within [0, 2π] range.

3. One dimensional motion in cosine potential

To proceed further we have to specialize potential energy function. From
a general Fourier expansion of a periodic potential

V (~r) =
∑

~G

V ~Gei ~G·~r ,
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where ~G is a reciprocal lattice vector, we consider four lowest order terms

V (~r) = C + V0

[(

2πx

a

)

+ cos

(

2πy

a

)

+ cos

(

2πz

a

)]

.

As sooner or latter we will not avoid reduction of the problem to one
dimension, we can do it now as well by assuming that the interstitial atom
can visit interstitials along y = a/2, z = a/2 line only. It is also convenient
to take the interstitial at x = a/2 as the origin of x- coordinate. In that
case conventional form of the potential is

V (~r) = V0

[

1 − cos

(

2πx

a

)]

and

f~q(x) =
2πV0

a
√

Nm
ex sin

(

2πx

a

)

eiaqxE(x/a) ,

where E(x) stands for integer part of x. Now we are ready to calculate x-
components of the forces mentioned explicitly. The periodic force becomes
simply

F0(x) = −2πV0

a
sin

(

2πx

a

)

. (10)

The stochastic force in Eq. (9) now reads

Fs(t)=

(

2π

a

)2 V0√
Nm

cos

(

2πx

a

)

∑

~q

A(~q)eiaqxE(x/a) cos[ω(~q)t−δ(~q)] . (11)

Finally after substituting f~q(x) into Eq. (8) the dumping force can be
expressed as

Fd(t) = −
(

2π

a

)4 V 2
0

m

t
∫

0

cos

(

2π

a
x(t)

)

cos

(

2π

a
x(s)

)

× 1

N

∑

~q

1

ω2(~q)
eiaqx∆(t,s) cos[ω(~q)(t − s)]

.
x (s)ds ,

where ∆(t, s) = E
[

x(t)
a

]

− E
[

x(s)
a

]

.

To perform summation over wave vector ~q we assume an isotropic Debye
model for a longitudinal acoustic phonons i.e. ω(~q) =vs |~q| , vs being sound
velocity in crystal. Summation over ~q within Debye sphere yields

Fd(t) =

(

2π

a

)2 V 2
0

mv2
s

t
∫

0

cos

(

2π

a
x(t)

)

cos

(

2π

a
x(s)

)

1

∆(t, s)

×{Si[qD(a∆(t, s) − vs(t − s))] + Si[qD(a∆(t, s) + vs(t − s))]} ẋ(s)ds ,(12)
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where Si(t) =
∫ t
0

sin(x)
x dx stands for integral sine function. Eq. (12) can be

rewritten in terms of friction kernel Φ(t, s) as

Fd(t) = −
t

∫

0

Φ(t, s)ẋ(s)ds ,

obeying the fluctuation dissipation theorem

〈Fs(t)Fs(s)〉 = kBTΦ(t, s) . (13)

Under above mentioned restrictions it is enough to consider x-component
of Eq. (6) only. As a result we obtain one dimensional generalized Langevin
equation

Mẍ = F0(x) + Fd(t) + Fs(t) . (14)

4. Langevin equation

Available methods of solution of stochastic equations fail to treat Eq. (14).
However, if the thermal energy kBT of the impurity is smaller than the height
of the potential barriers significant simplification is possible. It is because
usually the motion of the impurity is confined to a single interstitial. If t and
s are within that time then ∆(t, s) = 0. Only after a time long enough to
accumulate action of the random force the impurity will drive over the bar-
rier into another interstitial. Therefore one can say that a∆(t, s) ≪ vs(t−s)
holds for most of the time, so we can set approximately

1

∆(t, s)
{Si[qD(a∆(t, s) − vs(t − s))] + Si[qD(a∆(t, s) + vs(t − s))]}

−→
∆(t,s)→0

2aqD
sin(qDvs(t − s))

qDvs(t − s)
.

With the above approximation dissipative force from Eq. (12) becomes

Fd(t) = −2a

(

2π

a

)2 V 2
0

mv3
s

×
t

∫

0

cos

(

2π

a
x(t)

)

cos

(

2π

a
x(s)

)

sin(qDvs(t − s))

(t − s)
ẋ(s)ds . (15)
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Also stochastic force in the form of Eq. (11) precludes numerical solution
of Eq. (14) because of a large number (2N) of random numbers needed and
sum over ~q as well. The remedy is to replace Fs(t) as given by Eq. (11) with

Fs(t)= 2V 0

(

2π

a

)

