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A geometric formulation of the Moyal deformation for the self-dual
Yang–Mills theory and the Chiral Model approach to self-dual gravity is
given. We find in Fedosov’s geometrical construction of deformation quan-
tization the natural geometrical framework associated to the Moyal de-
formation of the six-dimensional version of the second heavenly equation
and the Park–Husain heavenly equation. The Wess–Zumino–Witten-like
Lagrangian of self-dual gravity is reexamined within this context.
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1. Introduction

The purpose of this paper is to describe some conjectures in the geom-
etry of deformation quantization for Self-Dual Yang–Mills (SDYM) theory
and the Chiral Model approach to Self-Dual Gravity (SDG). This relation
was originally suggested by Strachan in [1]. He has developed a deformed
differential commutative geometry and has applied it to describe, within
this geometrical framework, the multidimensional integrable systems. Here
we intend to consider the application of some non-commutative geometry
(Fedosov’s geometry) to self-dual gravity.

The relation, for instance, between SDYM theory, Conformal Field The-
ory and Principal Chiral Model, all of them with gauge group SDiff (Σ)
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(area-preserving diffeomorphism group of two-dimensional simply connected
and symplectic manifold Σ), has been studied only at the algebraic level
[2–10]. The standard approach consists in studying a classical field theory
invariant under some symmetry group, for instance, SU(N). In the case of
full Yang–Mills theory its large-N limit (N → ∞) is somewhat mysterious,
however it is very necessary to understand it in the searching for new faces of
integrability [11]. Drastic simplifications in some classical equations seem to
confirm these speculations [12]. However, geometric and topological aspects
of the correspondence SDYM and SDG remain to be clarified [13].

Integrable deformations of SDG, in particular the Moyal deformation of
the first heavenly equation were studied by Strachan [14] and Takasaki [15].
Moyal deformation of the second heavenly equation was considered in [16,17].
The Weyl–Wigner–Moyal (WWM) formalism has been very useful in order
to find (beginning from SDYM theory) a version of the ‘master system’
(compare with [2]) which leads to different versions of the heavenly equations
in SDG [18,19]. The application of WWM-formalism to the Lagrangians
and equations of motion of SDG for a sdiff(Σ)-valued scalar field on M,
leads to the Moyal deformation of the six-dimensional version of the second
heavenly equation (sdiff(Σ) can be seen as the Lie algebra of SDiff(Σ)). This
equation and its associated Lagrangian was found in [20]. The application of
the WWM-formalism to the Principal Chiral Model approach to dynamical
SDG was done in terms of a scalar field by us in Ref. [21]. This dynamics
was enclosed in the P-H heavenly equation [21]. In [21] also some explicit
solutions were constructed using an explicit Lie algebra representation of
linear operators acting on some Hilbert space. As an intermediate step of
constructing solutions in SDG using WWM-formalism one can represent
the dynamics using a Moyal deformation of the P-H heavenly equation [21].
WWM-formalism also has been very useful to show that some results about
harmonic maps [22] can be carried over to SDG [23]. As a consequence one
can define the “Gravitational Uniton” which seems to be simultaneously a
uniton i.e., an appropriate solution of chiral equations [22] and a solution of
the P-H heavenly equation describing the SDG metric. A WZW-like action
for SDG can be constructed as well. “How can one to interpret geometrically
this WZW action and the associated “Wess-Zumino” term”? was a question
proposed in the last part of [23]. Here we intend to give a partial answer
to this question. In this paper, in a spirit of Strachan [1], we describe
some conjectures about the geometry associated to integrable deformations
of SDG and its possible relation with the standard geometry of gauge theory.
The paper is organized as follows: To be the most self-contained, in Section 2
we briefly review the geometrical construction of deformation quantization
given by Fedosov [24]. In Section 3 we discuss the Moyal deformation of
SDYM theory, the associated six-dimensional version of the second heavenly
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equation [20] and P-H heavenly equation given in Ref. [21]. In Section 4 we
describe within Fedosov’s geometrical construction, the Moyal deformation
of the SDYM equations via Yang’s and Donaldson–Nair–Schiff equations.
In particular, the Moyal deformation of the six-dimensional version of the
second heavenly equation is considered. In this same section we discuss
the geometry associated with the principal chiral model approach to SDG.
The Moyal deformation of the P-H heavens is described as well. Section 5
is devoted to study the WZW-like Lagrangian found in [23] in the same
geometrical framework. Finally in Section 6 we give our final remarks.

2. Fedosov’s geometry of deformation quantization

Deformations of the Poisson Lie algebra structure on symplectic mani-
folds have been studied by many authors [25]. Recently some extensions of
the WWM-formalism have been carried over to the phase space as repre-
sented by cotangent bundle [26]. More recently interesting connections with
non-commutative geometry have been studied by Reuter in [27].

In this section we review some aspects of the geometry of deformation
quantization given by Fedosov in Ref. [24]. The most important objects we
consider here involve Weyl algebra bundle, differential forms and the trace
formula defined for this algebra.

2.1. Weyl algebra bundle

Let (M, ω) be a symplectic manifold of dimension 2n and ω the corre-
sponding symplectic form on M. The formal Weyl algebra Wx associated
with the tangent space at the point x ∈ M, TxM, is the associative algebra
over C with a unit. An element of Wx can be expressed by

a(y) =
∑

2k+l≥0

~
kak,i1...ily

i1 . . . yil , (2.1)

where ~ is the deformation parameter, y = (y1, . . . , y2n) ∈ TxM is a tangent
vector and the coefficients ak,i1...il constitute the symmetric covariant tensor
of degree l at x ∈ M.

