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The back reaction of the quantized conformal massless scalar field in the
Hartle–Hawking state upon the Schwarzschild geometry is considered per-
turbatively. Recently proposed approximation of the renormalized stress-
energy tensor, which is known to properly reproduce exact numerical calcu-
lations, is used as the source term in the semi classical Einstein equations.
The nature of the resulting spherically-symmetric and static metric is stud-
ied through the construction of the effective potential for null and timelike
circular orbits and the analysis of the corrections to the trace anomaly. The
modifications caused by the back reaction on the temperature and entropy
are analysed.

PACS numbers: 04.62. +v, 04.70. Dy

1. Introduction

More than a decade ago the problem of the back reaction of the quantized
field upon the spacetime geometry was successfully attacked by York [1].
In his approach he confined himself to the quantum fields in the Hartle–
Hawking state. Solving the first order (linearized) semi-classical field equa-
tions in the static and spherically symmetric black hole spacetime, he was
able to calculate quantum corrections to the metric, assuming that the source
term is given by the Page approximation of the stress energy tensor [2]. The
latter is known to be a reasonable approximation of the exact renormal-
ized 〈T µ

ν 〉 of the massless, conformally invariant scalar field in the Hartle–
Hawking state [3]. In this situation the black hole exists in a thermodynam-
ical equilibrium with surrounding radiation, and the system is analytically
tractable. Indeed, the solution of the semi-classical equations reduces in such
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a case to two elementary quadratures. The stress energy tensor in the ther-
mal state is asymptotically constant and consequently the corrected metric
is not asymptotically flat. It follows then that the back reaction calculations
cannot be performed unless the system is confined in the finite volume and
specific physically motivated boundary conditions are introduced.

Since that time many efforts have been devoted to this group of problems
and in numerous articles various consequences of the back reaction have been
analysed [4–12]. Most of them, however, use the methods that may be traced
back to those propounded in Ref. [1]. A simplified two-dimensional analysis
of the back reaction problem based on the Vaidya-type metrics has been
carried out, for example, in [13–16] and in the references cited therein.

The most important ingredient of the back reaction calculations is the
renormalized mean value of the stress energy tensor of the quantized field
constructed for a wide class of metrics. Approximate analytic expressions de-
scribing 〈T µ

ν 〉 of the scalar, electromagnetic, and spinor fields in the
Schwarzschild spacetime in the Hartle–Hawking, Unruh, and Boulware stat-
es have been constructed in [17–31]. Since the back reaction calculations
in the conformal spinor case are based on the energy momentum tensor
constructed within the framework of the Brown–Ottewill–Page approxima-
tion [22] which validity has not been verified by the exact numerical calcu-
lations, their status is, as yet, uncertain. It seems, however, that we have
some reasons to believe that although the stress-energy tensor of the confor-
mal spinor field may substantially differ from the exact one near the event
horizon the approximate formula it yields that describes the entropy of the
radiation may be right. The case of the spin 2 field has been treated in the
interesting recent paper by Hochberg and Sushkov [8].

The renormalized stress-energy tensor violates both weak and strong en-
ergy conditions in the vicinity of the black hole event horizon that reflects
the fact that it is surrounded by a cloud of negative radiation. On the other
hand, provided the back reaction effects are taken into account, the thermo-
dynamic entropy has been found to be positive and monotonically increasing
with radius. In a recent publication [7], which is based on the approximation
given by Anderson, Hiscock, and Samuel [24], the back reaction has been
analysed for the scalar field with arbitrary coupling. The importance of this
research lies in the fact that it is the first instance in which the general
thermodynamic considerations place limits on the allowable values of the
fundamental constant.

The general conclusion of such calculations is that “the back reaction, no
matter how “small”, is [...] always significant in describing thermal proper-
ties of the spacetime geometries and fields near black holes” [5]. Moreover,
some of the consequences of the back reaction programme may be applied in
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constructing the renormalized 〈T µ
ν 〉 of quantized fields for which even the

approximate expressions are not known [8].
Howard [3] in his numerical study showed that the stress tensor of the

scalar field in Schwarzschild spacetime naturally splits into the part de-
scribed by the Page approximation and the second term which is a traceless
combination of certain mode sums. Modifications of the Page approxima-
tion are significant in the region 2M < r < 5M ; for example the maximal
deviation of the tangential pressure from the exact value is approximately
48% at r = 2.5M, and 17% on the event horizon.