√

aqDkBT

mv2
s

cos

(

2πx

a

)

cos (ηqDvst − 2πδ) , (16)

where η and δ stand for random numbers of uniform distribution within [0, 1]
range. The random quantity ηqDvs mimicks variety of phonon frequencies.
Dissipative force, Eq. (15) and stochastic force, Eq. (16) are consistent with
the fluctuation dissipation theorem, Eq. (13). Damping force as given by
Eq. (15) is still, due to finite memory kernel, hardly tractable. Further
approximation is, therefore, needed, it is sin(qDvsτ)/τ ∼= πδ(τ), which be-
comes correct for qDvs → ∞. As a result we get position dependent and
memory-free damping

Fd(t) = −πa

(

2π

a

)2 V 2
0

mv3
s

cos2

(

2π

a
x(t)

)

ẋ(t). (17)

It is now convenient to express Eq. (14) in terms of dimensionless vari-

ables; coordinate x
′

= 2πx/a and time t
′

= 2πt/T0, where T0 = a
√

M/V0

is a period of small oscillations of the interstitial atom. With that in mind
(and after dropping prime sign) we can summarize the results in the form
of the following stochastic equation

ẍ = − sinx − R cos2 xẋ + F cos x cos(ηωt − 2πδ), (18)

where amplitudes of dissipative and random forces are

R = 2π2 V0

mv2
s

√

V0

Mv2
s

and

F = 2
(

6π2
)1/6

√

kBT

mv2
s

,

respectively and ω = (3/4π)1/3
√

Mv2
s/V0.

Let us stress that in Eq. (18) dissipative force is evaluated as if stochas-
tic force were delta-correlated in time which is an approximation. Now the
problem of numerical solution of Eq. (18) arises. Several algorithms to in-
tegrate stochastic differential equations have been proposed. For a list of
references Ref. [7] should be consulted, see also Ref. [8]. In particular Man-
nella in Ref. [7] developed an one step collocation algorithm to solve sys-
tem of autonomous equations with stochastic force being white or colored
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Gaussian process. He quotes some objection against other methods like
predictor-corrector method or Runge–Kutta algorithm. The crucial point in
solution procedure is to deal with stochastic term in the equation. The most
strightforward method one can imagine is to apply any procedure of solving
differential equation with a particular realization of the stochastic process
kept unchanged and then averaging over all (at least many) realizations. It
is, however, extremely time consuming. A simple and realistic approach is
by discretizing time and using any algorithm for advancing solution from
tnto tn+1. At each time step one particular realization of the random pro-
cess is independently chosen. In general it is believed that the shorter the
time step assumed the better approximation for solution is obtained.

We will follow that method with the Runge–Kutta algorithm, however,
we choose the time step relatively long. The reason is that resonance between
the own frequency of impurity and some frequencies of a stochastic force in
Eq. (18) may result in gaining energy very efficiently from the thermal bath.
If it happens and lasts for a time not small in comparison with the period
2π/ηω then the impurity has a high probability of being resonantly activated
over barrier.

At any time the solution can be split in two terms x(t) = 2πl(t) + xc(t),
l(t) stands for cell number (lattice constant in the present units is 2π) and
−π ≤ xc(t) ≤ π. We are interested in events when impurity hops out of
the cell l1 and then thermalizes in another cell l2. We count the event as
jump of multiplicity n = l2 − l1. Having known number Nn of jumps of
length n in time t we obtain the total jump rate (i.e. number of jumps per
√

a2M/V0/2π seconds)

rj =
1

t

∞
∑

n=1

(Nn + N−n) (19)

and the probability Pn of a jump of length of 2πn lattice constant (n =
1, 2, 3 . . .)

Pn =
(Nn + N−n)

∑∞
n=1(Nn + N−n)

. (20)

Diffusion coefficient, when expressed in a
√

V0/M/2π units, is related to
jump rate and jump length probability given above through

D = (2π)2rj

∞
∑

n=1

n2Pn. (21)
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5. Fokker–Planck equation

A description, under some assumptions, equivalent to Eq. (14) is given in
terms of the probability P (x, v, t)dxdv that the dynamical variables x, v = ẋ
( the same that were used in Eq. (18) )are in the intervals (x, x + dx) and
(v, v + dv) respectively. Following van Kampen [6] an equation of evolu-
tion for the probability density P (x, v, t) in terms of correlation function of
stochastic force reads

∂P (x, v, t)

∂t
= L0P (x, v, t)

+F 2

∞
∫

0

cos x
∂

∂v
eτL0 cos x〈f(t)f(t − τ)〉 ∂

∂v
e−τL0dτP (x, v, t) .