The product on Wx which determines the associative algebra structure
is defined by

a • b ≡ exp

(
+
i~

2
ωij ∂

∂yi

∂

∂zi

)
a(y, ~)b(z,~)|z=y

=

∞∑

k=0

(
+
i~

2

)k 1

k!
ωi1j1 . . . ωikjk

∂ka

∂yi1 . . . ∂yik

∂kb

∂yj1 . . . ∂yjk
, (2.2)
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for all a, b ∈ Wx. Here ωij are the components of the tensor inverse to ωij

at x. Of course the product “•” is independent of the basis.
Having this one can define an algebra bundle structure taking the disjoint

union of Weyl algebras for all points x ∈ M i .e. W̃ = ‖
x∈M

Wx. W̃ is the
total space and the fiber is isomorphic to a Weyl algebra Wx. Thus we have
the Weyl algebra bundle structure

W̃
π
→ M, Wx

∼= π−1({x}), (2.3)

where π is the canonical projection.

Let E(W̃) be the set of sections of W̃ which also has a Weyl algebra

structure with unit. Denote by a(x, y,~) an element of E(W̃); it can be
written as follows

a(x, y,~) =
∑

2k+l≥0

~
k ak,i1...il=(x)yi1 . . . yil , (2.4)

where y = (y1, ..., y2n) ∈ TxM is a tangent vector, ak,i1...il are smooth
functions on M and x ∈ M.

2.2. Differential forms

In Section 4 we shall define a field theory on space-time with the fields

taking values in the Weyl algebra of sections E(W̃) (instead of the usual Lie

algebra). In order to do that we need the notion of W̃-valued differential
q-form on M. A q-form can be written as

a =
∑

~
kak,j1...jq

(x, y)dxj1 ∧ ... ∧ dxjq

=
∑

2k+p≥0

~
kak,i1...ip,j1...jq

(x)yi1 . . . yipdxj1 ∧ · · · ∧ dxjq , (2.5)

where ak,j1...jq
(x, y) = ak,i1...ip,j1...jq

(x)yi1 ...yip .
The set of differential forms constitutes (similarly as the usual ones) a

Grassmann–Cartan algebra C = E(W̃⊗Λ) =
⊕2n

q=0 E(W̃⊗Λq). In this space

the multiplication
•
∧ is defined by

a
•
∧ b = a[j1...jp

• bl1...lq ]dx
j1 ∧ . . . ∧ dxjp ∧ dxl1 ∧ . . . ∧ dxlq , (2.6)

for all a =
∑

k ~
kak,j1...jp

(x, y)dxj1 ∧ . . . ∧ dxjp ∈ E(W̃ ⊗ Λp) and

b =
∑

k ~
kbk,l1...lq(x, y)dx

l1 ∧ . . . ∧ dxlq ∈ E(W̃ ⊗ Λq). a
•
∧ b is defined

by the usual wedge product on M and the product • in the Weyl algebra.
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A very useful concept is that of central forms. In order to define it
first consider the commutator defined on the sections E(W̃) i.e., for all

a ∈ E(W̃ ⊗ Λq1) and b ∈ E(W̃ ⊗ Λq2) we define

[a, b] ≡ a
•
∧ b− (−1)q1q2b

•
∧ a . (2.7)

Thus a form a ∈ E(W̃ ⊗Λ) is said to be central, if for any b ∈ E(W̃ ⊗Λ) the
commutator (2.7) vanishes. The set of central forms is designed by Z ⊗ Λ.
Here Z coincides with the algebra of quantum observables1. In order to be
more precise Z is a linear space whose elements are

a = a(x,~) =

∞∑

k=0

~
kak(x) , (2.8)

where ak(x) ∈ C∞(M).

Let a(x, y,~) be an element of E(W̃), we define the symbol map σ :

E(W̃) → Z, a(x, y,~) 7→ a(x, 0,~), that is the map σ is the projection of

E(W̃) onto Z.

2.3. Differential operators

One can define some important differential operators. The operator δ :

E(W̃ ⊗ Λq) → E(W̃ ⊗ Λq+1) defined by

δa ≡ dxk ∧
∂a

∂yk
(2.9)

and its dual operator δ• : E(W̃ ⊗ Λq) → E(W̃ ⊗ Λq−1) defined by

δ•a ≡ yk ∂

∂xk
⌋a. (2.10)

for all a ∈ E(W̃ ⊗ Λq), where ⌋ stands for the contraction.
A useful definition is that of the differential operator δ−1 acting on a

monomial yi1yi2...yipdxj1 ∧ dxj2 ∧ ... ∧ dxjq . δ−1 is defined as

δ−1 :=
δ•

(p+ q)
, p+ q > 0

and δ−1 = 0, for p+ q = 0.

1 The algebra of quantum observables can be defined introducing an associative prod-
uct operation ∗ on the vector space Z of functions a(x,~) =

P

∞

k=0
~

kak(x) and

b(x,~) =
P

∞

k=0
~

kbk(x), with ak(x), bk(x) ∈ C∞(N ) (N is an ‘internal’ manifold).
The product ∗ is defined by a ∗ b = c =

P

∞

k=0
ck(x) for all a, b, c ∈ Z satisfy-

ing the properties (i) — ck are polynomials in ak and bk and their derivatives,
(ii) — c0(x) = a0(x)b0(x), (iii) — [a, b] ≡ a ∗ b − b ∗ a = +i~{a0, b0}P + ... .
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The operators δ and δ• satisfy several properties very similar to those
for the usual differential and co-differential; for instance, there exists an
analogue of Hodge–de Rham decomposition [24].