In a recent paper we constructed approximate analytical expressions de-
scribing the renormalized 〈T µ

ν 〉 of the massless, conformally invariant scalar
field in the Hartle–Hawking state in the Schwarzschild spacetime which sat-
isfy all regularity and consistency conditions [25]. Since the obtained ana-
lytical formulas closely follow the numerical calculations it would be inter-
esting to reexamine the back reaction problem with the aid of the improved
〈T µ
ν 〉. In that paper we shall undertake this issue and solve the linearized

semi-classical field equations. As the stress energy tensor asymptotically ap-
proaches the 〈T µ

ν 〉 of the gas of massless particles one is forced to confine the
system that consists of the black hole and quantized radiation in the spa-
tially bounded region and adopt physically motivated boundary conditions.
After a discussion of the maximal radius of the spherical box we construct
the corrected temperature and entropy. We shall show that the entropy, ∆S,
of the conformally coupled scalar field may be generally written as

∆S =

5
∑

n=−3

αnw
n + β ln w, (1)

where w = 2M/r, and αn, β are numerical coefficients. The case of the ar-
bitrary coupling considered by Anderson et al. [7] accounts for the following
form of ∆S :

∆S =
3
∑

n=−3

α̃nw
n + β ln w +

(

ξ − 1

6

)

(

3
∑

n=0

γnw
n + δ ln w

)

, (2)

where ξ is a parameter that describes a type of the coupling, and α̃n, γn, and
δ belong to the another set of the numerical coefficients. It should be noted
that for the conformally invariant scalar field, 〈T µ

ν 〉 propunded by Anderson
et al. [23, 24] reduces to the expression given by Page approximation. This
is the reason why for ξ = 1/6 Eq. (2) differs from (1).

As the spacetime geometry may be better understood analysing motion
of test particles, we shall also construct and study the effective potential
for both massive and massless particles moving in the modified black hole
background. Finally, we briefly analyse corrections to the trace anomaly of
the modified metric.
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2. Stress-energy tensor

The stress energy tensor as proposed in Ref. [25] may be compactly
written as

〈T ν
µ 〉 = 〈T ν

µ 〉Page + ∆µ
ν , (3)

where

〈T µ
ν 〉Page =

1

90π2(8M)4

{

1 − (2M
r )6(4 − 6M

r )2

(1 − 2M
r )2

diag[−3, 1, 1, 1]µν

+ 24

(

2M

r

)6

diag[3, 1, 0, 0]µν

}

, (4)

is the Page approximation of 〈T µ
ν 〉, and ∆ν

µ is a traceless conserved tensor
given by

8π2∆t
t =

M2

r6

(

β

240
+

17

6
α4

)

− M3

r7

(

433

27
α4 +

β

120
+

4

405
A8

)

+
M4

r8

(

11

540
A8 +

385

18
α4

)

, (5)

8π2∆r
r =

M2

r6

(

β

720
+

17

18
α4

)

− M3

r7

(

121

27
α4 +

β

360
+

A8

405

)

+
M4

r8

(

35

6
α4 +

A8

180

)

, (6)

and

8π2∆θ
θ = −M2

r6

(

17

9
α4 +

β

360

)

+
M3

r7

(

277

27
α4 +

β

180
+

A8

162

)

− M4

r8

(

245

18
α4 +

7

540
A8

)

. (7)

Parameters α4 and A8 may be easily determined from the knowledge of
the horizon value of one of the components of the stress energy tensor
and the field fluctuation 〈φ2〉. Simple considerations give α4 = 0.171, and
A8 = −164; in Ref. [25, 26] was also shown that taking β = −80, one obtains
very good agreement with the exact numerical results.

Since β has been fixed by making use of the best-fit argument, it would be
desirable to obtain constraints on this very parameter from the back reaction
calculations. Unfortunately, as we shall show, the radial component of the
metric perturbation does not depend on the parameter β and the analyses of



Back Reaction on the Metric. Beyond the Page Approximation 533

the time component of perturbation cannot be exploited without additional
information. We expect, however, that some informations may be gained
from the thermodynamic considerations.