The operator

L0 = −v
∂

∂x
+ sin x

∂

∂v
+ R cos2 x

∂

∂v
v

is associated with the deterministic evolution of the system and f(t) =
cos(ηωt − 2πδ) is (because of random numbers η and δ ) the stochastic
function of time. To proceed further we must, like before, approximate cor-
relation function 〈f(t)f(t− τ)〉 ∼= π

2ωπδ(τ). The above equation of evolution
reduces then to the well known Fokker–Planck equation

∂P (x, v, t)

∂t
= −v

∂P (x, v, t)

∂x
+ sinx

∂P (x, v, t)

∂v

+R cos2 x
∂

∂v

(

v +
kBT

V0

∂

∂v

)

P (x, v, t) . (22)

The most efficient numerical method to solve the Fokker–Planck equation
(22) is the matrix continued fraction method (MCFM), developed by Risken,
Ref. [9]. As shown by Ferrando et al. in Ref. [3] MCFM allows to calculate
the dynamic structure factor

S(q′, ω′) =
1

2π

∞
∫

−∞

dx

∞
∫

−∞

dte−i(ω′t−q′x)

expressed in terms of dimensionless wavenumber q
′

= aq/2π and frequency

ω
′

= ω
√

Ma2/kBT/2π (in the following we will omit prime sign). Note that
the Foker–Planck equation in Ref. [3] is written in terms of time we call tF
which is related to ours time tO in e.g. Eq. (18) and to real time tR through

tF =

√

kBT

V0
tO = 2π

√

kBT

Ma2
tR. (23)
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In the case of sufficiently high barriers S(q, ω) is related to jump rate

rj (number of jumps per time
√

Ma2/kBT/2π seconds) and jump length
probability Pn through

rj = 2

1/2
∫

0

f(q)dq , (24)

and

Pn = − 4

rj

1/2
∫

0

f(q) cos(2πnq)dq , (25)

where

f(q) =

√

2S(q, ω)

−∂2S(q,ω)
∂ω2 |ω=0

. (26)

From equations (21), (24) and (25) it follows that the diffusion coefficient
can be expressed as

D = (2π)2
d2f(q)

dq2

∣

∣

∣

∣

q=0

,

which in turn, due to Eq. (26), gives the following relation

D =
(2π)2limω→0ω

2 ∂2S(q,ω)
∂q2

∣

∣

∣

q=0

limω→0ω2

√

−1
2S(q, ω) ∂2S(q,ω)

∂ω2

∣

∣

∣

q=0

(27)

between dynamic structure factor and diffusion coefficient. There is a dif-
ference between Eq. (27) and corresponding incorrect relationship (43) from
Ref. [10]. For more details one should consult Appendix.

6. Results and discussion

Here we present some results of preliminary numerical calculations. First
of all we consider the model of Ferrando et al. [3] which corresponds to the
following Langevin equation

ẍ = − sin x − γẋ + F cos x cos(ηωt − 2πδ), (28)

with homogeneous friction. In Fig. 1 the jump rate is plotted as a function
of friction parameter γ for medium barrier height (2V0 = 6kBT or g = 1.5
in terms of Ferrando parameters). The full lines (here and in the following)
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represent results which follow from solution of the Fokker–Planck (Kramers)
equation. It reproduces exactly the corresponding the line of Ref. [3] for the
whole range 0 ≤ γ ≤ 10 considered there. The jump rate following from
solution of the Langevin equation (28) is given by the dashed line. There is
a substantial difference between the lines. Jump rate given by the Langevin
equation is of one order of magnitude larger for low friction but decreases
rapidly when γ crosses about 0.2 in contrast to jump rate given by the
Fokker–Planck equation which even for γ = 10 is quite large of order of
0.02. In Figs 2 and 3 single-jump (double-jump) probability versus friction
parameter is shown. It is quite clear that our solution of the Langevin
equation predicts much lower probability of jumps longer than single lattice
spacing in comparison with solution of the Fokker–Planck equation.

Fig. 1. Results for model of Ferrando et al. . The full and dashed lines represent

solution of the Fokker–Planck and Langevin equations respectively. The jump rate

rj versus friction γ is plotted.

Now we proceed to our model represented by stochastic equation (18)
and the Fokker–Planck equation (22). We will choose the following three
dimensionless parameters to describe our model. They are τ = kBT/2V0,
i.e. a ratio of thermal energy of the particle to height of the potential barrier,
γ = 4V0/Mv2

s , which is a ratio of barrier height to kinetic energy of the
impurity if it moved with the velocity of sound, γ is related to the amplitude
of friction coefficient R in Eqs (18) and (22). The last one is µ = M/m —
ratio of masses of impurity and lattice atoms, µ will be kept constant equal to
12/56 which roughly corresponds to carbon impurity atom in Fe lattice. We
will consider the case of intermediate (γ = 0.49) barrier height. Let us first
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Fig. 2. The same as in Fig. 1, but now single-jump probability is plotted

Fig. 3. The same as in Fig. 1, but now double-jump probability is plotted

note that our results that follow from the Fokker–Planck equation do not
differ much from corresponding results of Ferrando et al. [3] for homogeneous
friction when the same set of parameters is assumed.