2.3.1. Symplectic connection

Assume the existence of a torsion-free connection on M which preserves
its symplectic structure. This connection is known as symplectic connec-
tion ∂i.

The definition of an operator which do not change the degree of the Weyl
algebra and only changes the degree of differential forms is also possible.

This operator is a connection defined in the bundle W̃ as ∂ : E(W̃ ⊗ Λq) →

E(W̃ ⊗Λq+1) and is defined in terms of the symplectic connection as follows

∂a ≡ dxi ∧ ∂ia . (2.11)

In Darboux local coordinates this connection is written as

∂a = da+
1

i~
[Γ, a] , (2.12)

where Γ = 1
2Γijky

iyjdxk is a local one-form with values in E(W̃), Γijk are

the symplectic connection’s coefficients, d = dxi∧ ∂
∂xi and ∂i is the covariant

derivative on M with respect to ∂
∂xi . The connection ∂ satisfies the following

properties:

∂(a
•
∧ b) = ∂a

•
∧ b+ (−1)q1a

•
∧ b (13a)

∂(φ • a) = dφ
•
∧ b+ (−1)qφ • ∂a (13b)

for all φ ∈ E(Λq) and a ∈ E(W̃ ⊗ Λq1), b ∈ E(W̃ ⊗ Λq2).
Following Fedosov, we define a more general connection D in the Weyl

bundle W̃ as follows

Da = ∂ +
1

i~
[γ, a] , (2.14)

where γ ∈ E(W̃ ⊗ Λ1) is globally defined on M. The curvature of the
connection D is given by

1

i~
Ω =

1

i~

(
R+ ∂γ +

1

i~
γ2

)
, (2.15)

with the normalizing condition γ0 = 0. Here R is defined by R : =
1
4Rijkly

iyjdxk ∧ dxl where Rijkl is the curvature tensor of the symplectic

connection. In [24] it was shown that for any section a ∈ E(W̃ ⊗Λ) we have

D2a =
1

i~
[Ω, a] . (2.16)
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2.3.2. Abelian connection

One very important definition is that of the Abelian connection. A con-

nection D is Abelian if for any section a ∈ E(W̃ ⊗ Λ)

D2a =
1

i~
[Ω, a] = 0 . (2.17)

From Eq. (2.7) one immediately sees that the curvature of the Abelian con-
nection, Ω, is central.

In Fedosov’s paper the Abelian connection takes the form

D = −δ + ∂ +
1

i~
[r, ·] , (2.18)

where ∂ is a fixed symplectic connection and r ∈ E(W̃3 ⊗Λ1) a globally de-
fined one-form with the Weyl normalizing condition r0 = 0. This connection
has curvature

Ω = −
1

2
ωijdx

i ∧ dxj +R− δr + ∂r +
1

i~
r2 (2.19)

with

δr = R+ ∂r +
1

i~
r2 . (2.20)

This last equation has a unique solution satisfying the condition

δ−1r = 0 . (2.21)

By iterative techniques one can finally construct r and therefore the
Abelian connection D. Thus we have

r =
1

8
Rijkly

iyjykdxl +
1

20
∂mRijkly

iyjykymdxl + ... , (2.22)

where ∂m is a covariant derivative withy respect to ∂
∂xm .

2.3.3. Algebra of Quantum Observables

Now consider the subalgebra E(W̃D) of E(W̃) consisting of flat sec-
tions i.e.

E(W̃D) = {a ∈ E(W̃)|Da = 0} . (2.23)

This subalgebra is called the algebra of Quantum Observables.
Now an important theorem is:

Theorem (Fedosov [24]). For any a0 ∈ Z there exists a unique section

a ∈ E(W̃D) such that σ(a) = a0.
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As a direct consequence of this theorem we can construct a section

a ∈ E(W̃D) by its symbol a0 = σ(a)

a = a0+∂a0y
i+

1

2
∂i∂ja0y

iyj+
1

6
∂i∂j∂ka0y

iyjyk−
1

24
Rijklω

lm∂ma0y
iyjyk+... .

(2.24)
In the case when the phase space is flat Rijkl = 0 the last equation reads

a =

∞∑

k=0

1

k!
(∂i1∂i2 ...∂ika0)y

i1yi2 ...yik . (2.25)

The last theorem states that there exists the bijective map

σ : E(W̃D) → Z . (2.26)

Therefore there exists the inverse map σ−1 : Z → E(W̃D). It is possible to
use this bijective map to recover the Moyal product ∗ in Z.

a0 ∗ b0 = σ(σ−1(a0) • σ
−1(b0)). (2.27)

2.4. A definition of trace on the Weyl algebra on R
2n

In order to work with a variational principle which involves Moyal geom-
etry we would like to get a definition of trace. In the case M = R

2n with
the standard symplectic structure

ω =
2n∑

j=1

dpj ∧ dqj . (2.28)

Here the Abelian connection D in W̃
π
→ R

2n is D = −δ + d.
In this case the product ⋆ coincides with the usual Moyal product [8],

σ(a • b) = exp

(
+i~

2
ωij ∂

∂xi

∂

∂yj

)
σ(a(x,~))σ(b(z,~))|z=x

=

∞∑

k=0

(
+
i~

2

)k 1

k!
ωi1j! . . . ωikjk

∂ka0

∂xi1 . . . ∂xj1 ,

∂kb0

∂xj1 . . . ∂xjk
, (2.29)

where a0 := σ(a) and b0 = σ(b).