In order to incorporate into the stress energy tensor the term describing
arbitrary coupling of the scalar field, the Page approximation should be
supplemented with a term (ξ − 1/6)Dµ

ν , where Dµ
ν , according to analyses

carried out in [23, 24] and [7], is given by

Dt
t =

1

128π2r6
(r2 + 4Mr − 20M2) , (8)

Dr
r = − 1

384Mπ2r6
(2r − 3M)(12M2 + 4Mr + r2) , (9)

and

Dθ
θ = Dφ

φ =
1

384Mπ2r6
(r3 + 4Mr2 + 12M2r − 96M3) . (10)

3. The linearized back reaction equations

Since the stress-energy tensor is in the Hartle–Hawking state one expects
that the spherically-symmetric quantum corrected metric is generally of the
form

ds2 = −U(r)dt2 + V −1(r)dr2 + r2dΩ2, (11)

where
U(r) = V (r)e2ψ(r) (12)

and
V (r) = 1 − 2m(r)/r. (13)

The semi-classical field equations may be solved perturbatively to first or-
der in ε = (MP/M)2, MP is the Planck mass, assuming that to O(ε) the
functions eψ and m(r) have the expansions

eψ = 1 + ερ(r) (14)

and
m(r) = M(1 + εµ(r)). (15)

Indeed, substituting (11–13) into the semi-classical field equations

Rµν − 1
2Rgµν = 8π〈Tµν〉, (16)

and retaining the O(ε) terms, one obtains two independent linear equations
governing µ(r) and ρ(r)

εM

4πr2

dµ

dr
= −〈T t

t 〉, (17)
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and
ε

4πr

dρ

dr
=

(

1 − 2M

r

)−1
(

〈T r
r 〉 − 〈T t

t 〉
)

. (18)

Solving (17) and (18) with 〈T t
t 〉 and 〈T r

r 〉 given by (3–7), we obtain

Kµ(r) = 4 ln
( r

2M

)

+
M5

r5

(

24640

3
a4 +

352

45
A8

)

−M4

r4

(

69280

9
a4 +

128

27
A8 + 4β

)

+
M3

r3

(

88 +
5440

3
a4 +

8

3
β

)

−12
M2

r2
− 10

M

r
− 22

3
− 20

9
a4 +

7

135
A8 −

β

12

+
3

2

r

M
+

r2

4M2
+

r3

24M3
+ C0

= Kµ0(r) + C0 , (19)

and

Kρ(r) = 4 ln
( r

2M

)

− M5

r5

(

8960

3
a4 +

128

45
A8

)

+
M4

r4

(

2720

3
a4 +

4

3
β

)

−112

3

M3

r3
− 20

M2

r2
− 40

3

M

r
+ 14 +

110

3
a4 +

4

45
A8

− β

12
+

r

M
+

r2

12M2
+ k0

= Kρ0(r) + k0, (20)

where K = 3840π, and, C0 and k0 are integration constants. Note that the
functions µ0(r) and ρ0(r) are constructed in such a way that they vanish on
the event horizon.

Generally, we observe that the differences between the results obtained
with the aid of the Page approximation and these obtained with regard to
the tensor ∆µ

ν are expected to be important near the event horizon.
Solving Eqs. (17) and (18) with the source term given by

〈T µ
ν 〉Page +

(

ξ − 1

6

)

Dµ
ν (21)

one obtains the solution propounded by Anderson et al. [7].

Kµ(r) = 4 ln
( r

2M

)

+88
M3

r3
−12

M2

r2
−10

M

r
− 22

3
+

3r

2M
+

r2

4M2
+

r3

24M3

−
(

ξ− 1

6

)(

800
M3

r3
−240

M2

r2
−120

M

r
+20

)

+ C0 (22)
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and

Kρ(r) = 4 ln
( r

2M

)

+
112

3

M3

r3
− 20

M2

r2
− 40

3

M

r
+ 14 +

r

M
+

r2

12M2

+

(

ξ − 1

6

)(

640
M3

r3
+ 240

M2

r2
+ 80

M

r
− 180

)

+ k0 . (23)

Inspection of equations (15) and (19) shows that the constant C0 may be
included into the mass term thus renormalizing the black hole (bare) mass.
It is possible because a bare mass has no meaning in the O(ε) calculations.
Accordingly, in all our subsequent analyses we assume that the black hole
mass has been renormalized, i.e. M stands for the dressed mass. Therefore,
in order to complete the first order back reaction calculations, one has to
determine only one integration constant-k0, and the choice of k0 should be
dictated by the nature of the problem.