We have calculated jump rate and jump length probabilities versus di-
mensionless temperature τ from 0 to 0.3 range which roughly corresponds
to 0 ≤ T ≤ 2000 K. Like before, full and dashed lines represent Fokker–
Planck and Langevin solution respectively. Jump rates do not differ very
much as is seen from Fig. 4. It does not hold for jump length probabilities,
however. The Fokker–Planck equation predicts rather high probability of
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Fig. 4. Results for model given by stochastic equation (18). The full and

dashed lines represent solutions of the Fokker–Planck (Eq. (22)) and the Langevin

(Eq. (18)) equations respectively. The jump rate rj versus temperature τ is plotted.

Fig. 5. The same as in Fig. 4, but now single-jump probability is plotted

double jumps Fig. 6, while according to our solution of the Langevin equa-
tion double jumps constitute only about 0.01% even at highest temperatures
considered. At τ = 1.5 we have P1 + P2 + P3 ≃ 0.9, so according to the
Fokker–Planck equation about 10% of jumps is longer than three lattice
spacings. A final remark is concerned with diffusion coefficient D. Within
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the Fokker–Planck equation approach we could, in principle, use an exact re-
lation, Eq. (27), between D and dynamic structure factor S(q, ω). However
due to numerical problems with calculation of derivatives of S(q, ω) we used
Eq. (21) instead. Bearing preceding results in mind one can guess that the
Fokker–Planck equation predicts much larger diffusion coefficient than the
Langevin equation. Fig. 7 shows that it is the case, in particular at τ ≃ 0.3
the former is of one order of magnitude greater than the latter one.

Fig. 6. The same as in Fig. 4, but now double-jump probability is plotted

It is not clear to the author what is the reason of differences encoun-
tered. We can only argue that the separation of the intracell from intercell
dynamics is an unavoidable approximation of the jump-diffusion theory . It
can be justified only in the case of sufficiently high potential barriers. On
the contrary the continuous diffusion approach which rests on the Langevin
equation, Eq. (18), is not affected by need of such a separation. Therefore
results provided by it seem more reliable. To get some numbers concern-
ing diffusion coefficient let us note that in the case of C atom in Fe lattice
γ = 0.49 corresponds to barrier height 2V0 = 0.76 eV, then, dimension-
less temperature, for example τ = 0.14 is equivalent T = 1200 K. At that
temperature the diffusion coefficient, as given by solution of the Langevin
equation D ≈ 6×10−11m2/s, can be compared with experimental value [11]
of 3 × 10−11m2/s.
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Fig. 7. The same as in Fig. 4, but now results for diffusion coefficient are compared.

Appendix A

In Ref. [10] it was shown that dynamic structure factor can be expressed
through matrix Green function G(q, z) of the Fokker–Planck equation

S(q, ω) = 2Re
∞

∑

p,l=−∞

MpGpl(q, iω)Ml, (A.1)

which is given by matrix continued fraction

G(q, z) =
(

zI + B+(zI + 2B+[zI + 2Γ

+3B+{zI + 3Γ + . . .}−1B−]−1B−)−1B−
)−1

(A.2)

The matrices Γ and B±, in the case of friction R cos2 x and force −V0 sin x
are given by

Γl,p = 1
2R

√

V [δl,p + 1
2(δl,p−2 + δl,p+2)], (A.3)

B±
l,p = (l + q)δl,p ∓

V

4
(δl,p−1 − δl,p+1)], (A.4)

with V = V0/kBT, and

Mp =
Ip(V /2)
√

πI0(V )
. (A.5)



Diffusion in Periodic Potential . . . 527

Here Ip(x) stands for modified Bessel function. From Eq. (A1) one can
derive a set of matrix recursion relations

Kn = [(n − 1)Γ + nB+Kn+1B
−]−1,

Ln = Kn[I − nB+Ln+1B
−]Kn,

Pn = −2LnK−1
n Ln − nKnB+Pn+1B

−Kn, (A.6)

with starting values KN+1 = Γ−1/N and Ln+1 = Pn+1 = O(1/N2) for
N → ∞. Of course size of matrix and number of iterations N in numerical
calculations must be finite. Dynamic structure factor and its second deriva-
tive at ω = 0 depend on matrix Green function via Eq. (A1) which in turn
is related to matrices K1 and P1 in the following way G(q, 0) = K1(q) and
∂2G(q, ω)/∂ω2|ω=0 = P1(q).
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