The trace in the Weyl algebra E(W̃D) over R
2n is the linear functional

on the ideal E(WComp
D ) over M = R

2n (which consists of the flat sections
with compact support) given by

tr a =

∫

R2n

σ(a)
ωn

n!
, (2.30)
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where σ(a) means the projection on the center σ(a(x, y,~)) := a(x, 0,~).
This definition of the trace satisfies a series of useful properties

a) tr(a • b) = tr(b • a) , (31a)

b) tr(b) = tr(Af b) , (31b)

for all the sections a ∈ E(W̃D), b ∈ E(W̃comp
D ). In last equation, Af is an iso-

morphism Af : E(W̃comp
D )(O) → E(W̃comp

D )(f(O)), where f is a symplectic
diffeomorphism.

On the other hand it is possible to construct a trace on the sections

algebra E(W̃D) of the Weyl bundle over an arbitrary symplectic manifolds
M. Although this definition satisfies the property (2.31), unfortunately it
is too formal and we don’t consider it here.

3. Moyal deformation of self-dual gravity

We now recall some results of Refs. [20,21]. We first review the chiral
model approach to SDG and its Moyal deformation [21]. Then we consider
the Yang–Mills approach to SDG [20].

3.1. The principal chiral model approach to self-dual gravity

We start with the principal chiral model approach to SDG à la Husain [9],
Park [7] and Ward [6]. Husain has shown the equivalence between SDG and
sdiff(Σ)-valued principal chiral model. Since then some solutions of this
model has been found in terms of harmonic maps [28].

In Ref. [21] we found that the Moyal deformation of Park–Husain (P-H)
heavenly equation can be obtained from the operator algebra valued two-
dimensional principal chiral model. To this end the WWM-formalism has
been employed. We have finally reproduced the P-H heavenly equation by
taking the limit ~ → 0, instead of N → ∞.

3.1.1. The principal chiral model

The G-valued principal chiral equations on a two-dimensional simply
connected manifold Ω with local Cartesian coordinates {x, y} read

∂xAy − ∂yAx + [Ax, Ay] = 0 , (1a)

∂xAx + ∂yAy = 0 , (1b)

where Aµ ∈ G ⊗C∞(Ω), µ ∈ {x, y}, stand for the chiral potentials and G is
a Lie algebra of the Lie group G.
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One can proceed as follows. From (3.1a) it follows that Aµ, µ ∈ {x, y},
is of the pure gauge form, i.e., there exists a G-valued function g = g(x, y)
such that

Aµ = g−1∂µg . (3.2)

Substituting (3.2) into (3.1b) we get the principal chiral equations

∂µ(g−1∂µg) = 0 . (3.3)

(Summation over µ is assumed.)
Chiral equations are the dynamical equations for the fields g : Ω → G

which under specific boundary conditions are called harmonic maps [22].
It is very easy to see that the Lagrangian for equations of motion (3.3)

reads (we assume that G is semisimple)

LCh = −cTr{(g−1∂µg)(g
−1∂µg)}

= cTr{(∂µg)(∂µg
−1)} , (3.4)

where c > 0 is a constant and ‘Tr’ is an invariant form on the Lie algebra G.
Let Ĝ be some Lie group of linear operators acting on the Hilbert space

L2(ℜ1) and let Ĝ be the Lie algebra of Ĝ. Consider the Ĝ principal chiral
model. The principal chiral equations read now

∂xÂy − ∂yÂx + [Âx, Ây] = 0 , (5a)

∂xÂx + ∂yÂy = 0 , (5b)

where Âµ = Âµ(x, y) ∈ Ĝ ⊗ C∞(Ω), µ ∈ {x, y}.
From the constraint (3.5a) one infers that

Âµ = ĝ−1∂µĝ , (3.6)

where ĝ = ĝ(x, y) is some Ĝ-valued function on Ω. Substituting (3.6) into
(3.5b) we get the principal chiral equations

∂µ(ĝ−1∂µĝ) = 0. (3.7)

Within WWM-formalism we can transform the above equation into a
new equation defined on the four manifold K4 = Ω × Σ, being Σ ⊂ R

2.
The Weyl correspondence W−1 leads from ĝ = ĝ(x, y) to the function on

K4, g = g(x, y, p, q; ~), i.e., g = W−1(ĝ), according to the formula (compare
with [17-21,23])

g = g(x, y, p, q) := W−1(ĝ(x, y)) =

+∞∫

−∞

〈q −
ξ

2
|ĝ|q +

ξ

2
〉exp(

ipξ

~
)dξ (3.8)



Geometry Associated with Self-Dual Yang–Mills and the Chiral Model . . . 559

from Eq. (3.7) one can infer that the above function fulfills the following
equation

∂µ

(
g−

∗

1 ∗ ∂µg

)
= 0 , (3.9)

where ∗ stands for the Moyal ∗-product (see (3.24)) and g−
∗

1 denotes the
inverse of g in the sense of the Moyal ∗-product i.e.,

g−
∗

1 ∗ g = g ∗ g−
∗

1 = 1 . (3.10)

Comparing (3.9) with (3.7) we can say that the function g = W−1(ĝ(x, y))

defines a harmonic map g : Ω → G∗, being G∗ := W−1(Ĝ)2.
The Lagrangian associated to Eq. (3.9) can be written as [21]

L
′(M)
SG := −

~
2

2
(g−

∗

1 ∗ ∂µg) ∗ (g−
∗

1 ∗ ∂µg) , (3.11)

or equivalently by the Lagrangian

L
′′(M)
SG =

~
2

2
(∂µg) ∗ (∂µg

−
∗

1). (3.12)

3.1.2. The Moyal deformation of Park–Husain heavenly equation

To proceed further, we need the Moyal deformation of P-H version of
SDG.