The modifications of the effective mass function of the conformally in-
variant theory caused by terms (5)–(7) are exhibited in Fig. 1. The effective
mass of the radiation evaluated with the aid of the Page approximation is
zero at the event horizon, approaches its minimal value at r ∼ 2.34M, and
passes through zero at r ∼ 2.8M. As is seen in Fig. 1, one has similar be-
haviour of the effective mass function evaluated for the stress energy tensor
given by (3). Specifically, it starts from zero at r = 2M, achieves its minimal
value at r = 2.44M, and passes through zero at r ∼ 3.02M. For illustra-
tive purposes we presented also the effective mass function evaluated for the
model of Anderson et al. for the minimal coupling (ξ = 0) and for ξ = 1/3.

1.2 1.4 1.6 1.8 2

-2

2

4

6

8

Fig. 1. The effective mass µ as a function of y = r/2M. Top to bottom the curves

are for ξ = 1/3, ξ = 1/6 (Page approximation), ξ = 1/6 (our approximation), and

ξ = 0. The effective mass for the nonconformal coupling is evaluated within the

framework of the Anderson et al. model.
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The solutions (19) and (20), and their asymptotic behaviour as r → ∞ ,
shows that it is necessary to enclose the system that consists of the black hole
and the quantized scalar field in a cavity of a definite radius and to impose
appropriate boundary conditions. Typically, one imposes either microcanon-
ical or canonical boundary conditions. In the microcanonical ensemble one
considers as a boundary an ideal massless and perfectly reflecting spherical
wall of negligible mass and thickness, and the total effective energy is con-
stant, whereas in the canonical ensemble the temperature is kept fixed at
boundaries of the system by coupling the cavity wall with the external heat
reservoir. To determine the constant k0 we shall adopt the microcanonical
boundary conditions.

Outside the spherical wall the metric is strictly Schwarzschildian

ds2 = −
(

1 − 2m(R)

r

)

dt2 +

(

1 − 2m(R)

r

)−1

dr2 + r2dΩ2, (24)

and is described by a total mass

m(R) = M(1 + εµ0(R)), (25)

where R is a radius of the cavity. Inside one has the corrected metric de-
scribed by (11) with (19) and (20). Requirement of the continuity of the
inner and outer metric on the reflecting wall results in the condition

k0 = −Kρ(R), (26)

and therefore in the region 2M < r < R one has

ds2 = −
(

1 − 2m(r)

r

)

(1 + 2ερ̃(r)) dt2+

(

1 − 2m(r)

r

)−1

dr2+r2dΩ2, (27)

where ρ̃(r) = ρ(r) − ρ(R).
The radius itself may not be arbitrarily great because the system consist-

ing of the black hole and the quantized radiation would collapse producing a
larger black hole. On the other hand, it should not be too small because the
surface term of the full stress-energy tensor is ignored in the calculations.
Moreover, modifications of the exterior Schwarzschild metric caused by the
semi-classical effects in the Boulware state are also ignored. It is a standard
procedure, and for discussion of this issue see York’s paper [1]. As is well
known the semi-classical theory has only limited range of validity and in
general context it should be replaced by unknown as yet quantum gravity.
Therefore, in order to remain within the range of applicability of the quan-
tum field theory in curved background and be able to treat the back reaction
programme perturbatively, one should take M > MP.
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A rough estimate of the radius may be obtained from the hoop conjec-
ture, that in its original version states that a horizon forms if matter with
a total mass M gets compactified in a region whose circumference, L, in all
directions satisfies the inequality L < 4πM [32]. Since the total mass of
the system is given by (25) one concludes, by the hoop conjecture, that the
maximal radius of the cavity, R, should satisfy

R > 2M + 2εMµ0(R). (28)

The maximal radius of the cavity may be determined imposing reasonable
requirement that the changes of the metric caused by the quantized field
remain small unless r < R, and hence a natural condition for tractability of
the back reaction calculations is

ε|hµν | = ε0 < 1, (29)

where ε0 is a dimensionless parameter. The fractional corrections to the
metric, hµν , may be obtained from

gµν = g̃µν(δ
µ
ν + hµν ), (30)

where g̃µν is the uncorrected Schwarzschild metric. The perturbations of the
metric are explicitly given by

hrr = 2M
µ(r)

r − 2M
(31)

and
htt = −2[ρ(R) − ρ(r)] − hrr. (32)