We start with Eq. (3.1b). This equation says that there exists a scalar
function θ = θ(x, y) ∈ G ⊗C∞(Ω) such that

Ax = −∂yθ, and Ay = ∂xθ. (3.13)

Inserting Eqs. (3.13) into (3.1a) one gets the principal chiral equations
to read

∂2
xθ + ∂2

yθ + [∂xθ, ∂yθ] = 0. (3.14)

Under the assumption that the algebra G is semisimple one can construct
a Lagrangian leading to (3.14) as follows

2 In a sense the Moyal bracket algebra can be considered to be an infinite dimensional
matrix Lie algebra. Especially interesting is the case when the group G∗ is a subgroup
of U∗, where U∗ := {f = f(p, q) ∈ C∞(R2); f ∗ f̄ = f̄ ∗ f = 1}; (the bar stands for

the complex conjugation.). It means that Ĝ = W(G∗) is a subgroup of the group Û

of unitary operators acting on L2(R1). Now one quickly finds that if g = g(x, y, p, q)

is an U∗-valued function, then g−

∗

1 ∗ ∂µg = ḡ ∗ ∂µg is pure imaginary.
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LCh := c′Tr
{

1
3θ[∂xθ, ∂yθ] −

1
2((∂xθ)

2 + (∂yθ)
2)

}
, (3.15)

where c′ > 0 is a constant and ‘Tr’ is defined as (3.4).
Similarly from (3.5b) it follows that there exists the operator-valued

scalar function θ̂ = θ̂(x, y) ∈ Ĝ ⊗ C∞(Ω) such that

Âx = −∂yθ̂, and Ây = ∂xθ̂ . (3.16)

The analog of Eq. (3.14) is

∂2
xθ̂ + ∂2

y θ̂ + [∂xθ̂, ∂y θ̂] = 0 . (3.17)

Now, it is convenient to define a new operator-valued function Θ̂ =
Θ̂(x, y) ∈ Ĝ ⊗ C∞(Ω) by

Θ̂ := i~θ̂ . (3.18)

Thus, by (3.17), Θ̂ satisfies the following equation

∂2
xΘ̂ + ∂2

yΘ̂ +
1

i~
[∂xΘ̂, ∂yΘ̂] = 0 . (3.19)

Then we put

Θ = Θ(x, y, p, q,~) := W−1(Θ̂(x, y)) =

+∞∫

−∞

〈q −
ξ

2
|Θ̂|q +

ξ

2
〉exp

(
ipξ

~

)
dξ .

(3.20)
It is clear that Θ satisfies the Moyal deformation of the P-H heavenly equa-
tion

∂2
xΘ + ∂2

yΘ + {∂xΘ, ∂yΘ}M = 0 , (3.21)

where the bracket {·, ·}M denotes the Moyal bracket i.e.,

{f1, f2}M :=
1

i~
(f1 ∗ f2 − f2 ∗ f1) = f1

2

~
sin

(
~

2

↔
P

)
f2 , (3.22)

↔
P :=

←
∂

∂q

→
∂

∂p
−

←
∂

∂p

→
∂

∂q
; f1 = f1(x, y, p, q), f2 = f2(x, y, p, q) . (3.23)

The Moyal ∗-product is defined by

f1 ∗ f2 := f1exp

(
i~

2

↔
P

)
f2 . (3.24)
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If the functions f1 and f2 are independent of ~, then

lim
~→0

f1 ∗ f2 = f1f2, lim
~→0

{f1, f2}M = {f1, f2}P := f1

↔
P f2 , (3.25)

where {·, ·}P denotes the Poisson bracket.
As it has been shown in [21] the Lagrangian leading to Eq. (3.21) reads

L
(M)
SG = −1

3Θ ∗ {∂xΘ, ∂yΘ}M + 1
2 ((∂xΘ) ∗ (∂xΘ) + (∂yΘ) ∗ (∂yΘ)) . (3.26)

3.1.3. The Park–Husain heavenly equation

Assume now that the function Θ is analytic in ~, i.e., [14]

Θ =
∞∑

n=0

~
nΘn , (3.27)

where Θn = Θn(x, y, p, q), n = 0, 1, ..., are independent of ~. If Θ is a
solution of (3.21), then by (3.27) one concludes that the function Θ0 satisfies
P-H heavenly equation [21]

∂2
xΘ0 + ∂2

yΘ0 + {∂xΘ0, ∂yΘ0}P = 0 . (3.28)

Moreover, the Lagrangian LSG leading to Eq. (3.28) can be quickly found
to read

LSG = lim
~→0

L
(M)
SG = −1

3Θ0{∂xΘ0, ∂yΘ0}P + 1
2

(
(∂xΘ0)

2 + (∂yΘ0)
2
)

(3.29)

(compare with the Lagrangian well known in SDG [29]).
Therefore, self-dual gravity appears to be the ~ → 0 limit of the principal

chiral model for the Moyal bracket algebra, or equivalently, one can interpret
self-dual gravity to be the principal chiral model for the Poisson bracket
algebra [6,7,9].

If one is interested in searching for solutions of P-H heavenly equation
(3.28), one must take an explicit Lie algebra homomorphism Ψ : G → Ĝ

Θ̂ = Θ̂(x, y) = i~θa(x, y)X̂a , (3.30)

where X̂a := Ψ(τa) satisfies Eq. (3.19). Therefore, the function Θ defined
by (3.20)

Θ = Θ(x, y, p, q) = i~θa(x, y)Xa(p, q)

Xa(p, q) : = W−1(X̂a) (3.31)

fulfills the Moyal deformation of P-H heavenly equation (3.21).
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Consequently, if Θ is of the form (3.31) then Θ0 satisfies P-H heavenly

equation, (3.28). Moreover, if the Lie group Ĝ defined by the Lie algebra

Ĝ appears to be a subgroup of the group Û of unitary operators in L2(R1)
then the functions Θ and Θ0 are real.

The procedure described here, which leads to the construction of the
solutions to P-H heavenly equation is somewhat speculative. The main
problem is to find representations for interesting Lie algebras and show how
it works in practice. (For su(2) see [21]).

3.2. SDYM theory approach to self-dual gravity

We will now describe the su(N) SDYM equations in the flat 4-dimensional
real, simply connected flat manifoldX⊂R

4 with local coordinates (x, y, x̃, ỹ)
chosen in such a way that the metric takes the form dS2 = 2(dx ⊗s dx̃ +
dy ⊗s dỹ).

Then the su(N) SDYM equations read

Fxy = 0, Fx̃ỹ = 0, Fxx̃ + Fyỹ = 0 , (3.32)

where, as usually, Fµν ∈ su(N) ⊗ C∞(X), µ, ν ∈ {x, y, x̃, ỹ}, stands for the
Yang–Mills field tensor.

In terms of the Yang–Mills potentials Aµ ∈ su(N) ⊗C∞(X) the SDYM
equations can be rewritten in the gauge Ax = Ay = 0 as

∂x̃Aỹ + ∂ỹAx̃ + [Ax̃, Aỹ] = 0 , (33a)

∂xAx̃ + ∂yAỹ = 0 . (33b)

Now assume that the potentials Aµ are now the anti-hermitian operator-
valued functions on X ⊂ R

4 acting in a Hilbert space H = L2(R1). In this
case Eqs. (3.32) give

∂x̃Âỹ − ∂ỹÂx̃ + [Âx̃, Âỹ] = 0 , (34a)

∂xÂx̃ + ∂yÂỹ = 0 , (34b)

where
Â
†
x̃ = −Âx̃, Â

†
ỹ = −Âỹ .

3.2.1. Moyal deformation of the six dimensional version of the second heavenly

equation

Eq. (3.34b) implies that

Âx = −∂yθ̂, Ây = ∂xθ̂, (3.35)
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under the condition

θ̂ = θ̂(x, y, x̃, ỹ) = −θ̂† .

It is easy to see from Eq. (3.34a) and (3.35) that

∂x∂x̃Θ̂ + ∂y∂ỹΘ̂ +
1

i~
[∂xΘ̂, ∂yΘ̂] = 0 . (3.36)

where Θ̂ := i~θ.

The above equation can be derived as equation of motion from the La-
grangian [20]

L(q) = Tr

{
2π~

(
−

1

3i~
Θ̂[∂xΘ̂, ∂yΘ̂] +

1

2
[(∂xΘ̂)(∂x̃Θ̂) + (∂yΘ̂)(∂ỹΘ̂)]

) }
,

(3.37)
where ‘Tr’ is the standard trace of a linear operator in the orthonormal base
{|ψ >j}j∈N of the Hilbert space H = L2(R1).

Using the WWM-formalism it can be shown [20] that the above La-
grangian can be transformed into a new Lagrangian defined on the six-
dimensional manifold K6 = X × Σ, Σ = R

2. Let {p, q} be the local coordi-
nates on Σ. This new Lagrangian reads

L(M) = −
1

3
Θ ∗ {∂xΘ, ∂yΘ}M +

1

2
[(∂xΘ) ∗ (∂x̃Θ) + (∂yΘ) ∗ (∂ỹΘ)] . (3.38)

Furthermore the Weyl correspondence W−1 leads from Θ̂ = Θ̂(x, y, x̃, ỹ)

to the function Θ = Θ(x, y, x̃, ỹ, p, q, ~), Θ = W−1(Θ̂), defined on X × Σ
(here Σ = R

2) according to the formula

Θ = Θ(x, y, x̃, ỹ, p, q, ~) :=

+∞∫

−∞

exp(
ipξ

~
) < q −

ξ

2
|Θ̂|q +

ξ

2
> dξ . (3.39)

In Ref. [20] it has been also shown that Θ ∈ C∞(X × R
2) satisfies the

Moyal deformation of the six-dimensional version of the heavenly equation

∂x∂x̃Θ + ∂y∂ỹΘ + {∂xΘ, ∂yΘ}M = 0 , (3.40)

which is, of course, the equation of motion of the Lagrangian (3.38).
Taking the limit ~ → 0 in the Lagrangian (3.38) one obtains

L∞ = −1
3Θ{∂xΘ, ∂yΘ}P + 1

2 [(∂xΘ)(∂x̃Θ) + (∂yΘ)(∂ỹΘ)] , (3.41)
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which has as Euler-Lagrange equation precisely the six-dimensional version
of the second heavenly equation 3

∂x∂x̃Θ + ∂y∂ỹΘ + {Θx, Θy}P = 0 , (3.42)

where Θ = Θ(x, y, x̃, ỹ, p, q) is a smooth function on the six-dimensional
manifold K6. As it has been demonstrated in Ref. [20], the different (but
equivalent) versions of the heavenly equation (for instance, first and sec-
ond heavenly equations, Grant’s equation [30], P-H equation and the evolu-
tion form of the second heavenly equation [31]) are symmetry reductions of
Eq. (3.42).