Simple calculations show that the consequences of the hoop conjecture and
these of equations (29) and (31) are equivalent, and hrr evaluated on the
event horizon does not depend on the parameter β. On the other hand, the
condition (29) applied to the metric perturbation htt is more restrictive, and
the maximal radius of the cavity may be obtained from the analysis of its
behaviour on the event horizon. Results of the computations of ymax =
Rmax/2M as a function of ε for several values of ε0 are displayed in Fig. 2.
The horizontal line refers to the simplified case ε = ε0.

Note, that although the results presented in Fig. 2. do satisfy the condi-
tion (29), some of them cannot be used as the maximal radii. The reason is
that the calculations have been carried out with the aid of the stress-tensor
(3), which is constructed for infinite spacetime. Clearly, in the presence of
the boundary some of the radial modes should be ignored. In this connec-
tion, an useful condition is, that the radius of the cavity should be greater
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Fig. 2. The maximal radius of the spherical box ymax = Rmax/2M as a function of

ε. Top to bottom, the curves are for ε0 = 0.45, 0.1, 0.01. The horizontal line refers

to a simplified case of ε = ε0.

than the wavelength of the least-damped quasinormal mode of the lowest
angular momentum, which is approximately 42M. Such a mode is, in turn,
associated with the longest characteristic wavelength of Hawking radiation.

More detailed information concerning the maximal radii may be pre-
sented thanks to the observation that ymax depends only on the ratio of
ε0/ε. Figure 3 shows ymax as a function of ε0/ε.

10 20 30 40

200

400

600

800

Fig. 3. The maximal radius of the spherical box ymax = Rmax/2M as a function of

ε0/ε.
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4. Temperature and entropy

As is well known the equilibrium temperature of static and self gravitat-
ing system , Tloc(r), is given by the Tolman formula

Tloc(r) = T |gtt|−1/2. (33)

When the back reaction effects are taken into account the black hole tem-
perature, T, is no longer of the form T = 1/(8πM). The O(ε) black hole
temperature may be constructed by means of the general formula

T =
κ

2π
, (34)

where κ is the black hole surface gravity. What is the meaning of T in
the back reaction calculations with a microcanonical boundary conditions?
Simple considerations indicate that it is the corrected temperature at spatial
infinity.

The surface gravity may be easily calculated form

κ2 = −1
2tµ;νt

µ;ν
|r=2M

, (35)

where tµ is a timelike Killing vector field. Retaining the terms linear in ε
one has

κ =
1

4M

[

1 +
ε

K

(

k0 + 12 +
350

9
a4 +

A8

27

)]

. (36)

Note that the result does not depend on the parameter β. Moreover,

Tloc(r) =
1

8πM

[

1 +
ε

K

(

12 − ρ0(r) +
350

9
a4 +

A8

27

)](

1 − 2m(r)

r

)−1/2

(37)
is independent of k0 as have been observed earlier by York [1].

The black hole temperature may be also found from the examination
of the complexified metric (11) obtained from the Wick rotation t → −it.
Indeed, with a periodicity of the time coordinate, βH , suitably adjusted to
remove the conical singularities of the line element one has

βH =
1

T
= 4π lim

r→2M

(

U(r)V −1(r)
)1/2

(

dU(r)

dr

)−1

. (38)

It is a straightforward task to show that to O(ε) the black hole temperature
obtained from (38) coincides with (33). Euclideanized version of the line
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element allows to identify the inverse of the local temperature, for fixed r,
θ, and φ, with the periodically identified proper length of the t

1

Tloc(r)
=

βH
∫

0

U(r)1/2dτ. (39)

The main features of the entropy of the quantized field have been ex-
tensively investigated in numerous papers; a general expression, the proof
of positivity, and monotonic increase with r is firmly established for con-
formally invariant massless scalar (Page approximation [2]), vector (Jensen
and Ottewill approximation [19]), and to certain extent spinor field [22].
Unfortunately, there are no numerical calculations of the 〈T µ

ν 〉 of the quan-
tized conformal spinor and therefore validity of the Brown–Ottewill–Page
approximation in this context is unknown.

Detailed discussion and the method for constructing entropy has been
presented in Ref. [5]. Simple and compact expression describing ∆S has
been recently derived by Zaslavskii [33]

∆S = 32Mπ2

r
∫

2M

dr′r′
2
[

〈T r
r 〉 − 〈T t

t 〉 − 〈T µ
µ 〉 ln

( r

r′

)]

, (40)

where the arbitrary integration constant has been fixed by the demand of
vanishing of ∆S at the event horizon of the black hole. When applied to
regular stress energy tensor (40) exhibits some general features: the radial
derivative of the entropy vanishes at the event horizon, and S is a positive
function of r monotonically increasing with radius. It should be noted that
this features, as have been observed by Hochberg, Kephart, and York, do
not hold if one ignores the back reaction.

Now we shall analyse the modifications of the ∆S caused by the ∆µ
ν

piece. Substituting (3) with (5–7) into (40), after simple integration, one
finds

∆S =
1

1080
w−3 +

1

360
w−2 +

1

120
w−1 − 1

540
+

a4

54
+

A8

10800
− β

8640
− w

72
− w2

120

+

(

13

1080
+

17

54
a4 +

β

2160

)

w3 −
(

13

18
a4 +

A8

2160
+

β

2880

)

w4 +

(

7

18
a4 +

A8

2700

)

w5

+
1

90
lnw . (41)

In order to recover the result obtained in Ref. [7], i.e. when an arbitrary
coupling is taken into account, the right hand side of the above equation
(with β, a4, and A8 set to zero) should be supplemented with the following
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term
(

ξ − 1

6

)(

−1

8
+

w

12
+

w2

8
− w3

12
− 1

12
ln w

)

. (42)

Simple calculation show that the first derivative of the entropy with
respect to the radial coordinate vanishes, as expected, at the event horizon
whereas the second derivative there equals

∂2∆S

∂r2
=

1

M2

(

1

45
+

a4

4
+

A8

2160
− β

2880

)

. (43)

Putting in the above equation β, a4 and A8 equal to zero and subtracting

1

24M2

(

ξ − 1

6

)

(44)

one obtains the analogous formula to that from Ref. [7].
One of the most interesting and important consequences of the back re-

action calculations is the possibility to determine the inequalities that are
to be satisfied by unknown parameters describing either the renormalized
stress tensor or the coupling constants. Indeed, the positivity of the sec-
ond derivative of the entropy at the event horizon yields definite constraint
whereas the reasonable smallness of the perturbations of the quantum cor-
rected metric may yield, in certain cases, another one. It should be noted
however that the second requirement is much less conclusive and in the case
at hand it would involve some sort of prescience. Indeed, taking β as a free
parameter, from (43) one has β < −31.5, and further determination of the
parameter β would require knowledge of the maximal radius of the spherical
wall.

5. The effective potential

Further informations concerning the nature of the modified black hole
geometry may be gained by studying the motion of the test particles. Now,
we shall analyse the effective potential for circular orbits of both massless
and massive particles.

Because of staticity and spherical-symmetry of the quantum-corrected
metric the first integral of the test particle’s geodesic equation in the equa-
torial plane θ = π/2, may be easily constructed

E2 = −gttgrr ṙ
2 − gtt

(

κ̃ +
L2

r2

)

, (45)

where E = −gttṫ, is particle’s total energy, L = gφφφ̇, is its orbital angular
momentum, and κ̃ = 0, 1 for the null and timelike geodesics, respectively;
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the overdot denotes differentiation with respect to an affine parameter (null
curves) or the proper time (timelike orbits). One may therefore identify

V 2 =

(

1 − 2m(r)

r

)

[1 + 2ε (ρ(r) − ρ(R))]

(

κ̃ +
L2

r2

)

(46)

with the effective potential for circular orbits. Retaining in the effective
potential O(ε) terms one has

V 2(r) =

(

κ̃ +
L2

r2

)(

1 − 2M

r

)

(1 + εhtt) . (47)

Since htt depends on the magnitude of the box so does the effective potential.
In the further calculations we assume, for simplicity, that the radius of the
spherical wall for fixed ε and ε0 is a maximal one, in a sense that it is obtained
from (29) and (32) evaluated on the event horizon. With this choice of R
the fractional effective potential is a function of r and the ratio ε0/ε.