4. A Geometry associated with the Moyal deformation

of self-dual gravity

The purpose of this section is to reformulate some results of [20,21,23],
in terms of non-commutative geometry developed by Fedosov [24] and de-
scribed in Sec. 2.

4.1. Geometry of deformation quantization associated with
the principal chiral model approach to self-dual gravity

4.1.1. Equations

Let us now work out the principal chiral model (described in Section
(3.1)) in geometrical terms. First of all note that Eqs. (3.1a,b) can be
normally written as

F = dA+A ∧A = 0 , (4.1a)

d ⋆ A = 0 , (4.1b)

where ⋆ is the standard Hogde operator and A ∈ E(G⊗Λ1) is the connection
one form.

The corresponding Eqs. (3.2) and (3.3) are

A = g−1dg , (4.2a)

d ⋆ (g−1dg) = 0 . (4.2b)

The first equation (4.1a) is the condition of flat connection and the second
one is the equation of motion.

3 The six-dimensional version of the second heavenly equation can be obtained from
the su(N)-SDYM equations by taking the large-N limit, N → ∞.
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In coordinates (x, y) ∈ Ω

A = Axdx+Aydy, (4.3)

with

Aµ(x, y) =

dim G∑

a=0

Aa
µ(x, y)τa ∈ G ⊗ C∞(Ω), µ = x, y. (4.4)

Now we generalize this gauge connection from G-valued connection one-

form (4.3) to the corresponding W̃D-valued connection one-form

Ã = Ãxdx+ Ãydy, (4.5)

with

Ãµ = Ãµ(x, y, p, q; ~) = aµ + ∂iaµy
i +

1

6
∂i∂j∂kaµy

iyjyk

−
1

24
Rijklω

lm∂maµy
iyjyk + · · · , (4.6)

for the case of non-flat phase-space. While that for the flat case we have

Ãµ(z, z̄) =

∞∑

k=0

1

k!
(∂i1∂i2 · · · ∂ikaµ)yi1yi2 · · · yik . (4.7)

In the above formulas aµ = aµ(x, y, p, q; ~); (x1, x2) ≡ (q, p) ∈ M.

The mentioned correspondence also implies that Eqs. (4.1a,b) have a
counterpart in terms of Fedosov’s geometry

F̃ = dÃ+ Ã
•
∧ Ã = 0 , (4.8a)

d ⋆ Ã = 0 , (4.8b)

where Ã ∈ E(W̃D⊗Λ1) and F̃ ∈ E(W̃D⊗Λ2). Equations (4.2a,b) are written
now as

Ã = g−
•

1 • dg , (4.9a)

d ⋆ (g−
•

1 • dg) . (4.9b)
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4.1.2. Lagrangian

Now we will show that Eqs. (4.8a,b) can be obtained from a variational
principle from a Lagrangian of the standard principal chiral model.

First we recall that the action which gives Eqs. (4.1a,b) reads

S =

∫

Ω

L ,

where
L = 1

2Tr(g−1dg ∧ ⋆g−1dg), (4.10)

where g : Ω → G and d is the exterior differential on Ω i.e. d = dx∂x +dy∂y

and Tr is an invariant form on the Lie algebra of G, Lie(G) = G. Here we
have assumed that G is semisimple.

The above action can be generalized to Fedosov’s geometry as follows

S• =

∫

Ω

L• ,

where

L• = −
~

2

2
tr(Ã

•
∧ ⋆Ã)

= −
~

2

2
tr(g−

•

1 • dg
•
∧ ⋆g−

•

1 • dg) , (4.11)

where ‘tr’ is the Fedosov’s trace and g : Ω → G• is the generalized gravita-
tional uniton (see [23]).

In the case of flat phase-space Rijkl = 0, the trace can be expressed by
(2.30)

L• = −
~

2

2
tr(Ã

•
∧ ⋆Ã) = −

~
2

2

∫

R2

σ(Ã
•
∧ ⋆Ã)dp ∧ dq ,

= −
~

2

2

∫

R2

σ(g−
•

1 • dg
•
∧ ⋆g−

•

1 • dg)dp ∧ dq. (4.12)

This corresponds to (3.11).
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4.2. Moyal deformation of SDYM theory

4.2.1. Moyal deformation of Yang and Donaldson–Nair–Schiff equations

First of all, we will apply our method described in [20,21,23] to the well
known Yang and Donaldson–Nair–Schiff equations. We will find that these
equations admit Moyal deformations via Fedosov’s geometry.

Some years ago C.N. Yang found that su(2)-SDYM equations (in a par-
ticular gauge), always are related to a principal chiral model on a four-
dimensional flat submanifold X of R

4 [30] (see also [20]). Thus, SDYM
equations (3.2a,b) can be written in appropriate real coordinates {x, y, x̃, ỹ}
as follows

∂x(g−1∂x̃g) + ∂y(g
−1∂ỹg) = 0 . (4.13)

Equation (4.13) is called Yang equation.
Proceeding in a similar way as in the above section, we find the equation

∂x(g−
•

1 • ∂x̃g) + ∂y(g
−

•

1 • ∂ỹg) = 0 , (4.14)

where g = g(x, y, x̃, ỹ, p, q; ~) ∈ E(W̃D). This equation will be called the
Moyal deformation of Yang’s equation.