First, consider the case of the null geodesics. Inspection of (47) shows
that the only local extremum of V 2 is a maximum corresponding to the un-
stable circular photon orbit and that the maximum of the effective potential
for a given black hole mass decreases with increase of ε0. It is interesting to
note that for a fixed ε0 the difference

∆ =
4M2

L2

[

V 2(ε,w) − V 2(ε′, w)
]

(48)

may be written as
∆ = (ε − ε′)F (w), (49)

where
F (w) = w2(1 − w) [2ρ(w) − hrr(w) + hrr(1)] , (50)

and w = 2M/r. Analysis of F (w) shows that it is a positive function of
w nowhere exceeding 1.5 × 10−4. This explains why for a given ε0 the
effective potential is practically independent of ε. This does not contradict
the observation of Hochberg et al. (Ref. [6]), that V 2 depends on the ε since
they considered simplified case of ε = ε0. Typical results of calculations for
ε = 0.1 and ε0 = 0.02, 0.1, and 0.45 are presented in Fig. 4.

For a given ε the magnitude of V 2 decreases with the incerase of ε0

or equivalently with the increase of the radius of the spherical wall. It
should be noted that the results for ε0 > 0.5 are unreliable in the first order
calculations.
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Fig. 4. This graph shows 4M2

L2 V 2 of the massless particle as a function of y =

r/(2M) for ε = 0.1. Top to bottom the curves are for ε0 = 0.02, ε0 = 0.1, and

ε0 = 0.45.

As in the classical Schwarzschild geometry the case of massive particles is
more complicated. The shape of the effective potential for timelike circular
geodesics and consequently the existence of local extrema of V 2 critically
depends on the value of L. From (47) with κ̃ = 1 one concludes that there
are no stable orbits for L < Lcrit whereas for L > Lcrit in the interval
2M < r < R the potential V 2 has both the local minimum and maximum.
In Fig. 5 we illustrated the run of the potential for some typical cases.

5 10 15 20

0.45

0.5

0.55

0.6

Fig. 5. The effective potential V 2 of a massive particle as a function of r/2M for

ε = 0.1 and ε0 = 0.45. Top to bottom the curves are for l = 3, l = lcrit = 3.466,

and l = 4.5. At the point of inflexion the last stable circular orbit occur.

Although for various values of ε qualitative features of V 2 constructed
for a fixed ε0 remain unchanged there are important quantative differences,
especially as r → R̃, where R̃ denotes the smaller value of Rmax.
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Numerical calculations show that lcrit = Lcrit/M weakly depends on
the ε0 and ε always remaining close to its Schwarzschild analogue 2

√
3.

Specifically, for fixed ε, lcrit increases with the increase of ε0 and, for fixed
ε0 it increases with ε. Although the lcrit remains close to 2

√
3, both V 2

max
and V 2

min strongly depend on the back reaction. The minima and maxima
of the effective potential as a function of the reduced angular momentum
l = L/M are displayed in Fig. 6. The cusp in Fig. 6 represents the inflexion
point of the effective potential for l = lcrit visible in Fig. 5.

3.6 3.8 4 4.2 4.4 4.6

0.5

0.55

0.6

0.65

Fig. 6. This graph shows local extrema of the effective potential V 2 as a function

of the reduced angular momentum l.

6. Trace anomaly of the corrected space

Corrections to the trace anomaly caused by the back reaction are given
by a purely geometric terms constructed from the O(ε) quantum-corrected
metric. In general, for a conformally invariant masless scalar field the trace
anomaly is given by

〈T µ
µ 〉 = aH + bG + c2R, (51)

where H is a square of the Weyl tensor

H = CµνστCµνστ = RµνστRµνστ − 2RµνRµν + 1
3R2 , (52)

and

G =∗ Rµνστ ∗Rµνστ = RµνστRµνστ − 4RµνRµν + R2, (53)

and, a = 2/(3840π2), b = −1/3 a, c = 2/3 a. It could be easily shown that
for the metric at hand both RµνRµν and R2 are O(ε2), and in the first order
calculations H = G. Remaining O(ε2)− terms in the trace anomaly are



Back Reaction on the Metric. Beyond the Page Approximation 545

given by

RµνστRµνστ = Cµνστ Cµνστ =
48M2

r6
+

4ε

3r6

[

72M2µ(r) − 48M2r
dµ

dr

−
(

60M2r − 12Mr2
) dρ

dr
+ 12M2r2

d2µ

dr2
+
(

24M2r2 − 12Mr2
) d2ρ

dr2

]