It is very interesting to note that for Kähler and hyper-Kähler manifolds,
Yang equation admits the very natural extension [31,32]

ω ∧ ∂(g−1∂̃g) = 0 , (4.15)

where ∂ := dx∂x+dy∂y, ∂̃ := dx̃∂x̃+dỹ∂ỹ and ω is here the Kähler two-form
on the spacetime manifold R

4 where the theory is defined. This equation is
well known as the Donaldson–Nair–Schiff (DNS) equation4.

The DNS equation can be derived from the so called DNS-action [31,32]

SDNS[g] =
1

2

∫

X

ω ∧ Tr(g−1∂g ∧ g−1∂̃g) −
1

3

∫

X̃

ω ∧ Tr(g−1dg)3 , (4.16)

where X̃ = X × I and ‘Tr’ is an invariant form on su(2). The above action
is of the WZW type and it can be obtained by dimensional reduction from
the Kähler-Chern-Simons theory [32].

Applying now, our method described in Section 2 we find the Moyal
deformation of DNS

ω
•
∧ ∂(g−

•

1 • ∂̃g) = 0 . (4.17)

4 The DNS equation represents a coupling between the SDYM fields and the SDG. The
natural framework to englobe this equation seems to be N = 2 heterotic string theory
[33]. Connections to 4d analogues of WZW theory and Conformal Field Theories,
can be found at [34].
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After a simple calculations we find that the Lagrangian from which we can
derive Eq. (4.19) is

S
(M)
DNS[g] = −

~
2

2

∫

X

ω
•
∧ tr(g−

•

1 • ∂g
•
∧ g−

•

1 • ∂̄g) +
~

2

3

∫

X̃

ω
•
∧ tr(g−

•

1 • dg)3 .

(4.18)

4.3. Geometry of WZW-like action of self-dual gravity

Now we study the geometry and topology associated to the WZW-like
action obtained in Ref. [23]. We first study the case where the basic field θ is
a Lie algebra G-valued function on the spacetime manifold Ω ( dim Ω = 2).
The action reads

S(θ) = −
α

2

∫

Ω

Tr[dθ ∧ dθ] +
α

3

∫

B

Tr(dθ ∧ dθ ∧ dθ) , (4.19)

where ‘Tr’ is an invariant form on the Lie algebra G of G and θ ∈ Λ0(S2)⊗G
and Ω is the boundary of B. The field θ can be seen as θ : Ω → G.

Taking Ω = S2 one can extend this map from S2 to the 3-manifold
Ω̃ = Ω × I with ∂Ω̃ = S2. This is due to the fact that π2(G) = 0.

The maps θ : Ω̃ → G are classified by π3(G). The triviality of this group
implies that the constant α must take R-values i.e. α ∈ R. Thus we choose
α = 1. Therefore the WZ-like term is not in essential topological! Thus one
can define globally an invariant 3-form ρ

ρ =
1

3
Tr(dθ ∧ dθ ∧ dθ) . (4.20)

The form ρ can be written globally as an exact form ρ = dλ, where λ is a
two-form on G. Thus this term does not contribute to the classical equations
of motion.

Action (4.21) can be generalized to Fedosov’s geometry as follows

S•(Φ) = +
1

2

∫

S2

tr[dΘ
•
∧ dΘ] −

1

3i~

∫

Ω̃

tr(dΘ̄
•
∧ dΘ̄

•
∧ dΘ̄) , (4.21)

where now Θ ∈ E(W̃D) ⊗ C∞(S2) and Θ̄ ∈ E(W̃D) ⊗ C∞(Ω̃).
Moyal deformation of WZW-like action for SDG can be put in the form

S(Φ) = +
1

2

∫

S2

tr[dΘ
•
∧ dΘ] + ΓWZ , (4.22)

where ΓWZ
∼= − 1

i~

∫
Ω̃
Θ̄∗ρ.
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5. Final remarks

In this paper we have reformulated different aspects of integrable defor-
mation of SDG in terms of a Fedosov’s geometry of deformation quantiza-
tion. We find that this non-commutative geometry, appears to be a natural
language to describe the SDYM and Chiral Model approaches to SDG.

Some further questions remain to be overcome. For instance, it would
be very interesting to investigate the behavior of heavenly hierarchies of
conserved quantities [35,36], within Fedosov’s geometry and some other al-
ternative geometries of deformation quantization. Some applications to hy-
perheavenly equations would be of capital importance. In connection with
quantum groups and non-commutative geometry might be interesting to
consider both, simultaneously, the Moyal deformation and q-deformation.
Some results of [27,37,38] might serve as beginning point.

On the other hand, the strong connection between SDYM theory and
SDG with N = 2 heterotic strings [33] might indicate that the results ob-
tained in this paper for SDYM (via Yang’s equation), concerning its Moyal
deformation (and the geometrical interpretation) can be extended to N = 2
heterotic strings. It is very possible that we can find something like an
integrable Moyal deformation of N = 2 heterotic strings.

The surprising relation between N = 2 Heterotic Strings with M and
F theories [39,40,41] and the application of the former in the searching for
geometrical structures of M and F theories, one would to hope that some
new geometrical descriptions of SDYM theory and SDG will be of some
importance to give more deep insight into string theory dualities.
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