(54)

and

2R =
2ε

r5

[

(

4Mr − 16M2
) dµ

dr
+
(

6Mr − 8M2
) dρ

dr
+
(

10M2r − 4Mr2
) d2µ

dr2

+
(

2M2r − 6Mr2
) d2ρ

dr2
−
(

2M2r2 − 2Mr3
) d3µ

dr3
+
(

2M2r2 + 7Mr3 − 4r4
) d3ρ

dr3

+
(

Mr4 − 2M2r3
) d4µ

dr4
+
(

4Mr4 − 4M2r3 − r5
) d4ρ

dr4

]

. (55)

Making use of (19) and (20) one obtains

Cµνστ Cµνστ =
48M2

r6
+

[

2576a4M
7

3r11
+

184A8M
7

225r11
− 6164a4M

6

9r10
− 56A8M

6

135r10

− 11βM6

30r10
+

74M5

15r9
+

136a4M
5

r9
+

βM5

5r9
− M4

2r8
− M3

3r7
− 13M2

60r6

− a4M
2

18r6
+

7A8M
2

5400r6
− βM2

480r6
+

M

40r5
+

1

480r4
+

M2

10r6
log
( r

2M

)

]

ε

π

(56)

and

2R =

(

48M5

5r9
− 4M4

r8

)

ε

π
. (57)

Note that 2R is independent of the parameters a4, A8, andβ and therefore
equal to its equivalent evaluated within the framework of the Page approxi-
mation.

Instead of considering 〈T µ
µ 〉 itself, we shall analyse the fractional trace

anomaly, ∆, defined as

∆ =
〈T µ
µ 〉 − 〈T̃ µ

µ 〉
〈T̃ µ
µ 〉

, (58)

where in 〈T̃ µ
µ 〉 = M2/(60π2r6) one recognizes the pure conformal anomaly

of the scalar field in the Schwarzschild spacetime. The results of the calcu-
lations of ∆ are presented in Fig. 7.

Inserting (56) and (57) in (51) and constructing ∆ one readily finds that
in the limit of large r the leading behaviour of ∆ is proportional to r2. More
precisely, for the corrected metric determined by the Page approximation
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Fig. 7. This graph shows the rescaled fractional trace anomaly of the scalar field in

the corrected spacetime as a function of r/M. π∆/ε evaluated for the solution of the

back reaction equations with the source term given by the improved approximation

of the stress energy tensor is the line shifted to the right with respect to the one

which has been determined with the aid of the Page approximation

π ∆/ε is zero at r = 2.41M, approaches its minimal value at r = 3.4M, and
passes through zero at r = 5.94M. Similarly for the improved approximation
π ∆/ε is zero at r = 2.48M, has the miniumum at r = 3.61M, and is zero
at r = 6.4M. The fractional trace anomaly on the event horizon is

∆ =
ε

π

(

11

1440
+

35a4

1728
+

A8

51840

)

. (59)

In the absence of ∆µ
ν — term (59) reduces to the analogous result presented

in [1].

7. Concluding remarks

Let us now summarize and add a few remarks to the results presented
in this paper. We have investigated the first order back reaction of the
quantized scalar field upon spherically-symmetric static black hole by solv-
ing linearized semi-classical Einstein field equations. Adopted source term is
given by recently proposed approximation of the stress- energy tensor, which
reproduces exact 〈T µ

ν 〉 in the Hartle-Hawking state in the Schwarzschild
spacetime to a high accuracy. Our analyses extend earlier works based on
the Page approximation. As expected, modifications of the metric and the
physical characteristics caused by the ∆µ

ν are significant near the event hori-
zon. More important modifications are produced by the stress energy tensor
of the scalar field with arbitrary coupling.
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Our calculations suffer from one important drawback, they do not incor-
porate quantum fluctuations of the metric, i.e., the graviton contribution
(unknown as yet) to the stress-energy tensor has been ignored. Some light
on the problem has been recently shed by Hochberg and Sushkov. It should
be emphasised once again that we are dealt with the linear theory. Of course,
it would be desirable to extend present analysis of the back reaction problem
to higher order. This, however, would require incorporation of the quadratic
curvature terms to the field equations, and, moreover, may be analitically
intractable.
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